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The row-column method received a lot of attention for 3-D ultrasound imaging. By reducing the number 
of connections required to address the 2-D array and therefore reducing the amount of data to handle, 
this addressing method allows for real time 3-D imaging. Row-column still has its limitations: the issues 
of sparsity, speckle noise inherent to ultrasound, the spatially varying point spread function, and the 
ghosting artifacts inherent to the row-column method must all be taken into account when building a 
reconstruction framework. In this research, we build on a previously published system and propose an 
edge-guided, compensated row-column ultrasound imaging system that incorporates multilayered 
edge-guided stochastically fully connected conditional random fields to address the limitations of the 
row-column method. Tests carried out on simulated and real row-column ultrasound images show 
the effectiveness of our proposed system over other published systems. Visual assessment show our 
proposed system’s potential at preserving edges and reducing speckle. Quantitative analysis shows 
that our proposed system outperforms previously published systems when evaluated with metrics such 
as Peak Signal-to-Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results 
show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging.

Ultrasound imaging is a valuable tool in non destructive testing, with applications ranging from detection of 
material defects to object and foreign body detection1. 3-D ultrasound imaging offers the possibility of accurately 
generating certain material properties that could be useful to material scientists2. 3-D ultrasound imaging could 
also be useful in medical imaging: it is difficult to image the same slice in 2-D for the purpose of follow up studies, 
and viewing of anatomy using a 2-D imaging device requires a great deal of skill and experience3.

For 3-D ultrasound imaging systems, the use of a fixed transducer with electronic beam-steering is preferred 
over a mechanically moving transducer, as mechanical motion introduces unwanted artifacts and the increased 
acquisition time does not allow for applications requiring real time feedback. A 2-D array of transducers is 
needed to achieve 3-D ultrasound imaging without mechanical motion. However, a fully addressed N × N 2-D 
requires N2 connections, which offers a challenge both in addressing individual connections as well as acquiring 
and processing large amounts of data4. One way to address this issue that has received a great deal of attention in 
literature is to use the row-column method4–8.

Proposed by ref. 5, the row-column method suggests the use of a pair of orthogonally positioned 1-D arrays 
of rows and columns, where one is responsible for transmit beamforming and the other for receive beamforming. 
A line of focus, adjustable in both depth and azimuth, is generated in a manner similar to 1-D transmit beam-
forming by the column array. Receive beamforming is achieved when the sound reflected from the object being 
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imaged is received by the row array. Using this 2-D transducer setup, the number of connections required is only 
2N instead of N2 9. A visualization of the row-column method is shown in Fig. 1.

There are some intrinsic limitations to the row-column method. For ultrasound waves, sound pressure emit-
ted from the transducers gradually weakens as it moves away, causing a beam profile that varies the response of 
the imaging system with depth. This means that the point spread function (PSF) of ultrasound systems is spatially 
dependant (as demonstrated in Fig. 2), and must be considered as such in a proper reconstruction framework. 
The row-column’s PSF also suffers from ghosting artifacts caused by edge waves4, which degrades the recon-
structed image. Ultrasound imaging in general also suffers from data sparsity and speckle noise inherent to ultra-
sound. All these challenges cannot be addressed by sensor design alone, a reconstruction framework must be 
proposed that can take all these challenges into account.

A number of row-column systems were proposed in literature. A system proposed by Chen et al.6 achieves 
real-time ultrasound imaging by incorporating a capacitive micromachined ultrasound transducers (CMUTs) 
based row-column addressing scheme. However, this system poorly addresses data sparsity through bi-linear 
interpolation and does not account for speckle noise or the spatially-varying PSF. Another system proposed by 
Rasmussen et al.4 and Christiansen et al.7 attempts to directly address some of the limitations of row column by 
introducing line beamforming and using integrated apodization instead of Hann apodization to improve image 
quality, it still does not take speckle noise into account. A recent row-column system proposed by Ben Daya 
et al.10 incorporated a reconstruction framework that compensates for the intrinsic limitations of row-column; 
using multilayered conditional random fields (MCRF) to account for data sparsity, speckle noise, and a spatially 
varying PSF with inherent ghosting artifacts has shown promising results. However, the use of MCRF leads to 
over-smoothed images with poorly preserved edges, and the way they account for the ghosting artifacts has 
not been properly addressed. In this research, we propose an edge-guided compensated row column ultrasound 

Figure 1.  Visualization of a row-column array. (a) shows N row arrays with N connections, (b) shows N column 
arrays with N connections, (c) shows the row-column arrangement with 2N connections.
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imaging system (henceforth referred to as EG-CRCUIS) that builds on the row-column ultrasound imaging sys-
tem proposed in ref. 10 by incorporating a multilayered edge-guided, stochastically-fully connected random 
fields (MEG-SFCRF) to address the limitations of that system.

The rest of the document is organized as follows: we will first present the main stages of the EG-CRCUIS in 
the method section. Next, we will outline our experimental setup to test our new method. We will then show the 
results of our experiments and discuss them. Finally we will conclude with a summary and propose future work.

Method
The compensated row-column ultrasound imaging system (CRC-UIS) proposed in ref. 10 contains three main 
stages: data acquisition, characterization, and signal processing. Our main contribution is in the signal processing 
stage, where we incorporate the MEG-SFCRF model. A top level implementation of system can be seen in Fig. 3.

