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A novel mechanism of ERK1/2 
regulation in smooth muscle 
involving acetylation of the  
ERK1/2 scaffold IQGAP1
Susanne Vetterkind, Qian Qian Lin & Kathleen G. Morgan  

Ceramide, a bioactive lipid and signaling molecule associated with cardiovascular disease, is known to 
activate extracellular signal regulated kinases 1 and 2 (ERK1/2). Here, we determined that the effect of 
ceramide on ERK1/2 is mediated by ceramide signaling on an ERK scaffold protein, IQ motif containing 
GTPase activating protein 1 (IQGAP1). Experiments were performed with aortic smooth muscle cells 
using inhibitor screening, small interfering RNA (siRNA), immunoprecipitation (IP), immunoblots and 
bioinformatics. We report here that C6 ceramide increases serum-stimulated ERK1/2 activation in a 
manner dependent on the ERK1/2 scaffold IQGAP1. C6 ceramide increases IQGAP1 protein levels by 
preventing its cleavage. Bioinformatic analysis of the IQGAP1 amino acid sequence revealed potential 
cleavage sites for proteases of the proprotein convertase family that match the cleavage products. 
These potential cleavage sites overlap with known motifs for lysine acetylation. Deacetylase inhibitor 
treatment increased IQGAP1 acetylation and reduced IQGAP1 cleavage. These data are consistent 
with a model in which IQGAP1 cleavage is regulated by acetylation of the cleavage sites. Activation 
of ERK1/2 by ceramide, known to increase lysine acetylation, appears to be mediated by acetylation-
dependent stabilization of IQGAP1. This novel mechanism could open new possibilities for therapeutic 
intervention in cardiovascular diseases.

In vascular smooth muscle, ERK1/2 activation can lead either to contraction, as in a healthy blood vessel, or pro-
liferation, which is associated with cardiovascular disease. We have shown previously that the outcome of ERK1/2 
activation in vascular smooth muscle cells is dependent on the type of stimulus used to activate the kinase1. It is 
well known that scaffold proteins are critical in assembling stimulus-specific pathways of ERK1/2 activation2. We 
have previously demonstrated that two scaffold proteins, caveolin-1 and IQGAP1, together assemble a signaling 
cascade connecting activation of protein kinase C to activation of a sub-fraction of cellular ERK1/2 associated 
with actin in smooth muscle cells3.

Activation of sphingomyelinase generates ceramide, which is a bioactive lipid and signaling molecule pres-
ent in atherosclerotic plaques. Ceramide is known to play a role in oxidized LDL-induced cell proliferation and 
arteriosclerosis4, 5. Ceramide can either increase proliferation or induce apoptosis6, 7. Ceramide is also known to 
activate ERK1/2 via the ERK1/2 scaffold KSR1 kinase suppressor of Ras (KSR1), also known as ceramide activated 
kinase in mammalian cells8, 9 but only a single study has linked KSR to vascular smooth muscle cells and only in 
diabetes10. Since our previous work has demonstrated a role for IQGAP1 in ERK1/2 signaling1, 3, the goal of the 
present study was to test the hypothesis that ceramide might modulate ERK1/2 signaling by an effect on ERK1/2 
scaffolds and IQGAP1 in particular.

Results
Ceramide amplifies ERK1/2 activation in response to serum but not in response to a phorbol 
ester. We have previously shown that ERK1/2 activation in smooth muscle cells can be either proliferative or 
contractile in its outcome, depending on the stimulus, and that the different outcomes of stimulation are deter-
mined by ERK1/2 scaffolds1, 3. The question arises, then as to whether ceramide exerts effects on smooth muscle 
proliferative signaling by targeting specific ERK1/2 signaling pathways. To this end, we treated aortic smooth 
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muscle cells with the cell permeable C6 ceramide, and analyzed ERK1/2 phosphorylation as a measure of ERK1/2 
activation in response to either a phorbol ester, 12-deoxyphorbol 13-isobutylate 20-acetate (DPBA), a stimulus 
that activates contractile pathways in vascular smooth muscle, or fetal bovine serum (FBS), a stimulus that acti-
vates proliferative pathways. Whereas ceramide treatment had no significant effect on phorbol ester mediated 
activation of ERK1/2, the relative amount of phosphorylated ERK1/2 in response to serum was significantly 
increased after ceramide treatment compared to control treated cells (Fig. 1).

