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Animals can assign novel odours to 
a known category
Hannah F. Wright1, Anna Wilkinson  1, Ruth S. Croxton2, Deanna K. Graham1, Rebecca, C. 
Harding1, Hayley L. Hodkinson1, Benjamin Keep1, Nina R. Cracknell3 & Helen E. Zulch1

The ability to identify a novel stimulus as a member of a known category allows an organism to 
respond appropriately towards it. Categorisation is thus a fundamental component of cognition and 
an essential tool for processing and responding to unknown stimuli. Therefore, one might expect 
to observe it throughout the animal kingdom and across sensory domains. There is much evidence 
of visual categorisation in non-human animals, but we currently know little about this process in 
other modalities. In this experiment, we investigated categorisation in the olfactory domain. Dogs 
were trained to discriminate between 40 odours; the presence or absence of accelerants formed the 
categorical rule. Those in the experimental group were rewarded for responding to substrates with 
accelerants (either burnt or un-burnt) and inhibit responses to the same substrates (either burnt or un-
burnt) without accelerants (S+ counterbalanced). The pseudocategory control group was trained on 
the same stimuli without the categorical rule. The experimental group learned the discrimination and 
animals were able to generalise to novel stimuli from the same category. None of the control animals 
were able to learn the discrimination within the maximum number of trials. This study provides the first 
evidence that non-human animals can learn to categorise non-biologically relevant odour information.

Across the animal kingdom, organisms need to be able to evaluate their current situation and respond to events 
in terms of their likely consequences (e.g. fleeing from a predator or approaching a potential mate)1. If the specific 
event encountered is novel, then the animal must select information from its previous experience and use this as 
a basis for an appropriate response. Categorisation is the ability to treat comparable but non-identical stimuli as 
equivalent by responding to them according to the category to which they belong2. Thus, the ability to identify a 
novel stimulus as a member of a known category allows the organism to respond towards it in an appropriate way2.

Herrnstein and Loveland3 pioneered the study of categorisation in non-human animals (hereafter animals) 
and their seminal work paved the way for the vast amount of research which has furthered our understanding 
of categorisation in the visual domain across a wide range of species4–7. Animals can learn about stimuli in their 
environment in different ways. A category-specific rule requires the animal to extract and combine features com-
mon to most (or maybe even all) instances of a class of stimulus and then to react in the same way to all stimuli 
possessing those features8. Alternatively, animals can learn the individual features and outcome of every indi-
vidual stimulus (rote learning). The classic test to distinguish between rote learning and use of category-specific 
features is to use a “pseudo-category” control e.g. refs 9–11. In this paradigm, two groups of animals are trained. 
The same stimulus set is used for both groups but one group of animals are rewarded on the basis of a perceptual 
rule (the experimental group), whereas for the other group, stimuli are assigned at random so that no perceptual 
rule can be used for classification (the pseudo-category group; also termed the control group). Evidence suggests 
that different pathways may be used to remember categorical and rote learned information9; this is reflected in 
memory retention abilities, with more efficient learning and superior retention being evident when categorical 
processing is involved.

Research investigating odour discrimination in animals generally examines the role of training stimulus 
properties on detection and generalisation. This includes investigating the impact of exposure to specific odour 
components on the ability to generalise to mixtures of the same components e.g. refs 12, 13, generalisation versus 
discrimination of related molecules by odour e.g. ref. 14 or detection of odours in specific environments e.g. 
ref. 15. The findings suggest that, in general, similarity between odours enhances generalisation and reduces 
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the ability of the animal to discriminate16–18. Taken together, this suggests that stimuli that are similar in some 
aspect(s) are likely to promote category formation.

The only work, to date, that suggests the animals may be able to categorise on the basis of odour information comes 
from research investigating the cognitive mechanisms underlying individual odour recognition in hamsters19, 20.  
Using a habituation-discrimination procedure, male hamsters were habituated to specific scent or secretion from 
one female (female A) before being presented with a different scent from the same female and another female 
(female B). The results revealed that the males can discriminate between the two individuals, with animals explor-
ing the odour of the non-habituated female (female B) more. Crucially, the effect did not occur if the males did 
not have direct experience of the individuals, suggesting that odour similarity did not control the behaviour, but 
that the animals had formed a concept (or category) of each individual20.

