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Genome-wide comparative 
analyses of correlated and 
uncorrelated phenotypes identify 
major pleiotropic variants in dairy 
cattle
Ruidong Xiang1,2, Iona M. MacLeod2, Sunduimijid Bolormaa2,3 & Michael E. Goddard1,2

While single nucleotide polymorphisms (SNPs) associated with multiple phenotype have been reported, 
the knowledge of pleiotropy of uncorrelated phenotype is minimal. Principal components (PCs) and 
uncorrelated Cholesky transformed traits (CT) were constructed using 25 raw traits (RTs) of 2841 
dairy bulls. Multi-trait meta-analyses of single-trait genome-wide association studies for RT, PC and 
CT in bulls were validated in 6821 cows. Most PCs and CTs had substantial estimates of heritability, 
suggesting that genes affect phenotype via diverse pathways. Phenotypic orthogonalizations did 
not eliminate pleiotropy: the meta-analysis achieved an agreement of significant pleiotropic SNPs 
(p < 1 × 10−5, n = 368) between RTs (416), PCs (466) and CTs (425). From this overlap we identified 21 
lead SNPs with 100% validation rate containing two clusters: one consisted of DGAT1 (chr14:1.8 M+), 
MGST1 (chr5:93 M+), PAEP (chr11:103 M+) and GPAT4 (chr27:36 M+) affecting protein, milk and fat 
yield and the other included CSN2 (chr6:87 M+), MUC1 (chr3:15.6 M), GHR (chr20:31.2 M+) and SDC2 
(chr14:70 M+) affecting protein and milk yield. Combining beef cattle data identified correlated SNPs 
representing CAPN1 (chr29:44 M+) and CAST (chr 7:96 M+) loci affecting beef tenderness, showing 
pleiotropic effects in dairy cattle. Our findings show that SNPs with a large effect on one trait are likely 
to have small effects on other uncorrelated traits.

Understanding genetic control of mammalian phenotype, including body growth, health outcomes and metabolic 
pathways can improve patient treatment1, knowledge of evolution2 and agricultural efficiency3. Most mammalian 
phenotypes are quantitative or complex traits, whose variation is controlled by many genomic mutations with 
small effects and by environmental effects. While thousands of single nucleotide polymorphisms (SNPs) have 
been found associated with individual complex traits by genome-wide association studies (GWAS), an important 
question is the extent to which the same causal variants affect multiple traits, i.e. the extent of pleiotropy4.

It is expected that correlated traits share some causal variants and this has been observed in humans5 and 
livestock6, 7. However, it is also possible that uncorrelated traits share some causal variants. This possibility can 
be tested by transforming a set of correlated traits into uncorrelated traits, for instance, by principal components 
(PCs) analysis8, 9. If genes influence a set of traits through a limited number of physiological pathways, it may 
result in that only the first few PCs showed strong genetic effects leading to a simple picture of pleiotropy. A pre-
vious study analysing simulated and a small amount of real human data showed that large genetic variances can 
exist in PCs explaining small amount of total phenotypic variances10.

To further describe the extent and nature of pleiotropy in large mammals, we used data on 2841 progeny-tested 
dairy bulls with phenotypes on 25 traits and high density genotypes of 632,002 SNPs. Whilst many pleiotropic 
SNPs have been found in beef cattle6, an equivalent analysis of a large number of dairy traits has not been 
conducted, although some pleiotropic patterns were reported9. The 25 dairy traits included measures of milk 
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production, fertility11, conformation and management traits12 which contribute to the profitability of dairy farm-
ing13. Secondly, we examined the effects in dairy cattle of SNPs significantly associated with quantitative traits in 
beef cattle7.

We used genome-wide meta-analysis modelling Chi-square distributions of SNP effect size7 to analyse 25 raw 
traits (RTs), 25 PCs and a novel set of phenotypic orthogonalisation, Cholesky transformed traits (CTs)14 in the 
dairy cattle discovery population. This was followed by the selection of lead SNPs representing major dairy QTL, 
confirmed by conditional and joint analysis. Finally, SNPs associated with both dairy traits alone and those SNPs 
shared by dairy and beef traits were validated at both multi-trait (linear index approach) and single-trait (GWAS) 
level in a separate population of 6821 dairy cows.

Methods
Animals, genotypes and phenotypes. No live animals were used in this study. Phenotype data (trait 
deviations for cows and daughter trait deviations for bulls, Table 1) were from the April 2016 genetic evaluations 
from DataGene (http://www.datagene.com.au/). Daughter trait deviations were the average trait deviations of a 
bull’s daughters and all phenotypes were pre-corrected for known fixed effects. Only those bulls’ phenotype which 
were based on records from more than 15 progenies were included. Complete phenotype data were from 9,662 
dairy cattle from the breeds Holstein, Jersey, MIX (crosses between Holstein and Jersey) and Australian Red, a 
genetically distinct breed15 (Supplementary Table S1). All animals had either real or imputed high density array 
genotype data following previous procedures15 and in total, 632,002 SNPs were used after quality control15, 16. 
SNPs with minor allele frequency <0.01 or departing from Hardy-Weinberg equilibrium (p < 0.001) were dis-
carded. 2,841 bulls were used as the discovery population due to the high accuracy of the phenotype which was 
the average of >15 daughter records. The 6,821 cows, who had individual phenotypic records and weak genetic 
relationships with the bulls (Supplementary Figure S1), were used as the validation population.