IQGAP1, but not KSR1, is involved in ceramide-mediated amplification of ERK1/2 activation.  
Based on our previous studies1, 3, demonstrating stimulus-specific and scaffold-specific ERK1/2 signaling path-
ways in aortic smooth muscle cells, we speculated that the stimulus-specific effect of ceramide on ERK1/2 activa-
tion might be mediated by an ERK1/2 scaffold.

KSR1 is an ERK1/2 scaffold reported to be involved in ceramide signaling pathways9, 11, 12 in other systems. 
Thus, we investigated a possible role of KSR in the effect of ceramide in aortic smooth muscle cells (Fig. 2). 
However, siRNA against KSR1 decreased KSR1 levels (Fig. 2A,D) but did not significantly affect ERK1/2 phos-
phorylation in the presence of C6 plus FBS (Fig. 2B).

IQGAP1 is another well known ERK scaffolding protein that we have previously shown to play a role in these 
aortic smooth muscle cells3. Knockdown of IQGAP protein levels with siRNA (Fig. 2A,C), in contrast to the 
results for KSR1, significantly reduced C6 plus FBS-induced ERK1/2 phosphorylation (Fig. 2B). This indicated a 
role for IQGAP1, but not KSR1, in the ceramide mediated increase in ERK1/2 phosphorylation in aortic smooth 
muscle cells and raised the question of the mechanism involved.

Ceramide stabilizes IQGAP1 by preventing its proteolytic processing. After immunoblotting with 
an IQGAP1-specific antibody that recognizes an epitope in the N-terminal region of IQGAP1 (rabbit polyclonal 
anti-IQGAP1, H-109, Santa Cruz), we observed additional bands of 185 kDa(faintly), 165 kDa and 89 kDa in 
addition to full length IQGAP1 (190 kDa) (Fig. 3A). The intensities of these bands are reduced along with the 
intensity of full length IQGAP1 after siRNA knock down of IQGAP1 as shown for some of the bands in Fig. 2A, 
indicating that these bands are specifically stained by the IQGAP1 antibody and might represent splice variants 
or cleavage products of IQGAP1. However, we were unable to find any reports on IQGAP1 splice variants in the 
literature. The additional bands were detected by using a different antibody that is raised against amino acids 
3–37 (mouse monoclonal anti-IQGAP1, clone C-9, Santa Cruz), but not by an antibody that was raised against 
the C-terminus of IQGAP1 (goat polyclonal anti-IQGAP1, clone C-17, Santa Cruz) (Fig. 3A), consistent with the 
additional bands being products that arise from cleavage in the C-terminal region of the protein.

Interestingly, when we analyzed the amount of full length IQGAP1 in FBS-stimulated samples (Fig. 3B), we 
detected (with H-109) a significant increase in IQGAP protein expression in lysates from cells that had been 
pretreated with ceramide, whereas the ceramide synthase inhibitor fuminisin B1 (FB1) had the opposite effect 
and led to reduced full length IQGAP1 levels. Conversely, when we quantitated the total amount of the putative 
IQGAP1 cleavage fragments and expressed this as a percentage of the total IQGAP1 band staining (Fig. 3C), we 
found decreased IQGAP1 cleavage in samples that had been treated with ceramide, but increased cleavage of 
IQGAP1 in cells treated with the ceramide synthesis inhibitor FB1. Thus ceramide appears to stabilize IQGAP1 
by preventing its cleavage.