Data Acquisition.  The unit’s block diagram - shown in Fig. 3 - consists of a customized system built using 
the PCI eXtensions for Instrumentation (PXI) platform. A row-column addressing capacitive micromachined 
ultrasonic transducers array (RC-CMUTs) was used, with pre-amplifiers being added to compensate for its small 
current output signal. A digitizer, a field-programmable gate array (FPGA) board, and an embedded controller 
module are also included. An external FPGA was included for transmit beamforming, as well as a set of high 
voltage pulsers for stepping up voltage10.

Characterization.  This subsection details the characterization of the intrinsic properties of the data acqui-
sition unit, which will be used as input to the signal processing unit. First we discuss the mathematics of how an 
image is observed, then we present how noise is modelled, finally we describe how the PSF is characterized at 
different depths.

Image Formation.  Equation 1 describes how a true image is observed when the row-column technique is used:

= + .⁎g x y z M x y z f x y z h x y z u x y z( , , ) ( , , ) [ ( , , ) ( , , ) ( , , )] (1)r

where x, y, and z are the Cartesian coordinates. The term gr(x, y, z) is the observed RF image, M(x, y, z) is the 
sampling function, f(x, y, z) encodes the tissue reflectivity function, the operator ‘*’ denotes the convolution 
operation, h(x, y, z) represents the spatially dependent point spread function (PSF); a function that describes the 
response of an imaging system to a point source, and u(x, y, z) is the noise component11.

The observed RF image gr(x, y, z) is a series of fan-beams of ‘readings’, originating from the ultrasound source, 
in a three dimensional black box. This is visualized in Fig. 4. The sampling function, M(x, y, z), determines where 
the point measurements are taken in the phantom space. h(x, y, z) is the ultrasound system’s spatially dependant 
PSF, and will be discussed later in more detail. u(x, y, z) describes both the measurement noise as well as the 

Figure 2.  The point spread function of a 5 mm × 5 mm, 32 × 32 elements row-column array. The −6 dB 
resolution weakens as the focusing and scatterer moves from 10 mm (a) to 25 mm (b) away from the aperture. 
Side lobes can be seen below −30 dB. The two plots were generated by scanning an ideal point target located at 
[x, y, z] = [0, 0, 10] mm and [0, 0, 25] mm. The maximum value of the demodulated received beamformed signal 
was plotted as a function of the lateral distance in the azimuth and elevation direction 20 mm away from the 
aperture. The demodulated signals are normalized and presented with an 80 dB dynamic range.
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physical phenomena which are not accounted for by the convolution model11. The noise model will now be 
discussed.

Noise Model.  Scans from all coherent imaging modalities present with Speckle noise. This noise is a byproduct 
of the interfering echoes of a transmitted waveform that emanate from the studied object’s heterogeneities. Noise 
in ultrasound images is often modeled as:

Figure 3.  A flow chart representing the proposed system. (a) Shows the a top level implementation of the EG-
CRCUIS. (b) Shows the signal processing unit in more detail.

Figure 4.  Fan beams originating from the ultrasound transducer. Black diamonds indicate available readings, 
white diamonds indicate absent readings that need to be estimated.
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g x y z f x y z x y z x y z( , , ) ( , , ) ( , , ) ( , , ) (2)e m aξ ξ= +

where ge(x, y, z) is the observed envelope image, f(x, y, z) is the noise-free image, ξm(x, y, z) is the multiplicative 
speckle noise component, and ξa(x, y, z) is the additive speckle noise component11.

With ultrasound images, evidence exists that only the multiplicative noise needs to be considered11. Therefore, 
the additive noise term can be removed from (2) and g(x, y, z) can be expressed as:

ξ=g x y z f x y z x y z( , , ) ( , , ) ( , , ) (3)e m

Figure 5.  Visualization of the uncertainty layer within the state-observation model. This is a 2-D slice of the full 
3-D lattice. The layers (from top to bottom) are state, observation, and uncertainty layer.

Figure 6.  A realization of the pairwise relationship in the state-observation model. The different symbols inside 
the boxes indicate different edge values. The thickness of the dotted lines indicate how likely two nodes will be 
connected; each node in the graph will be connected according to a probability drawn from a distribution based 
on measurement, spatial location, and edge value. Nodes having similar measurement, spatial location, and 
edge are the most likely to be connected (thickest dotted lines), while nodes having no similarities are the least 
likely to form a connection (thinnest dotted lines).
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Taking the log of (3) would turn the multiplication into a simple addition problem:

ξ= + .g x y z f x y z x y zlog( ( , , )) log( ( , , )) log( ( , , )) (4)e m

There were a few distributions proposed to model speckle11, empirical tests done on the envelop data captured by 
the data acquisition unit show that the Generalized Gamma distribution has the best fit. The noise samples of the 
logarithmic transformed multiplicative noise in (4) can be modeled with the FisherTippett distribution given by:

σ σ= − − −p I x y z I x y z I x y z( ( , , )) 2exp[(2 ( , , ) ln2 ) exp[2 ( , , ) ln2 ]] (5)2 2

where p is the probability density function (PDF), I(x, y, z) denotes voxel intensity at point (x, y, z), and σ is their 
standard deviation.