The ability of animals to learn to categorise non-biologically relevant odours, differing according to a percep-
tual rule (similar to those used to investigate categorisation in the visual domain3, 5, 9) has never been investigated 
in animals. This lack of knowledge is remarkable given the fundamental importance of this stimulus modality 
in the success of many species. It is therefore likely that animals will demonstrate an ability to categorise odours.

Accelerants are an ideal odour group for testing this ability as the group contains a wide range of stimuli with 
similarities in chemical profile21 and dogs are frequently taught to discriminate these substances in their training 
for forensic fire investigation.

In this study, dogs were pre-trained to differentially respond to four odours (two S+ and two S−) using a 
go/no-go paradigm, in which they needed to offer a behavioural response (e.g. sit) to the positive stimuli and 
inhibit that response to the negative odours. Upon reaching a performance criterion they started the experiment. 
For this, dogs were pseudorandomly assigned to either an experimental or control group. All animals received 
40 training stimuli, which comprised of an array of substrates. A range of accelerants were added to half of the 
substrates. Animals in the experimental group were differentially reinforced for responding to the presence of 
accelerant, burnt or unburnt, compared to absence of accelerants (categorical rule, S+ counterbalanced across 
animals). The same substrate could potentially be both a positive or a negative stimulus, depending on the pres-
ence or absence of accelerants. Control group dogs were trained using a pseudocategory, they were presented 
with the same stimuli but without the categorical rule (S+ and S− had a variety of substrates with and without 
accelerants, specific training stimuli counterbalanced across dogs).

After reaching a learning criterion, animals received a generalisation test to examine whether their learned 
response could be transferred to novel stimuli. If animals are able to categorise odour information then we predict 
that those in the experimental group would both learn the discrimination faster, generalise better to novel odours 
and retain the information over a substantial period of time.

Results
Pre-training. Eleven dogs completed pre-training (see supplementary information for individual dog 
details). They were then assigned to the experimental (n = 6) or control group (n = 5) on the basis of pre-training 
performance. This was to ensure that there was no significant difference between experimental and control groups 
in speed of learning in the final phase of pre-training (trials to criterion: experimental group (n = 6) 223 ± 135.75; 
control group (n = 5) 196 ± 96.59; t(9) = 0.376, p = 0.715.

Training. All animals in the experimental group progressed to the final phase of training on the experimental 
odours (433.33 ± 246.14 trials). Only one animal in the control group reached this stage; it took 530 trials.

In the final phase of training, in which the experimenter was blind to any odour information, four experimen-
tal group animals reached criterion (537.50 ± 289.41 trials). However, the control animals failed to reach learning 
criterion within 101 sessions (1010 trials).

As the fastest dog reached criteria in 14 sessions, we compared the data between the first seven and last seven 
sessions. A mixed model ANOVA revealed a significant interaction between group and time, with the experimen-
tal group showing a greater increase in % accuracy from first seven to last seven sessions (F (1,9) = 9.27, p = 0.014, 
ηp2 = 0.51; Fig. 1).

Generalisation test. The four experimental group dogs that learned the task received a generalisation test 
in which they were presented with novel stimuli which were designated as belonging to either an accelerant or 
non-accelerant category. No control animals reached this stage. One of the experimental dogs was withdrawn 
during testing as she failed to engage on 7 of her last 10 generalisation sessions.

All three animals that completed testing successfully transferred the learned discrimination to novel stimuli 
within the trained category as assessed by means of a two-tailed binomial test comparing performance to chance 
(Dill p < 0.001, Mya p < 0.01, Pan p < 0.05, Fig. 2a).

Memory test. To investigate information retention, animals were re-tested in a novel location more than 6 
weeks after the last exposure to the training stimuli. Two dogs completed the memory test and performance was 
significantly above chance as assessed by means of a two-tailed binomial test (p < 0.01 for both animals, Fig. 2b).

Discussion
This study represents the first demonstration that animals are able to categorise odours outside the sphere of 
individual recognition. Processing novel stimuli both efficiently and effectively is essential for survival1. The abil-
ity to categorise is considered to be fundamental to this2. We showed that the categorisation group were able to 
successfully meet learning criteria, whereas all control dogs failed. Further, the experimental group animals were 
able to generalise to novel exemplars of the category and were able to retain this information following six weeks 
of non-exposure.
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Figure 1. Training data for experimental (n = 6) and control (n = 5) group: % accuracy of responses to the 
odour stimuli in the first seven vs. last seven sessions.