Figure 1. Ceramide increases serum-induced ERK1/2 phosphorylation. Aortic smooth muscle cells were 
treated with ceramide C6 for 6 hours; control cells were treated with diluent alone. Cells were stimulated with 
either 12-deoxyphorbol 13-isobutylate 20-acetate (DPBA) or serum (FBS) for 5 minutes, or left unstimulated. 
Cell lysates were analyzed by western blotting and densitometry. (A) Typical immunoblots (cropped) show 
ceramide enhanced the increases in ERK1/2 phosphorylation after FBS, but not after DPBA stimulation.  
(B) Statistical analysis of 7 independent experiments. *control + FBS versus C6 + FBS: p = 0.024, # C6 + DPBA 
vs. C6 + FBS: p = 0.025.
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IQGAP1 sequence analysis reveals acetylation motifs close to predicted cleavage sites. To 
narrow down the possible proteases responsible for IQGAP1 cleavage, we screened the IQGAP1 amino acid 
sequence for possible cleavage sites using protease cleavage prediction software (Expasy PeptideCutter). Predicted 
cleavage sites were then compared to the experimentally found cleavage products, but none of the proteases con-
sidered by this tool produced a cleavage pattern similar to the observed band pattern in our experiments.However, 
analysis of the IQGAP1 amino acid sequence for recurring motifs did reveal the motif K/R-X-K/R-K/R, that is 
present in rat IQGAP1 with 9 repeats. This motif is similar to the consensus motif for Subtilisin/kexin Proprotein 
Convertases (SPCs), also named Paired basic Amino acid Cleaving Enzymes (PACEs), namely K/R-Xn-K/R↓, 
with the downward arrow indicating the position of the cleavage site within or relative to the motif13. Some copies 
of this motif also conform with the more specific consensus cleavage site recognized by furin (Fig. 4B), a member 
of the SPC family, which consists of the sequence R-X-K/R-R↓14. The positioning of those SPC motif copies that have 
a lysine in position P1 (the residue closest to the predicted cleavage site) matches closely with the expected cleavage 
sites derived from calculated fragment sizes of IQGAP1 (black arrows in Fig. 4B). While they match the general 
consensus for SPCs, these sites are unlikely to be cleaved by furin, which requires an arginine in position P114, 15.

Figure 2. SiRNA knockdown demonstrates a role for IQGAP1 in ceramide-induced ERK1/2 activation.  
(A) Aortic smooth muscle cells were treated with control, IQGAP1, or KSR1 siRNA. 5 days after transfection, 
cells were treated with ceramide (6 hours, 50 µg/ml). Additionally, cells were stimulated with FBS (10%) for 
5 minutes before preparation of cell extracts. Cell lysates were analyzed for expression of IQGAP1, KSR1, 
phospho-ERK1/2 and total ERK1/2 using specific antibodies. GAPDH staining is shown as reference. Cropped 
gels are shown. (B) The statistical analysis of 5 independent experiments shows a significant decrease of relative 
ERK1/2 phosphorylation after knock down of IQGAP, but not KSR1. Statistical analysis of the degree of siRNA-
induced knock down are shown in (C) for IQGAP1 and in (D) for KSR1.
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Figure 3. Ceramide stabilizes IQGAP1 by inhibiting its cleavage. (A) IQGAP1 antibodies raised against the 
N-terminal part of the protein (C-9 and H-109) show the same pattern of additional bands, whereas an antibody 
raised against the C-terminal region of IQGAP1 does not detect these bands. (B,C) VSM cells were treated with 
either C6 ceramide (50 µmol/L, 6 hours) or the ceramide synthase inhibitor, fumonisin B1 (15 µM, 24 hours) or 
control treated. Cells were stimulated with serum (10% FBS, 5 minutes) before preparation of whole cell lysates 
and western blot analysis. H109 was used to detect IQGAP1. (B) Expression levels of full length IQGAP1 were 
analyzed by normalization of the full length IQGAP1 band to GAPDH. Normalized full length IQGAP1 was 
then normalized to the untreated control. (C) Cleaved fragments of IQGAP1 are shown as a percentage of total 
IQGAP1 (=sum of full length IQGAP1 plus cleaved fragments) normalized to the untreated control.