The spatially varying PSF presented in (1), the sparsity due to the sampling function also presented in (1), and 
the noise model in (5) can all be incorporated into our random field based model. The details of their mathemat-
ical incorporation will be presented in the signal processing section.

PSF Characterization.  The PSF characterization was done independently from the data acquisition unit, but was 
incorporated along with the acquired data as input to the signal processing unit. We will outline the model used to 
estimate the PSF, and then briefly discuss the origin of edge waves in the row-column method.

One of the most commonly used models for the point spread function of ultrasound systems is the one based 
on the Tupholme-Stephanisshen model for spatial impulse response, which was further derived for the pulse echo 
case by Jensen12. In this model, the point spread function of a row-column system at point r1

→ with transducers at 
point →r2  and geometry S is given by:

Figure 7.  Model of simulated phantoms. The first phantom (a) consists of 4 cysts placed 10 mm apart in depth, 
with the third and fourth cysts placed 2.5 mm and 5 mm to the right respectively. The diameter of each cyst from 
top to bottom is 6 mm, 4 mm, 2 mm, and 2 mm. The second phantom (b) is a combination of three 6 mm by 
6 mm squares that are arranged to form an “L” shape. The third phantom (c) is a series of point sources at [x, y, 
z] = (0, 0, 39.5) mm, (0, 0, 40) mm, and (0, 0, 40.25) mm.

Figure 8.  Beamplots derived from the PSFs of the different systems.
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⁎H r r t h r r t h r r t( , , ) ( , , ) ( , , ) (6)pe 1 2 1 2 2 1
→ → = → → → →

where δ(.) is the Dirac delta function and c is the speed of sound at homogeneous medium of density ρ0, and h(→r1 , 
→r2 , t) is the one way impulse response:

∫
δ

π
→ → =

−

→ − →

→ − →( )
h r r t

t

r r
S( , , )

2
d

(7)S

r r
c

1 2
1 2

1 2

It should be noted that the convolution in (6) is over time and not space13.
This model is used in Field II, an ultrasound simulator for MATLAB, to estimate the PSF of various trans-

ducer setups. We will adopt this model when estimating the PSF in our framework. Given the intrinsic nature of 
row-column, it will be incorporated in the estimated PSF.

Acoustically, the row-column method is different from fully addressed 2-D arrays. Line elements are sig-
nificantly longer than the length of the square line elements used in fully addressed 2-D arrays, which results 
in prominent edge artifacts. A study done in Rasmussen et al.4 showed that the two-way impulse response of a 
row-column system contains up to nine responses. Given nine echoes from a single scatterer, only the first echo 
can be used for imaging; the other ghost echoes are too weak, but they still degrade image quality.

The study suggests that electronic apodization is not an adequate form of apodization to solve the edge artifact 
problem, and propose that apodization should be integrated into the transducer array itself. This forms the basis 
for their integrated apodization row-column system.

In this work, since we are motivated by finding an image reconstruction framework that can addressed the 
problem of edge artifacts, we will be incorporating the field II model of the PSF into our signal processing unit.

Signal Processing Unit
Figure 3 shows how the signal processing unit contributes to the overall system. This unit is the framework that 
drives the reconstruction of the ultrasound image. It incorporates the intrinsic properties of ultrasound as well 
as the acquired raw data into a MEG-SFCRF framework capable of addressing the challenges common to the 
row-column method. Raw data is mapped into a regular lattice and passed on to the optimization algorithm, once 

Figure 9.  First phantom visual assessment of the EG-CRCUIS (top left) as opposed to other systems in 
literature. The EG-CRCUIS reconstruction is shown in (a), the CRC-UIS reconstruction10 is shown in (b), 
real-time CMUT system6 shown in (c), integrated apodization system8 shown in (d), fully addressed 2-D array 
shown in (e), and the original phantom image shown in (f). All simulated scans are shown at a dynamic range of 
40 dB.



www.nature.com/scientificreports/

8ScIEntIfIc REPOrTS | 7: 10644  | DOI:10.1038/s41598-017-09534-1

it converges the resulting image is displayed. The mathematical expression that drives this optimization will now 
be formulated.

MEG-SFCRF Formulation.  To estimate the tissue reflectivity function f(x, y, z), the inverse problem of (1) 
needs to be solved. The relationship between observed image and actual signal can be modeled as a conditional 
probability of true signal given the observation. We can formulate the reconstruction problem as a Maximum a 
Posteriori (MAP) estimation problem14–16, where a solution is obtained by maximizing the posterior distribution 
P(F|G):

=⁎F argmax P F G{ ( )}
(8)F

where F*, F , and G are the MAP solution, the possible results set, and the observation respectively.
Conditional random field (CRF) is a powerful discriminative modeling method, first proposed by Lafferty 

et al.17, that can directly model the conditional probability P(F|G) without specifying any prior model P(F) and 
relaxing the conditional independence assumption P(G|F)18. The CRF model can be expressed as:

ψ= −P F G
Z G

F G( )
1
( )

exp( ( , ))
(9)

where Z is the partition function and ψ(·) is the potential function17–22. The potential function ψ(·) is the combi-
nation of any arbitrary unary ψu(·) and pairwise ψp(·) potential functions:

F G f G f G( , ) ( , ) ( , )
(10)i

n

u i
c C

p c
1

∑ ∑ψ ψ ψ= +
= ∈

where C is a set of a clique structure for each node.
While the CRF model considers node interactions in a small neighbourhood, fully connected conditional ran-

dom fields (FCRF) addresses node interaction in the global scale23. However, FCRF requires huge computational 
cost. One way to reduce this computational cost has been proposed by Shafiee et al.19, where a stochastic clique 
was introduced. In this clique structure, the connection between nodes are determined in a stochastic manner.