Phenotype orthogonalisation. The principal components (PCs) and Cholesky transformed traits 
(CTs) were calculated based on centered and z-score scaled raw traits (RTs) of the discovery population in R 
(v3.3.1)17. Given n number of animals and k number of RTs, an n × k matrix of PC scores was calculated based on 
eigen-decomposition:

= ′u T g (1)n n

Raw traits Full names trait type 1SNPs h2 se PC Eigenvalues Vp2 1SNPs h2 se CT 1SNPs h2 se

01.Prot protein yield production 119 0.86 0.02 PC1 6.355 0.254 5 0.67 0.03 01.Prot 119 0.86 0.02

02.Fat fat yield production 178 0.82 0.02 PC2 2.504 0.100 3 0.61 0.03 02.Fat 408 0.85 0.02

03.Milk milk yield production 230 0.86 0.02 PC3 2.123 0.085 21 0.53 0.03 03.Milk 344 0.90 0.01

04.SCC somatic cell count production 8 0.82 0.02 PC4 1.758 0.070 26 0.65 0.03 04.SCC 8 0.82 0.02

05.SurvDi survival reproduction 27 0.53 0.03 PC5 1.459 0.058 3 0.55 0.03 05.SurvDi 14 0.45 0.03

06.Fert fertility reproduction 31 0.54 0.03 PC6 1.145 0.046 25 0.56 0.04 06.Fert 6 0.43 0.03

07.Temp temperament management 6 0.50 0.03 PC7 1.004 0.040 9 0.49 0.03 07.Temp 49 0.47 0.03

08.MSpeed milking speed management 13 0.57 0.03 PC8 0.910 0.036 28 0.57 0.03 08.MSpeed 10 0.54 0.03

09.Stat stature linear type 19 0.64 0.03 PC9 0.881 0.035 6 0.57 0.04 09.Stat 25 0.63 0.03

10.Like likeability management 4 0.48 0.03 PC10 0.809 0.032 44 0.57 0.03 10.Like 1 0.16 0.03

11.Angul angularity linear type 1 0.37 0.04 PC11 0.741 0.030 14 0.43 0.04 11.Angul 1 0.24 0.03

11.Bone bone quality linear type 6 0.49 0.03 PC12 0.718 0.029 8 0.52 0.03 11.Bone 5 0.41 0.04

11.CentL central ligament linear type 5 0.47 0.03 PC13 0.611 0.024 43 0.41 0.04 11.CentL 6 0.36 0.04

11.ChestW chest width linear type 9 0.49 0.03 PC14 0.584 0.023 1 0.52 0.03 11.ChestW 15 0.36 0.03

11.ForeA fore attachment linear type 3 0.47 0.04 PC15 0.486 0.019 42 0.44 0.04 11.ForeA 2 0.36 0.04

11.MuzW muzzle width linear type 16 0.43 0.03 PC16 0.444 0.018 6 0.38 0.03 11.MuzW 7 0.33 0.03

11.PinSet pin set linear type 12 0.62 0.03 PC17 0.437 0.017 42 0.37 0.03 11.PinSet 14 0.58 0.04

11.PinW pin width linear type 9 0.56 0.03 PC18 0.416 0.017 241 0.53 0.03 11.PinW 5 0.48 0.03

11.RSet rear legs set linear type 15 0.35 0.04 PC19 0.356 0.014 129 0.31 0.03 11.RSet 4 0.33 0.03

11.RearAH rear attachment 
height linear type 12 0.62 0.03 PC20 0.330 0.013 3 0.22 0.03 11.RearAH 4 0.47 0.04

11.RearAW rear attachment 
width linear type 12 0.51 0.03 PC21 0.272 0.011 6 0.27 0.03 11.RearAW 1 0.37 0.04

11.TeatPF front teat placement linear type 1 0.69 0.03 PC22 0.252 0.010 2 0.09 0.03 11.TeatPF 4 0.57 0.03

11.UdTex udder texture linear type 4 0.41 0.03 PC23 0.195 0.008 3 0.12 0.03 11.UdTex 0 0.08 0.03

24.OType overall type linear type 5 0.49 0.03 PC24 0.140 0.006 44 0.35 0.03 24.OType 5 0.16 0.03

25.Mamm mammary system linear type 7 0.50 0.03 PC25 0.070 0.003 153 0.77 0.02 25.Mamm 13 0.31 0.03