Figure 4. Observed IQGAP1 cleavage products in comparison to positioning of SPC and caspase cleavage 
sites. (A) List of K/R-X-K/R-K/R motifs found in the IQGAP1 amino acid sequence. (B) Diagram to show full 
length IQGAP1 and its putative fragments. The epitopes recognized by the different antibodies used in Fig. 3 are 
indicated in the top row. Fragment lengths were calculated based on SDS-PAGE with a molecular weight marker 
(Precision Plus, BioRad) as standard. The positions of SPC cleavage motifs are indicated by black and white 
arrows, with the white arrows also matching furin cleavage sites. For comparison, predicted caspase cleavage 
sites are also shown (white arrowheads). Abbreviations: CH, calponin homology; WW, poly-proline protein-
protein interaction domain; IQ, IQ motifs; GRD, GAP (GTPase activating protein) Related Domain; RGCT, 
RasGAP-C-terminus IQGAP1. Domain map modified after30.
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Interestingly, in addition to being putative cleavage sites, these motifs also resemble a type of lysine acetylation 
motif with the consensus K-X-K-K16 (Fig. 4A). Lysine acetylation has been shown to regulate protein stability, 
for example in the cases of beta secretase BACE117, FoxA218 and glutamase carboxypeptidase II19. The overlap 
of acetylation motifs in close vicinity of the putative cleavage sites therefore raises the possibility that IQGAP1 
cleavage could be regulated by acetylation.

Acetylation regulates IQGAP1 protein stability. To determine whether IQGAP1 is acetylated/
deacetylated, we treated aortic smooth muscle cells with the histone deacetylase (HDAC) inhibitors sodium 
phenylbutyrate (PB), which inhibits class I and class II HDACs, or nicotinamide (NAM), which inhibits the 
class III HDACs, also called the Sirtuins. Cell lysates were then analyzed for lysine acetylation using a lysine 
acetylation-specific antibody. After HDAC inhibitor treatment, several bands showed increased signal intensity. 
Staining of the same membranes with an anti-IQGAP1 antibody revealed an overlap of the 190 kDa acetylated 
lysine band with IQGAP1 (Fig. 5A). The bar graph in Fig. 5B shows the statistical analysis of p190 IQGAP1 

Figure 5. Acetylation and cleavage of IQGAP1. (A) Cells were treated with nicotinamide (NAM) or 
phenylbutyrate (PB) at 5 mmol/l for 24 hours. Cell lysates were then analyzed by western blotting. Acetylated 
proteins were detected with an acetylated lysine-specific antibody. Identity of the IQGAP1 band was confirmed 
by subsequent co-staining with an anti-IQGAP1 antibody. Cropped gels are shown. (B) Bar graph and statistical 
analysis of IQGAP1 acetylation in untreated, NAM treated and PB treated cells. (C) Endogenous IQGAP1 is 
immunoprecipitated from lysates of NAM-treated aortic smooth muscle cells with an acetylated lysine-specific 
antibody, but not with a GFP antibody. A cropped gel is shown. (D) Treatment with NAM or PB results in 
reduced cleavage of IQGAP1 relative to full length IQGAP1. Cropped gels are shown. (E) The bar graph shows 
full length IQGAP1 relative to the sum of full length IQGAP1 and smaller IQGAP1 fragments (normalized to 
control). (*p < 0.05, **p < 0.01).



www.nature.com/scientificreports/

6Scientific RepoRtS | 7: 9302  | DOI:10.1038/s41598-017-09434-4

acetylation in untreated, NAM treated and PB treated cells. Statistically significant increases were seen with both 
deacetylase inhibitors. Moreover, IQGAP1 was pulled down from NAM-treated aortic smooth muscle lysates in 
IP experiments with an acetylated lysine-specific antibody (Fig. 5C).

Cleavage of IQGAP was noted to be less prominent in the presence of the deacetylase inhibitors NAM and PB 
(Fig. 5D). When analyzed by densitometry, quantitating the amount of full length IQGAP, under control condi-
tions, or in the presence of NAM, or PB, and expressing those values as a percentage of the control demonstrated a 
statically significant inhibition of cleavage, and a relative increase in full length IQGAP was seen with both HDAC 
inhibitors (Fig. 5E).

Does ceramide increase IQGAP1 acetylation? Ceramide has been shown to promote lysine acetyla-
tion17, 20. Since HDAC inhibitor treatment and ceramide have similar effects on IQGAP1 stability, the question 
arises as to whether the effect of ceramide on IQGAP1 is mediated by increased acetylation of IQGAP1. If so, we 
should be able to detect an increased acetylation in the p190 band. As is shown in Fig. 6A, ceramide does indeed 
increase acetylation of a 190 kDa protein consistent with acetylation of IQGAP1.