Figure 10.  Second phantom visual assessment of the EG-CRCUIS (top left) as opposed to other systems in 
literature. The EG-CRCUIS reconstruction is shown in (a), the CRC-UIS reconstruction10 is shown in (b), 
real-time CMUT system6 shown in (c), integrated apodization system8 shown in (d), fully addressed 2-D array 
shown in (e), and the original phantom image shown in (f). All simulated scans are shown at a dynamic range of 
40 dB.
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Following the stochastically fully connected CRF (SFCRF) model proposed by Shafiee et al.19 where the clique 
structure for each node is based on various stochastic indicator functions, we propose an additional edge based 
stochastic indicator function (hence the term “edge-guided”) to better preserve edges in the reconstructed image.

Since each node i is connected to all other nodes, a set of neighbours for node i is defined by:

= = ≠N i j j n j i( ) { 1: , } (11)

where |N(i)| = n − 1. The clique structure C can be represented as the pairwise clique:

= =C C i{ ( )} (12)p i
n

1

= | ∈ =C i i j j N i( ) {( , ) ( ), 1 1} (13)p i j
S
{ , }

where 1 i j
S
{ , } is the stochastic indicator neighbour function that defines whether two nodes can construct a clique. 

This function, in this research, is a combination of three probability distributions:

P Q R1 1
0 otherwise (14)

i j
S i j

s
i j
d

i j
e

{ , }
, , , γ=







⋅ ⋅ ≥

Pi j
s
,  and Qi j

d
,  are the probability distributions that incorporate the spatial information and data relation among the 

states, and Ri j
e
,  is the proposed probability distributions that incorporates edge information into 1 i j

S
{ , }. γ determines 

how sparse the graph is. Pi j
s
,  is defined as:

σ
=






−

− 




P d i d jexp ( ( ) ( ))

2 (15)
i j
s e e

p
,

2

2

where σp is a control factor that determines how much this probability function contributes to the overall stochas-
tic indicator neighbour function, and de(i) is the Euclidean distance from node i and the center of the neighbour-
hood considered. Qi j

d
,  is defined as:

Figure 11.  Third phantom visual assessment of the EG-CRCUIS (top left) as opposed to other systems in 
literature. The EG-CRCUIS reconstruction is shown in (a), the CRC-UIS reconstruction10 is shown in (b), 
real-time CMUT system6 shown in (c), integrated apodization system8 shown in (d), fully addressed 2-D array 
shown in (e), and the original phantom image shown in (f). All simulated scans are shown at a dynamic range of 
30 dB.



www.nature.com/scientificreports/

1 0ScIEntIfIc REPOrTS | 7: 10644  | DOI:10.1038/s41598-017-09534-1

σ
=






−

− 




Q I i I jexp ( ( ) ( ))

2 (16)
i j
d

q
,

2

2

where σq is the weight that determines how much this probability function contributes to the overall stochastic 
indicator neighbour function, and I(i) is the pixel intensity at node i. Similarly, Ri j

d
,  is defined as:

Figure 12.  A closer look at the reconstruction of each cysts is shown. The red outline indicates the shape and 
position of the cysts in the phantom image. 30 dB is the dynamic range.

Figure 13.  Visual assessment of the EG-CRCUIS (left side) as opposed to the CRC-UIS (middle) and the real-
time CMUT system (right side). The EG-CRCUIS reconstruction shows better noise reduction, with the bottom 
two wires not visible with the real-time CMUT system. 40 dB is the dynamic range.



www.nature.com/scientificreports/

1 1ScIEntIfIc REPOrTS | 7: 10644  | DOI:10.1038/s41598-017-09534-1

σ
=





−

− 




R B i B jexp ( ( ) ( ))
2 (17)

i j
e

r
,

2

2

where σr is the weight that determines how much this probability function contributes contributes to the overall 
stochastic indicator neighbour function, and B(i) is the edge value at node i.

Regular CRFs adopt local cliques (or neighborhoods) where random variable interactions are involved in 
modeling. Neighbours are considered with the same degree of certainty in this model. Observations are assumed 
to be complete, and data sparsity is not taken into account10. However, one of the challenges this framework 
aims to address is to reconstruct a full 3-D volume F from a set of sparse measurements G. MCRF introduced an 
extension to the CRF model where a layer that determines the degree of the observation’s uncertainty is incorpo-
rated, thereby addressing the issue of incomplete data. With MCRF, every observation is linked with a value that 
specifies the uncertainty in modeling. With this extension, (9) can be rewritten as:

ψ= −P F Cr G
Z G

F Cr G( , ) 1
( )

exp( ( , ))
(18)

where Cr is the model’s uncertainty layer. Cr is a zero-one plane where Cr = 1 at positions with missing observa-
tions and Cr = 0 at positions where observations are available. Figure 5 demonstrates this layer in context with 
states and observations (where missing observations are black in this layer). This layer must be taken into account 
when the unary and pairwise functions are chosen.