Table 1. Summary of single-trait genome-wide studies (GWAS) results for raw traits, principal components 
(PCs) and Choleskey transformed traits (CTs). 1The number of SNPs with single-trait GWAS P < 1 × 10−5. 
2Total phenotypic variances explained by each principal component.
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where un was a k × 1 vector of PC scores for animal n; T was a k × k matrix of eigenvectors such that the variance 
matrix of the PC Var(T’g) = D, a diagonal matrix of eigenvalues; gn was an k × 1 vector of RT for animal n. The 
25 eigenvectors were shown in Supplementary Table S2. The n × k CT matrix was calculated based on Cholesky 
decomposition:

= −c L g (2)n n
1

where cn was a k × 1 vector of Cholesky scores for the animal n; L was the k × k matrix of the Cholesky factor 
which satisfied LLt = COV, the k × k covariance matrix of raw scores after standardisation as z-scores14; gn was an 
k × 1 vector of RT for animal n. The kth CT can be interpreted as the kth raw trait corrected for the preceding k-1 
traits. Consequently, 1st CT equals the 1st RT.

Single-trait genome-wide association studies(GWAS) in the discovery population. 25 RTs with 
the derived sets of 25 PCs and 25 CTs were analysed one trait at a time with linear mixed models using GEMMA18:

= + + + +y mean breed bx a error (3)i

where y = vector of phenotypes for bulls (discovery population), breedi = three breeds, Holstein, Jersey and 
Australian Red; bx = regression coefficient b on SNP genotypes x; a = polygenic random effects ~N(0, Gσg

2) 
where G = genomic relatedness matrix based on all SNPs18, 19. The same model was applied to GWAS and, with-
out including SNP in the model, calculations of SNP heritability for all RTs, PCs and CTs.

The count of SNPs that were significant (single-trait GWAS ps < 0.05) for both of a pair of traits were compared 
with the expected number using the Fisher’s exact test (pf) implemented in GeneOverlap20 in R.

Multi-trait meta-analysis. Multi-trait meta-analysis of 25 RTs or 25 PCs or 25 CTs followed previous pro-
cedures6, 7. Briefly, the multi-trait χ2 statistic for the ith SNP was calculated based on its signed t values generated 
from each single trait GWA:

χ = ′ −t V t (4)i i
2 1

where ti was a k (number of traits = 25) × 1 vector of the signed t-values of SNPi effects, i.e., beta/se, for the k 
traits; ti′ was a transpose of vector ti (1 × k); and V−1 was an inverse of the k × k correlation matrix where the 
correlation was calculated over the all estimated SNP effects (signed t-values) of the two traits. The χ2 value of 
each SNP was examined for significance based on a χ2 distribution with k degrees of freedom to test against the 
null hypothesis that the SNP had no significant effects on any one of the k traits. The false discovery rates of χ2 
tests were calculated following Storey’s method21 by ‘qvalue’ package in R. An additional test of pleiotropy was 
performed by carrying out the multi-trait test separately for odd and even numbered PCs. This was to confirm the 
existence of pleiotropy using PCs’ orthogonality: if a SNP had strong pleiotropic effects on all PCs, the variances 
of which were randomly attributable to RTs, this SNP was then expected to have strong effects on any subsets 
of PCs. Following this logic, this pleiotropic SNP was expected to have consistently strong effects on randomly 
selected odd and even PCs. t values of single-trait GWA of odd PCs and of even PCs were combined to calculated 
odd PC χ2 and even PC χ2. We then tested whether or not the same SNPs were significant in both analyses.

Selection of dairy cattle lead SNPs. The selection of lead SNPs representing major QTLs was based 
on the most significant SNP (multi-trait meta-analysis pm of RT, PC and CT at least <1 × 10−5) within 
non-overlapping 1-Mb intervals of a chromosome of the discovery population. For chromosomes with multiple 
significant SNPs, the 1-Mb interval started from the most significant SNP and approached to the distal ends. 
Such selected lead SNPs were refined by step-wise analyses (similar to ref. 19): firstly, the lead SNPs were fitted as 
covariates simultaneously for each single-trait GWAS of RT, PC and CT. t values of such single-trait GWAS were 
used for meta-analysis described above to determine multi-trait significance. While most SNPs, after adjusting 
for the existing lead SNPs’ effects, were insignificant, a few SNPs were still significant (pm of RT, PC and CT all 
<1 × 10−5). The most significant ones of these few SNPs one per 1 Mb interval were again selected, added to the 
list of existing lead SNPs and the process repeated until there were no additional SNPs significant after fitting the 
lead SNPs. Then, joint analyses22 fitting all lead SNPs in a regression was used to estimate their effects on traits. 
Those SNPs without significant effects (joint P < 0.05) on at least one trait were removed from the lead SNP list.

Cluster analysis. Those lead SNP effects (above generated t values) that had the same direction of effect in 
both the discovery and validation (see below) were used to calculate the effect correlation matrix within RTs, PCs 
and CTs. The correlation matrices were used to perform hierarchical clustering.

