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Practical passive decoy state 
measurement-device-independent 
quantum key distribution with 
unstable sources
Li Liu1,2, Fen-Zhuo Guo1,2 & Qiao-Yan Wen1

Measurement-device-independent quantum key distribution (MDI-QKD) with the active decoy state 
method can remove all detector loopholes, and resist the imperfections of sources. But it may lead to 
side channel attacks and break the security of QKD system. In this paper, we apply the passive decoy 
state method to the MDI-QKD based on polarization encoding mode. Not only all attacks on detectors 
can be removed, but also the side channel attacks on sources can be overcome. We get that the MDI-
QKD with our passive decoy state method can have a performance comparable to the protocol with 
the active decoy state method. To fit for the demand of practical application, we discuss intensity 
fluctuation in the security analysis of MDI-QKD protocol using passive decoy state method, and derive 
the key generation rate for our protocol with intensity fluctuation. It shows that intensity fluctuation 
has an adverse effect on the key generation rate which is non-negligible, especially in the case of small 
data size of total transmitting signals and long distance transmission. We give specific simulations on 
the relationship between intensity fluctuation and the key generation rate. Furthermore, the statistical 
fluctuation due to the finite length of data is also taken into account.

Quantum key distribution (QKD) has been widely studied in both theoretical and experimental aspects1–3 since 
its initial proposal4. QKD enables two distant parties (Alice and Bob) to share a key, which is secret from any 
eavesdropper (Eve). It has been proved to be unconditional secure theoretically5.

Due to the imperfections of devices, there is still a big gap between the theory and practice of QKD. 
Fortunately, Lo et al. proposed a measurement-device-independent quantum key distribution (MDI-QKD) pro-
tocol6 to exclude all the attacks on detectors, which has been experimentally demonstrated by several groups7–9. 
Recently, the decoy state method has been widely used in MDI-QKD9–17 to defeat the photon number splitting 
(PNS) attack18, 19 and guarantee the security against imperfect sources, such as weak coherent pulses sources 
(WCPS)20, 21. These approaches are all related to the active decoy state selection, which is based on the assumption 
that Eve can not distinguish decoy and signal states. But this assumption may not stand in real active decoy state 
experiments, for which it may open up to side channels attacks and even break the security of the system when 
one actively modulates the intensities of pulses22, 23. The passive decoy state method24–28 can reduce the side chan-
nel information in the decoy state preparation procedure. Different from the active decoy state method, the pas-
sive one only uses one intensity signal, and Alice passively chooses the signal state and the decoy state according 
to the response of Alice’s detector. The method in ref. 28 extended passive decoy state to practical unstable light 
sources, which promoted its application to practical QKD. Therefore, it is necessary to consider the MDI-QKD 
with a passive decoy state. This has been demonstrated with phase encoding mode in ref. 29. Due to the different 
advantages between phase encoding and polarization encoding in practical application, we will apply the passive 
decoy state in MDI-QKD with polarization encoding mode8, 9, 30, 31.

An important imperfect factor of photon sources is intensity fluctuation32. Due to unavoidable interference 
from environments, there should be deviation between the true value and the assumed value. The deviation 
rises and falls irregularly, which can be called intensity fluctuation. The intensity fluctuation in experiments will 
result in the irregular change of the photon number distribution, and bring a potential security loopholes to the 
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practical QKD33. The WCPs used in the passive decoy state method also has the imperfection of intensity fluctua-
tion34. Therefore, how intensity fluctuations influence the performance of passive decoy state MDI-QKD protocol 
should also not be ignored.

In this paper, we apply the passive decoy state method to the MDI-QKD protocol with polarization encoding 
mode. Alice and Bob use WCPs with random phases to passively generate signal states or decoy states. Not only 
all the attacks on detectors can be removed, but also the side channels attacks on sources can be avoided, which 
may be generated by active modulation of source intensities. We analyse the security of this protocol, and show 
that MDI-QKD protocol with our passive decoy state method can provide a performance comparable to the 
active decoy state method. In order to fit for the demand of practical application, we discuss intensity fluctua-
tion for MDI-QKD using the passive decoy state method. And based on the the formulas of yield and error rate 
derived in our paper, we get the key generation rate for our protocol with intensity fluctuation. According to the 
total gain and the overall error rate derived in our paper, we give a numerical simulations for our result. It shows 
that intensity fluctuation has a non-negligible effect on the key rate of the passive decoy state MDI-QKD proto-
col, especially in the case of small data size of total transmitting signals and long distance transmission. We give 
specific simulations on the relationship between intensity fluctuation and the key generation rate. Moreover, the 
finite-size analysis of this protocol is also taken into account in our paper.

Results
Passive Decoy State MDI-QKD Model. In this section, we apply the passive decoy state method to the 
MDI-QKD protocol, as shown in Fig. 1. The general process of this protocol is described as follows.