System PSNR (dB) CoC ENL

EG-CRCUIS 22.3878 0.2157 12.4943

CRC-UIS10 21.0310 0.1474 14.7624

real-time CMUT6 12.0393 0.0076 7.2600

Integrated apodization8 7.9748 0.0095 11.0534

Fully addressed 2-D array 19.8901 0.1872 0.6250

Table 1.  Quantitative results for the first simulated phantom. This table details the quantitative analysis of the 
simulated data for the first phantom on various systems from literature. Highest values are shown in bold.

System PSNR (dB) CoC ENL

EG-CRCUIS 18.0949 0.1927 12.0111

CRC-UIS10 16.1575 0.1329 68.0186

real-time CMUT6 14.3155 0.1333 1.9662

Integrated apodization8 14.2250 0.1484 1.6230

Fully addressed 2-D array 16.4432 0.1587 5.7942

Table 2.  Quantitative results for the second simulated phantom. This table details the quantitative analysis of 
the simulated data for the second phantom on various systems from literature. Highest values are shown in bold.

System PSNR (dB) CoC ENL

EG-CRCUIS 29.5291 0.5244 0.0815

CRC-UIS10 23.2665 0.2003 0.0465

real-time CMUT6 18.0784 0.0829 0.0898

Integrated apodization8 16.2192 0.0732 0.1292

Fully addressed 2-D array 19.4130 0.0142 0.1322

Table 3.  Quantitative results for the third simulated phantom. This table details the quantitative analysis of the 
simulated data for the second phantom on various systems from literature. Highest values are shown in bold.

System CNR (dB) ENL

EG-CRCUIS 2.6510 49.0017

CRC-UIS10 1.5419 50.3531

real-time CMUT6 0.7703 23.0397

Table 4.  Quantitative results for the real phantom. This table details the quantitative analysis of the real data. 
Highest values are shown in bold.
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The unary potential function plays the role of data-driven procedure, incorporating the information corre-
sponding to the observation into the model. Since we believe that the observation is degraded according to the 
distribution shown in (5), FisherTippett noise is assumed as the degradation process and is incorporated in to the 
model as the unary potential function:

f G Cr
f G Cr

Cr
( , , )

( , ), 0
0 1 (19)

u i i
i i

i
ψ =







Ψ =

=

where Ψ(fi, G) is expressed as:

σ
α

σ σ
Ψ =




−

− 




⋅



−

− 




f G
G H f G H f

( , ) 1 exp
log log ( )

exp
log log ( )

(20)i
i i

where H denotes the function taking factors related to the imaging system (such as the spatially dependant PSF, 
sensor noise, etc.) into account, and α is the coefficient that determines the contribution of the observed data 
inside the ‘beams of readings’. The expression for Ψ(fi, G) comes from the Generalized Extreme Value theorem, 
which simplifies to the FisherTippett PDF expressed by (5).

The pairwise potential functions incorporates the spatial information into the model. These functions are 
defined based on a subset of random variables which is determined by clique structures. This is demonstrated in 
Fig. 6, where according to a predefined penalty function w(·), the relations among random variables in a clique c 
can be defined as:

f G f f w g g( , ) exp( ( , )) (21)p c i j i jψ β= − | − | ⋅

where {i, j} ∈ c, β is the coefficient that determines the contribution of the spatial information, and w(gi, gj) is the 
penalty function. Note that c is simple clique, not to be confused with the uncertainty layer Cr.

The pairwise term aims to remove small noises, provide consistent labels in neighboring random variables 
and estimate the areas of the image with no prior data with the help of penalty functions based on the spatial 
information available. The penalty function attempts to use whatever information that is already available to find 
the best estimate for the ‘dark’ areas of the image. For the penalty function, two penalty terms are included: spatial 
proximity penalty term wsp and First Order Variation (FOV) of intensity values wfov.

The spatial proximity penalty term is based on the assumption that the farther a voxel is, the less likely it is to 
belong to a unique segment of an image. It maintains the homogeneity of surrounding voxels. The spatial proxim-
ity between voxels i and j is quantified by the Euclidean distance dE(i, j):

σ
=







− 




w i j d i j( , ) exp ( , )

2 (22)
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E
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2

where σsp is a control factor used to enforce the strength of spatial closeness.
The first order variation (FOV) penalty term is built on the need to preserve the boundaries of the estimated 

image, it uses the difference in intensities between neighbouring voxels to outline tissue transitions and provide a 
more clear ultrasound image. The penalty term is expressed as:

‖ ‖

σ
=


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
−

− 


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w g g

g g
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2 (23)
fov i j

i j

fov
2

where σfov is a control factor used to enforce the strength of this penalty term.

Figure 14.  A closer look at the EG-CRCUIS reconstruction. Better noise suppression was achieved. 40 dB is the 
dynamic range.
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Given these two penalty terms and the fact that stochastically fully connected random fields model longer 
range inter-node connections, this framework should avoid the excessive smoothing of inhomogeneous areas 
and boundaries19, 24. The data driven stochastic indicator function (16) strengthens the maintenance of inho-
mogeneous areas and the edge driven stochastic indicator function (17) helps maintain edges by preventing 
oversmoothing.