SNP annotation. Genes associated with SNPs were annotated by variant effect predictor23 and previous pub-
lications including7, 15, 24–27. Published results overrode ensemble predicted annotation if both existed. If no genes 
from Ensembl or published results could be identified for the SNP, the closest gene within 1 Mb was assigned.

Selection of dairy and beef cattle shared SNPs. Beef cattle traits with animal numbers >1900 from 
a previous study (Table 1 in ref. 7) were selected. t values of these traits were used for meta-analysis as described 
above. Beef cattle SNPs with pm < 1 × 10−5 in the meta-analysis were selected and compared with dairy cattle 
SNPs with pm < 0.05 in the meta-analysis of 25 dairy RTs. The significance of the overlap between SNPs significant 
in the dairy and beef analysis was tested with the GeneOverlap.

http://S2
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Validation using cow data. The phenotypes on the validation population (i.e. the cows) did not include 
one trait (‘Mamm’), so the multi-trait analysis on the bulls was repeated with 24 traits so that the results could be 
compared directly with results on the cows. Based on these results the linear index of 24 traits on which each lead 
SNP had the most significant effect was calculated by:

=
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b′ was the transpose of a vector of the size effects (beta) of the SNP (to be validated) on the 24 RT, PC and CTs; C−1 
was an inverse of the 24 × 24 (co)variance matrix among the k traits calculated from the beta of all tested SNPs for 
RT, PC and CTs only in the discovery population. yRT was a 24 × 1 vector of the phenotype values for the 24 traits 
(matching 24 RTs in bulls) for each animal in the validation population. yPC and yCT in the validation population 
were calculated using the same formula for calculating 24 PCs (PC eigenvectors) and 24 CTs (Cholesky L matrix) 
as in the discovery population according to ref. 9. The linear index (yi) for each cow in the validation population 
was analysed as a new response variable for an association with only the lead SNPi used to define this linear index. 
Such linear index analysis was also applied to validate in dairy cows the SNPs that were significant in the analysis 
of beef cattle and the dairy bulls. Dairy lead SNPs and dairy-beef shared SNPs were also validated for individual 
RT by comparing SNP effect directions between GWAS of the discovery and validation populations.

Data availability. The genotype data used in this study were included in published articles15 and ref. 7. 
Supporting data were included in Supplementary Tables S1–7.

Results
Single-trait GWAS of RTs, PCs and CTs. Among the RTs and CTs there was a tendency for the traits with 
the highest heritability to have the highest number of significant SNPs (Table 1). Milk production, i.e., protein (01.
Prot), fat (02.Fat) and milk (03.Milk) yield RTs and CTs had the largest numbers of significant SNPs (>100) and 
had the highest estimated heritability (>0.8). Reproduction and behaviour traits including survival and fertility, 
temperament and milking speed had mid-range heritability estimates and reduced number of significant SNPs 
compared to milk production traits. Conformation or type traits had mid to low range heritability estimates and 
a small number of significant SNPs (<20).

The single trait analysis of the PCs’ showed little relationship between the phenotypic variance explained by 
each PC, the number of significant SNPs and the heritability (Table 1). PC1 (which had moderate loadings from 
many traits, Supplementary Table S2) accounted for 25% of the total variance across all traits, but had only 5 
significant SNPs and a moderate estimation of heritability (0.67). Conversely, PC25 (high positive loading for 
protein yield and high negative loading for milk yield) explained 0.03% of the variances in all traits, yet also had a 
modest estimation of heritability (0.50 ± 0.03) and l53 significant SNPs.

Shared SNPs at the single-trait GWAS level. Of 576 pairs of RT, 494 pairs had more SNPs with signifi-
cant (ps < 0.05) effects on both traits than expected by chance (Fisher’ exact test, pf < 0.05) (Fig. 1a). Although the 
number of pairs of traits sharing significant SNPs was reduced among the uncorrelated traits, PC (Fig. 1b) and 
CTs (Fig. 1c) still had 423 and 394 out of 576 pairs, respectively with more shared SNPs than expected by chance. 
Milk production related traits, e.g., RT protein yield, PC2 (top loading associated with protein yield) and CT milk 
yield tended to have a large number of significant SNPs that were also significant for other traits (Fig. 1).

Among the single trait GWAS of the RTs, milk yield had the largest number of significant SNPs (Table 1) and 
shared many significant SNPs with other traits (Fig. 1a). Figure 2a showed that these shared SNPs were concen-
trated on chromosome 14 and, to a lesser extent, on chromosomes 5, 6, 20 and 27. Figure 2b gave a similar break-
down of SNP shared by PC18 and Fig. 2c showed the same for CT fat. Chromosome 14, containing the DGAT1 
locus which is strongly associated with milk and fat traits28, also had the largest number of significant SNPs seg-
regating across single-trait GWAS for RTs, PCs and CTs (Fig. 2a–c). Chromosome 5, containing the MGST1 locus 
associated with milk fat percentages25, had significant enrichment of SNPs affecting milk production related RTs 
and CTs (Fig. 2a,c). SNPs affecting RT milk were also significantly enriched for chromosome 20 and 27, contain-
ing milk yield loci GHR15 and fat percentage loci GPAT429, respectively.