The increased acetylation could be due to either inhibition of HDACs or to activation of histone acetyltrans-
ferases (HATs). To determine which mechanism is involved, we used the HDAC inhibitor, NAM to determine 
if blocking HDACs can produce any additional effect to that of ceramide. If ceramide acts through inhibition of 
HDACs no additional effect is expected. Alternatively, if ceramide increases acetylation by activating HATs, a 
HAT inhibitor should prevent the effect of ceramide. As is shown in Fig. 6B, the HDAC inhibitor NAM did not 
produce a statistically significant additional effect on acetylation. In contrast, the HAT inhibitor had a dramatic 
effect to decrease acetylation. Thus, the data are consistent with ceramide increasing acetylation by activating 
HATs.

HDAC inhibitor treatment increases ERK1/2 activation. Since IQGAP is an ERK scaffold, and 
we have shown that ceramide increases ERK activation (Fig. 1), the question arises as to whether increasing 
acetylation of IQGAP with NAM would also alter ERK phosphorylation levels. Thus, we used FBS to trigger a 

Figure 6. Ceramide increases acetylation of IQGAP. (A) Ceramide (6 hr) increases acetylation of band co-
migrating with IQGAP. Inset: Typical blot. (B) Ceramide increases acetylation by activating HATs. Treatment 
(1 hour) with the HAT inhibitor anacardic acid (AA) inhibits effect of ceramide to increase acetylation. NAM 
(1 hour) has no significant additional effect of ceramide to increase acetylation. (inset) Typical blot. Cropped 
gels are shown.
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proliferative ERK activation pathway and found (Fig. 7A,B) that a significant augmentation of ERK activation 
occurred. Interestingly, phorbol ester, a contractile rather than a proliferative stimulus, also increased ERK activ-
ity but this was not significantly augmented by NAM, consistent with a difference in the scaffolding.

Figure 7. Effect of HDAC Inhibitor NAM on ERK1/2 activation with a proliferative versus contractile stimulus. 
(A) Typical blots. Cropped gels are shown. (B) Increases in ERK1/2 phosphorylation with and without NAM for 
DPBA versus FBS (*p < 0.05).

Figure 8. Model of the regulation of cleavage by acetylation in the presence of ceramide. Based on our data, 
we suggest a model in which IQGAP1 cleavage is regulated by acetylation at or in close proximity to cleavage 
sites, and in which ceramide stabilizes IQGAP1 by increasing acetylation and thus, reducing IQGAP1 cleavage. 
Two cleavage sites that overlap with acetylation motifs are indicated as KQKK and KMKK above the full length 
IQGAP1 domain map. The domain composition of the resulting IQGAP1 fragments is expected to affect 
their spectrum of binding partners (shown in the blue-shaded box) and thus, scaffold function. CH, calponin 
homology (actin binding); WW, proline-rich protein protein interaction domain (ERK1/2 binding); IQ, IQ 
domain (calmodulin binding); GRD, GTPase activating protein related domain (Cdc42 and Rac binding); 
RGCT, RasGAP-C-Terminus (beta catenin and E-cadherin binding).
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Discussion
Our data are consistent with ceramide, which we show here increases lysine acetylation, stabilizing IQGAP1 by 
increasing its acetylation, thereby regulating ERK1/2 activation.

Furthermore, based on our data, we suggest a model (Fig. 8) in which cleavage of IQGAP1 is regulated by its 
acetylation at or in close proximity to the cleavage sites. Others have reported similar ceramide-induced acetyla-
tion and stabilization of tubulin20 as well as the secretase BACE1 which affects stability of the Alzheimer’s disease 
(APP)17. In the case of BACE1, the stabilizing effect of acetylation has been attributed to ceramide-induced tran-
scriptional upregulation of two acetyltransferases21. Our findings that ceramide-induced IQGAP1 acetylation 
is caused by HAT activation rather than HDAC inhibition, and that the effect of ceramide required a treatment 
duration of six hours, indicate the possibility that IQGAP1 stabilization, too, is based on ceramide-induced tran-
scriptional upregulation of acetyltransferase genes.