Energy Function Inference.  Given the MEG-SFCRF expression in (18) together with the potential func-
tion in (10), the energy function for the MAP model can be formulated as:

∑ ∑ψ ψ= + .
= ∈

E F G Cr f G Cr f G( , , ) ( , , ) ( , )
(24)i

n

u i i
c C

p c
1

The MAP can now be reformulated as:

= .⁎F argmin E F G Cr{ ( , , )}
(25)F

To solve this MAP problem, a gradient descent algorithm was used. Gradient descent is an iterative optimization 
algorithm that finds the minimum by taking steps that are proportional to the negative of the gradient at a certain 
point. The gradient descent for possible solution F* can be expressed as:

F F E F G Cr
F

( , , )
(26)

t t1⁎ ⁎= +
∇

∇

+

where E F G Cr
F

( , , )∇
∇

 is the energy gradient with respect to F and ⁎F
t
 is the estimated solution at iteration t. To find the 

possible solution F* while taking into account the energy function given in (24) and the potential functions given 
in (19) and (21), the gradient descent in (26) can be rewritten as:

Figure 16.  A closer look at the real-time CMUT system reconstruction. Very visible ringing artifacts can be 
seen. The bottom two wires cannot be seen, and the top wire is not very visible. 40 dB is the dynamic range.

Figure 15.  A closer look at the CRC-UIS reconstruction. Better noise suppression when compared with the 
real-time CMUT system, the bottom two wires can be seen. 40 dB is the dynamic range.
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where ψ∇
∇
F G Cr

F
( , , )u  is the gradient of the unary part of the energy function with respect to F, ψ∇

∇

F G

F

( , )p  is the gradi-
ent of the pairwise part of the energy function with respect to F, α determines the contribution of the unary part 
of the energy function, and β determines the contribution of the pairwise part of the energy function.

Experimental Setup
To evaluate the efficacy of our proposed system, EG-CRCUIS was tested on both simulated and real ultrasound 
scans. Simulated scans were compared against CRC-UIS10, the real-time CMUT row-column system used in 
Chen et al.6, the integrated apodization system proposed in refs 4 and 7, all with 128 by 128 elements that are 
4.8 mm by 0.12 mm in dimension, as well as a system with a fully-addressed 2-D array. Real scans were only com-
pared against CRC-UIS and the real-time CMUT row-column system. Simulations were performed using Field 
II, an open source MATLAB toolkit that has been used in ultrasound literature25. For both simulated and real 
evaluations of EG-CRCUIS and CRC-UIS, RF-data was envelope-detected, log-compressed, and mapped into a 
regular 3-D lattice through linear interpolation before passing it to the optimization stage.

Simulation.  In this work, Field II was used for all simulation: generating phantom data, performing ultra-
sound beamforming, and calculating the PSF of the EG-CRCUIS and CRC-UIS systems at different depths.

For the simulation, all tested systems were implemented with 32 × 32 2-D row-column addressing (with the 
exception of the fully addressed 2-D array), and the center frequency was set to 6 MHz, F-number on receive was 
4. No attenuation was applied.

To create the phantom data, a general scatterer based on the required phantom dimensions and positions was 
made. Amplitudes with a Gaussian distribution were randomly spaced inside the set scattering region. There 
were 500,000 total scatterers inside the set region to ensure we get fully developed speckle. The amplitudes inside 
the predefined cyst positions was set to ten times the amplitude outside. The x-y-z positions all amplitudes were 
recorded to be loaded later.

To generate the simulated data, the transducer apertures were first defined. Apertures for emission and recep-
tion were then generated, with the impulse response and excitation of the emit and receive aperture set. The x-y-z 
positions of all amplitudes recorded when the phantom was made was then loaded, where beamforming in a 
manner identical to real row-column imaging devices was performed by Field II.

To model the PSF at a particular depth, the transducer apertures were first defined. Apertures for emission and 
reception were then generated. A point phantom at the required depth was created, and a linear sweep was then 
made to calculate the response. A point scatterer was then generated and the PSF at the required spatial location 
was found.

Simulated phantom.  Three phantoms, shown in Fig. 7, were used in the simulated tests. The first phantom 
consists of four cysts of decreasing diameter, each 10 mm farther away from the transducer. The bottom two cysts 
are placed 5 mm and 10 mm to the right of the center axis, this is to test our framework on objects that are off 
axis. The second phantom is a combination of three 6 mm by 6 mm squares arranged in an “L” shape. This is to 
test our phantom on a different homogeneous shape. The third phantom is a series of point sources placed at [x, 
y, z] = (0, 0, 39.5) mm, (0, 0, 40) mm, and (0, 0, 40.25) mm. This is to see how well our proposed system resolves 
close scatterers.