Multi-trait meta-analysis to detect pleiotropy in RTs, PCs and CTs. Three multi-trait analyses were 
performed. The number of significant (pm < 10−5) SNPs were 416 for RTs, 466 for PCs and 425 for CTs, each 
with a FDR < 0.01. These numbers are greater than the number of significant SNPs detected in any single trait 
analysis. Each of the three meta-analysis was an approximation to a full multi-trait analysis because they used 
summary statistics. However, they largely agreed with 368 SNPs being significant in all 3 meta-analyses (Fig. 3b, 
Supplementary Figure S2) and significant regions covering or close to previously reported loci in the dairy pop-
ulations (Fig. 3 and Supplementary Figure S2). These loci included DGAT1 (chromosome, chr14, 1.8 M+)28, 
SDC2 (chr14, 69 M+)15, GHR (chr20, 31 M+)15, CSN2 (chr6, 87 M+)15, MGST1 (chr5, 93 M+)15, 25, PAEP (chr11, 
103 M+)30 and GPAT4 (chr27, 36 M+)29. The significance peak on chr18, 57 M+, detected in our study over-
lapped with reported CTU1 locus associated with calving difficulty27. The small peak detected on chr3 (15.6 M+) 
was associated with previously identified MUC1 locus26.

Meta-analysis based only on the odd (e.g. 1, 3, 5…) or only on the even (2, 4, 6…) PCs again detected pleio-
tropic QTL on chromosome 14 and 18 (Fig. 4). SNPs on chromosome 14, especially around the DGAT1 locus, 
had a highly significant effect on both the even and odd PCs, confirming strong pleiotropic effects (Fig. 4). Other 
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Figure 1. Overlap of SNPs detected by single-trait GWAS (ps < 0.05) within raw traits (RTs, a), principal 
components (PCs, b) and Cholesky transformed traits (CTs, c). Numbers in cells were rounded log2 count of 
shared SNPs between single-trait GWAS pairs. Overlap significances were based on Fisher’s exact tests (pf) 
accounting for the number of SNPs of each pair of single-trait GWAS and the total number of SNPs analysed. 
The RT associated with the top factor loading value of each PC was shown in the parentheses (Supplementary 
Table S2).
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SNPs from loci of SDC2 and CTU1 were also significant in both odd and even PCs but not as consistently as 
DGAT (Fig. 4).

Lead SNPs for dairy cattle. 21 lead SNPs were selected based on the most significant SNP(s) from each 
chromosome of the dairy bulls (Supplementary Table S5) and were tested for their effects in the dairy cows. All 
21 had an effect in the cows in the same direction as in the bulls and for >=17 SNPs this effect was significant 
(pv < 0.05, Table 2).

Two clusters of lead SNPs were identified which had somewhat similar patterns of effects across traits, espe-
cially protein, milk and fat yield for RT, PC (Fig. 5a,b) and CTs (Supplementary Figure S3). The 1st cluster included 
DGAT1 (chr14, 1.8 M+), MGST1 (chr5, 93 M+), PAEP (chr11, 103 M+) and GPAT4 (chr27, 36 M+) loci. These 
SNPs had an allele which increased fat yield but decreased protein and especially milk yield (Fig. 5a). This effect 
pattern was consistent for the SNP effects on CT protein, milk and fat yield (Supplementary Figure S3). The 1st 
cluster members also had correlated effects on PC18 and PC19 with top factor loading values associated with fat 
yield and fertility, respectively (Supplementary Table S4, Fig. 5b). The 2nd cluster included CSN2 (chr6, 87 M+), 
MUC1 (chr3,15.6 M+), GHR (chr20, 29 M+) and SDC2 (chr14, 69 M+), the clustering was stronger across PCs 
(Fig. 5b) and CTs (Supplementary Figure S3). These SNPs had an allele that increased CT protein but decreased 
CT milk (Supplementary Figure S3).

Shared pleiotropic SNPs between dairy and beef cattle. Significant overlaps (Pf < 0.05) of pleio-
tropic SNPs were detected between the 25 dairy cattle traits and 15 beef cattle traits which included body height, 
muscle and fat mass. Although these dairy-beef shared SNPs had small effects in the dairy cattle population, 
more than 86% had effects in the same direction in bulls and cows (Table 2 and Supplementary Table S5). Many 
multi-trait identified dairy-beef shared SNPs had consistent effects for each single RT, PC and CT in the dairy 