Because of the modular structure of IQGAP1, cleavage could also generate interesting IQGAP1 fragments 
that may have specific functions in signaling. Cleavage of IQGAP1 may lead to the generation of smaller IQGAP1 
fragments with specific function due to specific subdomain composition (e.g. removal of C-terminal cadherin 
binding site). Interestingly, the potential SPC cleavage sites are all outside of the IQGAP1 functional domains 
(see domain map in Fig. 4), with the exception of one site in the IQ domain. Cleavage of this site could generate 
a cleavage products with either the first or the last two IQ motifs only. Of note, the four IQ motifs show selective 
binding to myosin essential light chain, the glial calcium binding protein S100B, apocalmodulin and Ca2+/calm-
odulin13, 22. Furthermore, smaller IQGAP1 fragments containing only one binding domain might by themselves 
modulate cellular signaling by acting as decoy peptides.

The acetylation motif KXKK, that appears to play a role in IQGAP1 stability, is typical for steroid receptors, 
e.g. the glucocorticoid receptor. It may seem surprising that IQGAP1 harbors this motif although it is itself not 
a steroid receptor; however, it was recently shown to interact with a steroid receptor23. None of the previously 
reported IQGAP1 acetylation sites overlap with the KXKK motifs. 10 acetylation sites were identified by Chen 
et al.24, and 8 sites were shown to be acetylated by Lundby et al.25. However, between the two studies, only 3 sites 
were detected in both screens, indicating that in each screen many acetylation sites might be missed.

Our results also highlight the importance of carefully considering experimental conditions in the interpre-
tation of scaffold function. For example, we have shown previously that IQGAP1 is required for phorbol ester 
induced ERK1/2 activation3. However, no effect of HDAC treatment on phorbol ester induced ERK1/2 activa-
tion was observed in the present study. This apparent contradiction can be explained by the fact that although 
IQGAP1 is required, its acetylation does not play a role in phorbol ester-induced ERK activation

In conclusion, our data are consistent with a model where activation of ERK1/2 by ceramide is mediated by 
ceramide-induced lysine acetylation close to proteolytic cleavage sites of the ERK1/2 scaffold IQGAP1 and con-
sequent stabilization IQGAP. The data also indicate that ceramide-induced acetylation of IQGAP1 occurs via the 
activation of Histone acetyl transferases. This novel mechanism could open new possibilities for selective ther-
apeutic intervention in cardiovascular diseases. For example, if ceramide-dependent activation of ERK through 
acetylation of the scaffold IQGAP leads to cardiovascular disease, the present results suggest that it would be 
possible to leave intact other ERK scaffolds while inhibiting the acetylation pathway to selectively inhibit the cer-
amide pathway. A similar strategy has been used in the cancer field to cause apoptosis but not necrosis by selective 
inhibition of p38 MAPK but not JNK or ERK leading to selective cancer cell cytoxicity26.

Methods
Reagents and antibodies. General laboratory reagents were purchased from Sigma (St. Louis, MO) and 
BioRad (Hercules, CA) and were of analytical grade or better. Fetal bovine serum (FBS, Invitrogen, Carlsbad, CA) 
for cell culture and for stimulation was used at 10%. For phorbol ester stimulation, 12-deoxyphorbol 13-isobu-
tyrate 20-acetate (DPBA) was used at 3 µmol/L. The duration of stimulation with FBS or DPBA was 5 minutes. 
C6 ceramide (Sigma) was used at 50 µmol/L for 6 hours. 0.1% alcohol, used to dissolve ceramide, was used alone 
as a vehicle control. Ceramide synthase was inhibited by treatment with fumonisin B1 (Cayman Chemical, Ann 
Arbor, MI) at 15 µM for 24 hours. Dimethylsulfoxide, ethanol, and/or methanol were used as control treatment 
as appropriate. The Sirtuin inhibitor nicotinamide (NAM, Sigma) and the class I and II histone deacetylase 
(HDAC) inhibitor sodium phenylbutyrate (PB, Sigma) were both used at 5 mmol/L for 24 hours. The histone 
acetyltransferase inhibitor anacardic acid (Milipore Sigma, Billerrica, MA) was used at 10 µM for 1 hour. For west-
ern blots, the following primary antibodies were used: rabbit polyclonal anti-pERK1/2 (1:2000, Cell Signaling, 
Danvers, MA), mouse monoclonal anti-ERK1/2 (1:500, Cell Signaling), mouse monoclonal anti-KSR1 (1:100, 
BD Biosciences, San Diego, CA), rabbit polyclonal anti-IQGAP1 (1:1000, Santa Cruz Biotechnology, Santa Cruz, 
CA), mouse monoclonal anti-IQGAP1 (1:1000, Santa Cruz), goat polyclonal anti-IQGAP1 (1:500, Santa Cruz), 
rabbit polyclonal anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibody (1:200,000, Sigma), rab-
bit polyclonal anti-acetylated lysine antibody (1:300, Cell Signaling), mouse monoclonal anti-tubulin (1:3000, 
Sigma). As secondary antibodies, IRDye (R) 680 or IRDye (R) 800 CW labeled goat anti-rabbit, donkey anti-goat 
or goat anti-mouse IgGs were used (1:1000, LI-COR).