Real Data.  For the EG-CRCUIS, CRC-UIS, and the real-time CMUT row-column systems, the volumetric 
scanning data was acquired by a customized imaging system built using the PCI eXtensions for Instrumentation 
(PXI) platform. A row-column addressing capacitive micromachined ultrasonic transducers array (RC-CMUTs) 
was used, with full-width-half-max resolution of 1.2245 and side-lobe level under 40 dB. The 32 by 32 
two-dimensional array has a center frequency of 5.9 MHz, an aperture size of 4.8 mm by 4.8 mm with a 150 pitch. 
Pre-amplifiers were used since CMUTs have small current output signals. The PXI system includes a 32 channel 
digitizer (NI-5752, National Instruments), a FPGA board (NI-7954, National Instruments), and an embedded 
controller module, which includes an Intel Core 2 Quad 2.26 GHz CPU and a Windows 7 operating system. An 
external FPGA was responsible for transmit beamforming while a set of high-voltage pulsers (LM96551, Texas 
Instruments) responsible for stepping the voltage to 30 V were used. The CMUTs were biased at −60 V to improve 
sensitivity and was operated in conventional mode. The system block diagram is shown in Fig. 3.

Receive beamforming is done following the line-beamforming method detailed in ref. 4. Hilbert’s transform 
is used to detect the envelope of the summed signal follow. The depth and angle, both azimuth and elevation, are 
then processed with the reconstruction framework.

Real phantom.  For the real row-column ultrasound scan, wire target imaging was performed on the same 
target used by ref. 10. Four wires, all 644 in diameter, were arranged in a way to allow for a scan of their cross 
sections.

Metrics for comparison.  For the purpose of our implementation, Peak Signal to Noise Ratio (PSNR), 
Effective Number of Looks (ENL), and Coefficient of Correlation (CoC) were used as metrics to evaluate the per-
formance of our framework on simulated data. Contrast to Noise Ratio (CNR) and ENL metrics were used to eval-
uate the performance of our framework on real data. All metrics were defined according to recent literature10, 26–32.
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PSNR is a metric that provides quality measure in terms of the power of the ideal and reconstructed image. As 
shown in (28), its is based on Mean Square Error (MSE) defined in (29). PSNR is frequently used in ultrasound 
noise despeckling literature to measure the performance of speckle removal10, 26–32. Higher PSNR indicate better 
image quality.

PSNR log
MAX f

MSE
10

( ( ))

(28)
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10

2
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where fp is the ideal image, MAX(fp) is the peak signal of fp, and MSE is given by:

MSE
MN

f f1 ( )
(29)i

M

j

N

p ij r ij
1 1

, ,
2∑∑= −

= =

where fr is the reconstructed image.
CoC is a metric that gives a measure of edge preservation. For completely uncorrelated images its value is 0, 

and for identical images its value is 1. Equation 30 shows the mathematical expression for CoC.
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ENL provides a measure of the statistical fluctuations (often introduced by speckle) in a particular region of inter-
est; it gives an idea on how smooth a homogeneous region is. Given that we know what the image is supposed to 
look like, and we are working on homogeneous phantoms, smoothness can give an indication of how well we are 
reconstructing the homogenous regions as well as how well we are removing speckle from those regions. Higher 
ENL values indicate smoother regions. The mathematical expression for ENL is shown in (32), the ENL value is 
based on voxel mean μt and standard deviation σt of the region of interest t.

µ

σ
= .ENL

(32)
t

t

2

2

CNR measures the difference between an area of an image feature and an area of background noise. Higher values 
indicate less noisey images. In the expression for CNR, μb and σb represent the mean and standard deviation of 
background noise, and μr and σr represent the mean and standard deviation of features of interest.
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Results
To evaluate the performance of our proposed MEG-SFCRF reconstruction framework, the simulated output 
images from the EG-CRCUIS system were compared against simulated output images from the CRC-UIS10, 
the real-time CMUT row-column system by ref. 6, the integrated apodization system4, 7, and a system with a 
fully-addressed 2-D array implemented by us. The real image from the EG-CRCUIS system was compared against 
the CRC-UIS and the real-time CMUT row-column systems. The comparison was done both quantitatively as 
well as visually.

Quantitative Evaluation.  To quantify the performance of our reconstruction framework, metrics defined 
in recent related studies10, 26–32 were used. For the simulated data, comparisons were made between the output 
image and the ideal image; the original phantom image. For the real data, the metrics chosen account for the 
absence of ground truth.

The results of the EG-CRCUIS reconstruction were compared against the output of other systems in literature 
with the ideal phantom image as reference. Tables 1, 2 and 3 summarize the results for simulated first, second, and 
third phantom respectively. Table 4 summarizes the results of the real phantom.

Figure 8 shows beamplots derived from the PSFs of all systems to outline the PSF and sidelobe level difference 
between the simulated systems. Both CRC-UIS and EG-CRCUIS have a narrower profile with lower sidelobe 
levels, with EG-CRCUIS having slightly lower profile. The main lobe of both EG-CRCUIS and CRC-UIS is not 
as smooth as the other systems, and there seems to be an imbalance between the right and left side starting at 
−20 dB, with the left side of the main lobes of both systems lower than the right side and with EG-CRCUIS 
slightly lower overall. Quantitative analysis of the resulting images based on the simultaed data shows that the 
proposed EG-CRCUIS system is capable of boosting its performance across PSNR and CoC while reducing ENL 
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when compared to CRC-UIS. The increase in PSNR shows an improvement in noise reduction, and the increase 
in CoC shows an improvement in edge preservation. The reduction in ENL indicates that the EG-CRCUIS does 
not oversmooth the image as much as the CRC-UIS does. All three metrics for the EG-CRCUIS are higher than 
the other systems in literature.