Figure 2. The breakdown of shared significant SNPs detected for selected traits with the other traits on each 
chromosome. As highlighted in red dashed boxes, selected milk yield raw trait (a), principal component 18 (b) 
and Cholesky transformed fat yield (c) had the largest numbers of significant (ps) SNPs detected by single-trait 
GWAS for RT, PC and CT, respectively (Table 1). The number of shared SNPs for the each other trait (non-
selected) were determined at the ps < 0.05 level (see methods). Significances of the enrichment of chromosomes 
containing the amount of significant SNPs detected for selected traits were based on the Fisher’s exact test (pf). 
The RT associated with the top factor loading value of each PC was shown in the parentheses (Supplementary 
Table S2).
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discovery (bulls) and validation (cows) populations, although a majority of these effects were on body type traits 
rather than milk related traits (Fig. 6, Supplementary Figure S4 and Supplementary Table S7). We found that two 
SNPs related to CAPN1 (29, 43 M+) and CAST (7, 96.1 M+), both associated with beef tenderness7, 31 showed 
correlated effect patterns across dairy cattle RTs, PCs and CTs. Both of these two loci contained an allele which 
decreased RT udder texture (11.UdTex), rear attachment width (11.RearAw) and stature, but increased likeability 
(farmer’s preferences score) (Fig. 6a). The likeability was the only trait with consistent effects of these two SNPs 
on CTs (Supplementary Figure S4). In addition, the CAPN1 allele increased both beef tenderness and dairy milk 
yield, whereas the CAST allele increased beef tenderness but decreased dairy fat yield.

Figure 3. Summary of multi-trait meta-analysis of 25 raw traits (RTs) in the discovery population (dairy 
bulls). (a) Manhattan plot using SNPs with multi-trait meta-analysis pm < 0.05. The horizontal blue line was 
pm<= 1 × 10−5. Some reported loci affecting milk traits were highlighted. Equivalent Manhattan plots of 
principal components (PCs) and Cholesky transformed traits (CTs) were shown in Supplementary Figure S3. 
(b) Venn gram showing the overlap of numbers of significant (pm < 1 × 10−5) SNPs from multi-trait meta-
analysis of RTs, PCs and CTs in the discovery population.

Figure 4. Relationship of multi-trait meta-analysis significance (pm) between odd (e.g., 1, 3, 5…) and even (2, 4, 
6…) principle components (PCs). Some known loci affecting milk traits were highlighted.
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Discussion
Genetic properties of raw traits (RT), principal components (PC) and Cholesky transformed 
traits (CT). Comparable with the previous results where daughter trait deviations of the dairy bulls were 
also analysed9, we identified the mid-to-high range of heritability estimates of bull’s RTs (Table 1). Using the trait 

SNP selection Phenotype
SNPs 
no.

SNP no. with consistent 
effect directions1 Percent

SNPs no. P < 0.05 in 
validation GWAS2 Percent

Dairy cattle 
lead

RT

21

21 100% 17 81%

PC 21 100% 18 86%

CT 21 100% 17 81%

Dairy and 
beef cattle 
overlapped

RT

14

14 100% 4 29%

PC 12 86% 4 33%

CT 14 100% 5 36%

Table 2. Summary of validation for raw traits (RTs), principal components (PCs) and Cholesky transformed 
traits (CTs). 1The SNP effects are generated by genome-wide association studies (GWAS) using linear index as 
phenotype with cow data (validation population) and compared with the effect directions with GWAS of bulls 
(discovery population). 2The significance was determined by GWAS using linear index as phenotype with cows 
(validation population).

Figure 5. Clustering of lead SNPs representing major loci affecting dairy raw traits (RTs, a) and principal 
components (PCs, b) in the discovery population. Loci displaying similar effect clustering patterns across RT, 
PC and Choleskey transformed traits (Supplementary Figure S3) were highlighted in red boxes. Loci labels on 
the Y-axis were the same for both left (correlation of SNPs’ effects) and right (SNP’s effects on traits) panels. 
t values with absolute values >= 1 and validated for consistent effect directions between the discovery and 
validation populations were coloured. The RT associated with the top factor loading value of each PC was 
shown in the parentheses on the right panel (Supplementary Table S4).
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deviation of multiple progenies as the sire’s phenotype reduced the amount of errors in the bull’s phenotypic data, 
thus, led to high estimation of heritability.

Single-trait GWAS of 25 correlated RT found many SNPs that were associated with more than one trait. This 
is not unexpected when the traits are correlated. However, after transforming the RT to uncorrelated PC and CTs, 
there were still many pairs of uncorrelated traits that shared significant SNPs. Cholesky decomposition has been 
widely used in twin studies to understand genetic covariances between traits32. However, our study appears to be 
the first one to use many CTs as uncorrelated traits for GWAS and detection of pleiotropy. Our results show great 
utility of CT in GWAS and detection of pleiotropy, especially better interpretability than PC as each CT is linked 
to at least one RTs. Another possible advantage of CT is that they can be calculated even when not all individuals 
have all traits, provided the traits can be ordered so that individuals with trait k recorded also have traits 1 to 
k-1 recorded. The current order of the RTs used to calculate CTs in our study was not the only possible choice as 
all studied cattle had complete phenotypic records. However, since the kth CT can be interpreted as the kth RT 
corrected for the preceding k-1 RTs, a biologically sensible order of RTs may improve the interpretability of the 
results of CT. Such order may require some prior knowledge of studied traits.