Figure 2. Percentage of correct responses in generalisation test (a) and memory test (b). Learning sessions 
represent the performances on the final training session prior to the tests taking place. The solid line represents 
chance level (50%). Binomial test: *P < 0.05; **P < 0.01; ***P < 0.001.
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As the control animals were not able to progress beyond the early stage of training, it is not possible to say 
whether they were incapable of learning the stimuli, or whether they simply did not have enough exposure. It 
is also not possible to say whether they would be able to generalise should they have reached learning criterion. 
However, it is clear that despite no differences in general learning ability between the groups as evidenced by 
pre-training performance, the task was considerably more difficult without a categorical rule. This has implica-
tions in the field of working dog training as it implies that current training methods which involve sequential rote 
learning may not be best practice.

Given the complexity of the odour stimuli used in this study, it remains unclear exactly what features of the 
odour profile the dogs were extracting in the probe stimuli and how they were able to map these against previous 
examples (i.e. trained stimuli) from the same category. However, it is clear that the ability of the experimental 
animals to learn the categorical rule was not a result of the feature positive effect22 as the category rule was coun-
terbalanced across animals and, of those that achieved learning criteria, two animals had the accelerant as S+ and 
two had the absence of accelerant as S+.

In summary, we demonstrate for the first time that animals have the ability to learn to categorise 
non-biologically relevant odours when these are presented as a learning set. Further, they were able to generalise 
this behaviour to novel stimuli that contained similar perceptual properties to the training stimuli. These findings 
add substantially to our understanding of how animals process olfactory information and suggest that categori-
sation is fundamental to processing stimuli across modalities.

Methods
This research was approved by the ethics committee of the School of Life Sciences, University of Lincoln 
(HZ2013-001). The work complied with UK requirements for research on animals.

Eleven mesocephalic pet dogs passed the pre-training (Table 1 supplementary information). Informed con-
sent was obtained from their owners.

Pre-training. Four essential oils were used for pre-training. Each animal was allocated two positive (S+) and 
two negative (S−) stimuli (counterbalanced across subjects) and trained to make a response (e.g. sit) to S+ and 
inhibit responding (e.g. remain standing) to S−. The stimuli, which varied in strength, were presented in a metal 
canister placed close to the animal’s nose.

Stimuli were presented in sessions of 10 trials (half S+ and half S−). The order of presentation was 
pseudo-random to ensure that no more than 3 S+ or S− were presented consecutively. Initially responses were 
verbally cued by the researcher, this was faded during training. Responses were scored as either: True Positive 
(TP: the dog indicates the presence of the S+ and the S+ is present), True Negative (TN: the dog indicates the 
absence of the S+ and the S+ is not present, in this case the S− would be present), False Positive (FP: the dog 
indicates the presence of the S+ when the S+ is absent, in this case the S− would be present) or False Negative 
(FN: the dog fails to indicate the presence of the S+ when the S+ is present).

Pretraining Procedure. Two experimenters were present at every session. During a session, experimenter 
one presented the odour stimuli to the animal and reinforced correct responses with a food reward, or, punished 
incorrect responses by withholding the food, moving away from the immediate testing for 2–10 seconds and 
not engaging with the dog during this time. Experimenter two (who was behind a solid barrier and could not 
be seen by the animal) handed the stimuli to experimenter one and recorded responses. Dogs were pretrained 
with a default position (e.g. stand) and a response behaviour (e.g. sit) until the default position was maintained 
up to 10 seconds in the absence of any given cue and the response behaviour was under stimulus control. For the 
first 30 trials, presentation of S+ was immediately followed by a verbal cue for the subject’s response behaviour 
(e.g. sit). Correct responses to S+ were marked using a conditioned reinforcer then followed by a primary (food) 
reinforcer. Presentation of S− stimuli were immediately followed by the conditioned reinforcer (verbal: ‘good’) 
then primary (food) reinforcer for a non-response (e.g. remaining in stand). FP and FN responses were marked 
with the conditioned negative punisher, followed by the experimenter moving away from the immediate training 
area for approximately 3 seconds. After the first 30 trials, verbal cues for the response to S+ were reduced until 
animals were responding to the presentation of the stimulus alone. Once animals met criterion of ≥80%TP S+ 
and ≥80%TN without verbal cues within one session, all further sessions were conducted blind to the odour 
presenter.