Cell culture and siRNA transfection. A7r5 rat aorta cells (ATCC, Manassas, VA) were cultured as 
described previously3. For all experiments, cells were subjected to serum starvation (0% serum for 24 hours) to 
ensure differentiation to the smooth muscle-like phenotype27, 28. SiRNA knock down of IQGAP1 and KSR1 as 
well as control siRNA treatment was performed as described previously3 using lipofectamine 2000 (Invitrogen). 
Cells were processed for experiments 5 days after siRNA transfection.
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Cell extracts and IP experiments. For preparation of whole cell lysates, plates were washed three times 
with ice-cold phosphate-buffered saline (pH 7.2), drained on ice and then scraped off in lysis buffer (140 mmol/L 
NaCl, 3 mmol/L MgCl2, 1 mmol/L dithiothreitiol and 0.5% Nonidet-P40 in a 20 mmol/L sodium phosphate buffer, 
pH 8.0) or, for IP experiments, in IP lysis buffer (50 mmol/L NaCl, 10% glycerol, 1% Nonidet-P40 in a 10 mmol/L 
sodium phosphate buffer, pH 8.0). Lysis buffers were supplemented with protease inhibitors. Cell lysis was per-
formed on ice for 30 minutes. Lysates were subsequently cleared by centrifugation (16,000 rcf for 10 minutes at 
4 °C). For IP experiments, lysates in IP lysis buffer were incubated rotating at 4 °C over night in the presence of 
anti-acetylated lysine antibody (5 μl antibody for 500 mg total protein) crosslinked to Protein G-dynabeads (R) 
(Invitrogen). For control IPs, rabbit anti-GFP antibody (Clontech, Mountain View, CA) crosslinked to protein 
G-dynabeads (R) was used. The immobilized antigen-antibody complexes were washed three times with IP lysis 
buffer. Bound proteins were eluted from the immobilized antibodies with sodium dodecylsulfate (SDS) sample 
buffer and further processed for western blotting.

Western blot. Proteins in IP samples or whole cell lysates were separated by SDS-polyacrylamide gel electro-
phoresis (PAGE) according to standard procedures. For immunoblots, proteins were transferred from SDS gels 
to nitrocellulose membranes (Whatman, Florham Park, NJ) and stained with specific primary antibodies and 
appropriate secondary antibodies. Bands were detected using an Odyssey(R) infrared scanner a system that is 
highly linear in the range of intensities used. Odyssey 2.1 software was used for densitometric analysis of the raw 
data. For comparison of protein expression levels, bands were normalized to either GAPDH or tubulin signals on 
the same membrane. To determine relative ERK1/2 phosphorylation, pERK1/2 signals were normalized to the 
total ERK1/2 signal on the same membrane.

Statistics and sequence analysis. All values given in the text are means ± standard error. Statistical sig-
nificance was evaluated using two-tailed Student’s t-tests, and differences with p values below 0.05 were consid-
ered significant. Data from at least 5 independent experiments were used for statistical analyses. For IQGAP1 
sequence analysis, the PeptideCutter software29, which can be found at http://web.expasy.org/peptide_cutter, was 
used to identify potential caspase cleavage sites. Potential proprotein convertase cleavage sites were located by 
sequence comparison with the known proprotein converatase motifs15.

Data availability. All data generated or analysed during this study are included in this published article.
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