The PC dimension reduction approach8 hypothesized that genes act through a limited number of physiologi-
cal pathways to impact on phenotypic traits. However, our results do not support this hypothesis as all PCs appear 
to be genetically important (Table 1). This is consistent with the previous report in human where genetic infor-
mation of all PCs were used to achieve maximum GWAS power10. If the genes in a pathway had a similar pattern 
of effects across traits, this pattern would emerge as a PC and the overall correlations between traits would reflect 
this pattern. In this case, SNPs would be associated with only one PC, many SNPs would show the same pattern of 
effects across traits and this pattern would be in line with the overall correlations. None of these predictions were 
confirmed by our results. This is exemplified by SNPs within DGAT1 which have significant effects on several PCs 
(Fig. 5b). We further confirmed this by meta-analysis of single-trait GWAS of odd PCs and single-trait GWAS of 
even PCs where DGAT1 showed the most consistent significances (Fig. 4). The spread effects of DGAT1 on PCs 
occurs because the effects of DGAT1 do not follow the pattern described by the overall genetic correlations. For 

Figure 6. Clustering of the dairy-beef overlapped SNPs on raw traits (RTs, a) and principle components 
(PCs, b) of the dairy discovery population. Loci displaying similar effect clustering patterns across RT, PC 
and Choleskey transformed traits (Supplementary Figure S4) were highlighted in red boxes. Loci labels on the 
Y-axis were the same for both left (correlation of SNPs’ effects) and right (SNP’s effects on traits) panels. t values 
with absolute values > = 1 and validated for consistent effect directions between the discovery and validation 
populations were coloured. The RT associated with the top factor loading value of each PC was shown in the 
parentheses on the right panel (Supplementary Table S4).

http://S4
http://S4


www.nature.com/scientificreports/

1 0SCientifiC RepoRts | 7: 9248  | DOI:10.1038/s41598-017-09788-9

instance, RT milk and fat yield are positively correlated but the allele of DGAT1 that increases fat yield decreases 
milk yield (Fig. 5a). These findings imply that causal variants act through diverse rather than a limited number 
of biological pathways to affect different traits. This conclusion is supported by the cluster analysis of lead SNPs. 
Although 2 clusters were identified, the SNPs within a cluster only partially share the same pattern of effects 
across traits. This limited sharing is possibly explained by competition for substrates between different synthesis 
pathways within the mammary gland (see below).

We show that using genetic information of all PCs can be more powerful than using a limited number PCs 
in understanding pleiotropy. However, the PC results themselves had limited interpretability at the phenotypic 
level (Supplementary Table S2). Previously, factor analysis33 showed ability to distinguish latent pathways in dairy 
cattle phenotypes34 but this was based on closely related traits describing fatty acid profiles. A future analysis with 
interpretable latent factors may improve our understanding of biology of the animal.

Pleiotropy in the dairy cattle. Our findings show that there is a substantial amount of pleiotropy detect-
able in correlated RT and uncorrelated PC and CT at both single-trait and multi-trait level (Figs 1–3). The three 
meta-analyses, although each is an approximation, yielded similar results. The powerful multi-trait approach 
(P < 1 × 10−5 and FDR < 0.01) identified many significant pleiotropy SNPs with 100% validation rates of 21 lead 
SNPs (Table 2). These results demonstrate the existence of major pleiotropic loci in the dairy cattle population 
affecting uncorrelated traits, which are independent of spurious pleiotropy, i.e., cross-phenotype4.

The lead SNPs representing the dairy cattle major pleiotropic loci in Holstein, Jersey and Australian Red, 
largely overlap with reported dairy production-traits related loci (Fig. 5). Using cluster analysis RTs, PCs and 
CTs, we identified two clusters of SNPs. Within a cluster the SNPs had a similar pattern of effects across traits but 
this was largely restricted to milk production traits. Overall the evidence for clustering of the effects of loci was 
weak, suggesting that each locus had a unique pattern of effects across traits. The 1st cluster contained SNPs close 
to the loci DGAT1 (chr14, 1.8 M+)9, 15, 26, MGST1 (chr5, 93 M+)25, PAEP (chr11, 103 M+)26 and GPAT4 (chr27, 
36 M+)29, each of which has an allele that increases fat yield but decreases protein and milk yields. DGAT1, 
MGST1 and GPAT4 have an effect on fat synthesis but PAEP is the gene for the milk protein beta lactoglobulin. 
The simplest explanation for this clustering is competition for substrate within the mammary gland. That is, a 
mutation in DGAT1 that decreases fat synthesis causes more substrate to be available for lactose and protein syn-
thesis. In human cell lines, DGAT1 and MGST1 were reported to show co-expression in a gene group regulating 
adipogenesis35.