During blinded sessions, the second experimenter observed the dog via live video link and verbally marked 
correct/incorrect responses using the conditioned reinforcer/conditioned negative punisher, the first experi-
menter then reinforced/punished the dog as appropriate. This was the final phase of pre-training.

Learning criteria to move to the main experiment were defined as follows: Minimum 10 blind sessions on 
pre-training odours; 3 out of 4 consecutive sessions ≥60%TP and ≥60%TN, with the 4th at least ≥40%TP and 
≥40%TN.

Experimental Stimuli. A total of 60 stimuli were created, they consisted of 15 substrates, with or without 
accelerant, burnt or unburnt. Fifteen different accelerants were used, these included representatives of the differ-
ent classes, light, medium and heavy petroleum. Samples were prepared every 7 days. Substrates varied in size 
(approx. 2 cm2–4 cm2), and, where present, variable amounts of accelerant (0.5ml–2ml) was pipetted onto sub-
strates. Half of the samples were burnt until the flame extinguished naturally. Once prepared, samples were placed 
in the presentation pots. Each animal received 40 stimuli as training odours; 20 S+ and 20 S− and 10 stimuli as 
test odours 5 S+ and 5 S−. The remaining stimuli allowed for a wider pool from which to select the sample sets.

Animals were pseudorandomly allocated to a condition, these were matched for learning speed during 
pre-training. Animals in the experimental group were differentially reinforced for responding to the presence of 
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accelerant, which could be burnt or unburnt, compared to absence of accelerants (categorical rule, S+ counter-
balanced across animals). Control group dogs were trained with the same stimuli but as a pseudocategory (with-
out the categorical rule. S+ and S− had a variety of substrates with and without accelerants, the specific stimuli 
used were counterbalanced across dogs).

Experimental Procedure. Each animal was trained and tested on a range of days of the week in order to 
introduce variety in the age of odour. The stimulus set was matched between groups and the order of presentation 
was counterbalanced across animals and pseudo-randomised to ensure that each stimulus occurred once in every 
4 sessions.

The experimental procedure was the same as described for pre-training except that, after exposure to all train-
ing stimuli, dogs were given a blind session in which the odour presenter was unaware of contingencies associated 
with the stimuli. Feedback was given by a second experimenter who was behind a screen and watched the dog’s 
response via a computer monitor. This was to ensure that the dogs could not use any spurious cues from the pre-
senter when making their decision. After this, every fourth session was blind. When ≥80% TP and ≥80% TN was 
reached on a single blind session, dogs received only blind sessions. Upon reaching learning criteria; this required 
exposure to every stimulus at least twice in blind sessions and performance of ≥80% TP and ≥80% TN on 3 out 
of 5 consecutive blind sessions, animals were given the generalisation test.

Generalisation tests. In each test session, two probe stimuli (to which the animal had no prior exposure) 
were pseudo-randomly intermixed with the 10 training stimuli. They were pseudorandomly inserted in trials 2–9, 
separated by at least one training stimulus balanced for S+/S− presented first and never presented in a row of 
three of more S+/S− overall. Dogs received no differential feedback on probe stimuli. Animals received 4 repeti-
tions of each of the 10 probe stimuli. If an animal did not perform at minimum criteria on the training trials in a 
test session then the sessions were re-run.

Memory tests. Animals were re-tested in a new location at least 6 weeks after the last exposure to the train-
ing stimuli. After limited exposure to pre-training odours, animals were tested on their training stimuli for 4 
sessions. This equated to one presentation of each of the 40 training odours. No stimuli were repeated and thus 
stimuli were differentially reinforced.

Data Analysis. Data were checked for normality using Kolgomorov–Smirnov tests. Response performance 
within learning sessions was reported as % accuracy: ((TP-FP) + 1)/2*100 and a mixed model ANOVA was used 
to compare speed of learning between experimental and control groups over time. The discrimination perfor-
mance in generalisation and memory tests was assessed by means of two-tailed binomial tests.

Ethical Statement. This research was approved by the ethics committee of the School of Life Sciences, 
University of Lincoln. Applicable national guidelines for the care and use of animals were followed.
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