For the real tests, the full-width-half-max resolution for the real-time CMUT, CRC-UIS, and EG-CRCUIS 
was found to be 1.2245 mm, 1.2557 mm, and 0.9292 mm respectively. Quantitative analysis of the images based 
on the real data shows that the EG-CRCUIS scored higher CNR than CRC-UIS, indicating better noise suppres-
sion. The ENL score for both EG-CRCUIS and CRC-UIS are very similar, although CRC-UIS is slightly higher. 
EG-CRCUIS outperforms the real-time CMUT system across both metrics.

Visual Evaluation.  Figures 9, 10 and 11 show the reconstruction of the first, second, and third simulated 
phantom respectively for the EG-CRCUIS and CRC-UIS as well as other systems in literature. Visual assessment 
with simulated phantoms shows that EG-CRCUIS presents images with less noise and more preserved edges 
when compared to the CRC-UIS and other systems in literature. These observations are also supported by the 
quantitative evaluation.

In the first simulated phantom images, the EG-CRCUIS shows more solid edges than the CRC-UIS, with cysts 
that are closer to the phantom image in terms of shape and size. Both systems also showed the best noise suppres-
sion when compared with other systems. The fully addressed 2-D system shows well sized cysts, but the image is 
noisy and the cysts are not smooth. The real-time CMUT system6 shows a lot of ringing artifacts where the cysts 
should be, and the shapes are not really clear. The integrated apodization system shows better suppression of ring-
ing artifacts and clearer cysts than the real-time CMUT, however, it is not comparable to the other systems. The 
farthest point target is week for the real-time CMUT and the integrated apodization systems due to the fact that 
in simulation we used one 1-D array for transmit and one orthogonal 1-D array for receive, meaning the farthest 
point is slightly off axis. EG-CRCUIS and CRC-UIS were both able to reconstruct this better.

A closer look at the image reconstruction of the first simulated phantom of all systems is shown in Fig. 12. A 
slight right shift is seen in the second cysts is seen for EG-CRCUIS and CRC-UIS images and the third cyst in the 
fully addressed array. A slight downshift is seen in the third and fourth cysts of EG-CRCUIS as well as the third 
cyst for both CRC-UIS and the real-time CMUT.

In the second simulated phantom images, the EG-CRCUIS reconstruction is much closer in shape to the 
phantom when compared to CRC-UIS. EG-CRCUIS also shows edges more clearly than the real-time CMUT and 
the integrated apodization system. The fully addressed array shows the best shape reconstruction.

In the third simulated phantom images, only EG-CRCUIS was able to clearly resolve the bottom two point 
sources; in all other scans they were partially merged as one. In CRC-UIS, all three points merged into one, which 
highlights the tendency of the older system to oversmooth. The proposed system was able to resolve all three 
point sources, given that this system and its predecessor work on the same envelope data as the baseline RC one, 
this phantom strongly highlight the edge preservation capability this approach has.

Figure 13 shows the reconstruction of the real phantom data for both the EG-CRCUIS and CRC-UIS, as well 
as the real-time CMUT system. The EG-CRCUIS shows better noise suppression, and the bottom left wire is more 
clearly visible than the CRC-UIS. The real-time CMUT has only one clearly visible wire and has very noticeable 
ringing artifacts. A closer look at the image reconstruction of the EG-CRCUIS, CRC-UIS, and real-time CMUT 
is shown in Figs 14, 15 and 16 respectively. These observations are supported by the quantitative evaluation.

Conclusion
Summary and Discussion.  In this research, we proposed EG-CRCUIS: an edge-guided compensated 
row-column ultrasound imaging system. The proposed system builds on CRC-UIS, a previously published 
row-column ultrasound imaging system. We introduced MEG-SFCRF: multilayered, edge-guided, stochastically 
fully connected random fields, a stochastic model that takes into account edge information as well as spatial 
and data relations when selecting a clique for the random field model. With this model that takes into account 
the underlying noise inherent to ultrasound as well as the missing data due to the sampling of the row-column 
method, and with the CRC-UIS’s ability to incorporate a the spatially varying, ghost artifact degraded PSF, we 
were able to better compensate for the row-column method’s inherent drawbacks. Through visual and quantita-
tive evaluation, we were able to show that the proposed EG-CRCUIS system was capable of producing ultrasound 
images with more defined edges and less noise when compared to other systems in literature.

There are a few limitations to our method. First, we only use envelope data when reconstructing the image, 
which will not show objects that are close enough to interfere. Second, with the hardware used at the time of pub-
lication, real-time processing is not possible, and our proposed system is limited to applications with real-time 
image acquisition but no real-time feedback.

Future Work.  There are several directions to pursue in the future. First, a more comprehensive analysis on 
our image reconstruction framework for more bio-realistic/inhomogeneous targets needs to be done. Second, for 
the current study, the MEG-SFCRF reconstruction framework for CRC-UIS reconstructs each slice of the 3-D 
volume independently to form the final 3D image volume. Therefore, in the future we aim to extend the frame-
work to adopt a full 3-D optimization in an efficient and effective way, which could have the potential for further 
improving image quality. Third, we aim to explore more comprehensive comparisons with other row-column 
imaging systems proposed in literature, which would necessitate the construction of these systems. Fourth, we 
will explore other random-field approaches for ultrasound image reconstruction.
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