The 2nd cluster contained CSN2 (chr6, 87 M+), MUC1 (chr3,15.6 M+), GHR (chr20, 31.2 M+) and SDC2 
(chr14, 69 M+). Each member has an allele that increases protein yield but decreases milk yield (Fig. 5 and 
Supplementary Figure S3). Again this might be the result of competition for substrates within the mammary 
gland. Individually, MUC136, GHR15, 26, CSN215 and SDC215 loci were reported for their major effects on protein 
and/or milk yield, but not on fat yield. In our study also, these four loci showed weak or no effects on fat yield. It 
is likely that the 2nd cluster SNP members contribute to milk production variations differently from the mecha-
nisms allowing the 1st cluster to impact on milk production. However, to clarify the exact physiological differences 
between these two clusters in affecting milk production, more precisely measured phenotype will be required. 
Nevertheless, both the cluster analysis and above PC analysis lead to the conclusion that the genes affecting these 
25 traits do not work through a small number of pathways. Rather almost every gene seems to have its own pat-
tern of effects across traits.

Pleiotropy analysis can also extend our knowledge of known SNP for their unknown effects. Previously 
reported association between CTU1 and calving difficulty in the Holstein-Friesian cattle27 was consistent 
with our observation of strong CTU1 effects on RT, PC and CT fertility (Fig. 5 and Supplementary Figure S3). 
However, we also identified CTU1 as one of the strongest pleiotropic loci (Figs 3 and 4) with a wide range of 
effects on non-production dairy RTs and CTs, including decreasing fertility rate but increasing stature and chest 
width. Although the gene function of CTU1 is unknown27, 37, its widespread effects on both production and 
non-production traits suggest that it is an important marker for a balanced selection of dairy cattle.

Shared pleiotropic SNPs between dairy and beef cattle. Some SNPs with large effects on beef cattle 
traits were shown to have small effects on dairy traits. (Fig. 6). The two SNPs with the most consistent effect pat-
terns across RTs, PCs and CTs were close to CAPN1 (29, 43 M+) and CAST (7, 96.1 M+). Previously, these two 
SNPs were reported for both independent7 and epistatic31 effects on beef tenderness and the CAST protein binds 
to CAPN1 to inhibit its activities38. The effects on tenderness are partially post-mortem but in live cattle these pro-
teins probably affect protein turnover. However, we did not observe significant effects of these two loci on protein 
yield in dairy cattle. Instead, the majority of observed effects of these two SNPs were on conformation traits (Fig. 6 
and Supplementary Figure S4) which may eventually lead to their consistent SNP effects on likeability. MEF2C 
was identified as one of the most active transcription factor along with Myostatin to regulate muscle growth in the 
beef cattle39 and had functional variants related to growth in ruminants40, 41. The observed effects of the SNP close 
to MEF2C (0.07 Mb away) on a wide range of body type traits appear to be consistent with its role in regulating 
muscle development and growth.

We identified less characterised loci, including SNPs within gene KIZ (13, 40 M+) and within PGBD5 (around 
28, 1.4 M) and close to SASH1 (9, 86+) with widespread pleiotropic effects on dairy RTs, PCs and CTs (Fig. 6a 
and Supplementary Figure S4). Consistent with a recent report from Canadian Holstein cattle, SNPs within KIZ 
(PLK1S1) had effects on somatic cell count but not on milk production traits42. However, we also identified its sig-
nificant effects on milking speed (in both RT and CT). RT and CT milking speed are also associated with the SNP 
close to SASH1 which regulates cell proliferation and apoptosis in human (RefSeq). There is too limited knowl-
edge of the function of the piggyBac transposable element derived gene PGBD5 for us to explain its pleiotropic 
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effects, especially these effects on RT, PC and CT protein yield, in the dairy cattle. Interestingly, PGBD5 gene is 
highly conserved across invertebrates and its encoded protein affected many other genes’ actions by inducing 
DNA transposition and may contribute to complex traits by genome remodelling43. It may also have an important 
regulatory role in the ruminant species.

We conclude that SNPs with a large effect on one trait are likely to have much smaller effects on other traits. 
Transforming the correlated traits to uncorrelated PCs or CTs reduces but does not eliminate this pleiotropy at 
the single-trait GWAS level. We hypothesise that this is because each causal variant has a unique pattern of effects 
across traits and hence generates a set of correlated effects that is different to the average correlations caused by 
all the causal variants together. Consequently, when the average correlations are used to construct PCs or CTs, 
some causal variants still have effects on multiple uncorrelated traits. A previously less characterised locus CTU1 
(chromosome 18, 57 M+) showed strong pleiotropic effects on production and non-production traits. We also 
identified SNPs with strong effects in beef cattle showing small but validated effects in dairy populations. Our 
findings are not only useful for the dairy industry to use multi-functional genetic markers to achieve efficient 
selection, also provide important information for other researchers to consider when conducting multi-trait 
genome-wide analysis.
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