Alice generates phase-randomized pulses using two weak coherent sources with intensities μ1 and μ2, 
respectively. These two pulses interfere at a beam splitter (BS) with a transmittance of 50%; then there are two 
outcome signals which have the classically correlated photon number statistics. Alice passively generates signal 
or decoy states. The state Alice generated is a joint-distribution state according to the result of detector a0. The 
detector a0 with two modes c0 and c1. The letter c0 indicates that the detector has no click and c1 indicates the 
detector has a click. Thus corresponding to the detector’s modes, the output a has two modes, c0 and c1, which 
describe the signal state and decoy state, respectively. The total probability of having n photons in the output 
light can be written as

∫
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which is proven to be a non-Poissonian probability distribution33, and the parameters μ = μ1 + μ2, α =
ξ θ
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 is the phase difference. The joint probability of having n photons in mode a and 
no click in the detector a0 can be expressed by
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 is the dark count rate of detector, and ηd is the detector efficiency. The joint probability of having n photons in 
mode a and producing a click in the detector a0 has now the form
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Considering the normalization, the distributions of signal states and decoy states are respectively given by

Figure 1. Passive decoy state MDI-QKD system model. WCP, weak coherent pulse; M, polarization 
modulators; BS, beam splitter; PBS, polarization BS; a0, b0, ch, cv, dh and dv, photon detector.
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is a normalization constant.
Bob performs the same process as Alice. He generates phase-randomized pulses using two weak coherent 

sources with intensities υ1 and υ2, respectively. The distributions expressions of signal state pm b
c

,
0  and decoy state 

pm b
c

,
1  are just like those in Eq. (3). It can be given by
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where the parameters are corresponding to Alice’s.
The main step of MDI-QKD based on BB84 protocol and here we adopt the polarization encoding method6. 

Each of Alice and Bob prepares phase-randomized WCP in a different BB84 polarization state which is selected 
by means of a polarization modulator (M), independently and at random for each signal. Then they send them 
to an untrusted relay Charles (or Eve), who is supposed to perform a Bell-state measurement(BSM). Inside the 
measurement device, signals from Alice and Bob interfere at a 50:50 beam splitter (BS) that has a polarizing 
beam splitter (PBS) on each end. The PBS projecting the input photons into either horizontal (H) or vertical (V) 
polarization states. A successful Bell state measurement corresponds to the observation of precisely two detectors 
(associated to orthogonal polarizations) being triggered. Charles announces the results through a public channel 
to Alice and Bob. According to the result that Charles announces, Alice and Bob proceed on to basis reconcilia-
tion, error correction, and privacy amplification, as in traditional QKD protocols35. Then both Alice and Bob can 
ensure they have the same bits.

Estimation of the key generation rate. We modify the Gottesman-Lo-Lutkenhaus-Preskill (GLLP) for-
mula36 according to the MDI-QKD security analysis. Then, we get the key generation rate formula,


 − 
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where Y Z
11 and e X

11 are, respectively, the yield (the conditional probability that Charles declares a successful 
event) in the rectilinear (Z) basis and the error rate in the diagonal (X) basis, given that both Alice and Bob 
send single photon states; PZ

11 denotes the probability distribution that both Alice and Bob send single photon 
states in the Z basis; fe ≥ 1 is the efficiency of the error correction protocol; H(x) = −x log2 (x) − (1 − x) log2 (1 
− x)) is the binary Shannon entropy function; Qc c

Z
0 0

 and Ec c
Z
0 0

 denote, respectively, the total gain and quantum 
bit error rate (QBER) of signal state in the Z basis. Here we use the Z basis for key generation and the X basis 
for testing only.

In a MDI-QKD implementation with the model described in our paper, we can obtain the total gains and error 
rates in both the X basis and the Z basis,
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where λ ∈ {X, Z} denotes the basis choice and i, j = 0 or 1. λYnm and λenm are, respectively, the yield and error rate that 
Alice sends n photons pulse and Bob sends m photons pulse in the λ basis.

In practice, Qc c
Z
0 0

 and Ec c
Z
0 0

 can be directly measured in experiments, while Alice and Bob only need to estimate 
the lower bound of the yield Y Z

11 and the upper bound of the error rate e X
11 using the decoy state methods. 

According to ref. 29, the lower bound of λY11 can be given
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where λ = X or Z and the coefficients of the total gain in each mode are
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The upper bound of λe11 can be obtained with
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The subscripts c0 and c1 denote Alice or Bob prepare a signal state and a decoy state, respectively. If a subscript 0 
appears, then Alice or Bob prepares a vacuum state.

To analyse the security and performance of our passive decoy state MDI-QKD, we still need to know the total 
gains and the overall error rates in both the X basis and the Z basis. Supplementary Material shows the calculating 
process that how to get the total gain and overall error rate theoretically.

Passive Decoy State MDI-QKD With Intensity Fluctuation. We discuss an unavoidable imperfect 
factor, intensity fluctuation, in practice QKD protocol. We introduce parameter δ to denote the degree of intensity 
fluctuation. Here we take Alice as an example to describe the general process. The fluctuation ranges of the two 
intensities of Alice’s WCP sources are characterized by

µ δ µ µ δ µ δ µ µ δ− + − +µ µ µ µ⩽ ⩽ ⩽ ⩽(1 ) (1 ), (1 ) (1 ), (13)
real real

1 1 1 1 1 11 1 2 2

where δµ1
 and δµ2

 are the variation ranges of μ1 and μ2, respectively. µ real
1  and µ real

2  are the real intensities of Alice’s 
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Due to the intensity fluctuation, we can derive the following expressions:

ω ξ

ω ξ

τ τ

τ ω ξ

τ ω ξ

= = −

= − =

= =

= −

= − .

ξ
ω

ξ ξ
ω

ξ ξ
ω

ξ
ω

η ξ η ξ

η ξ η ξ

η ξ η ξ

− −

− −

− −

− −

− −

q I e q I I e

q I I e q I e

q I q I

q I I

q I I

, ( ) ,

( ) , ,

, ,

( ),

( ) (15)

a
t L

a
t L

a
L

a
L

a
t U

a
U

a
U

a
t U

a
c L

a
U

a
c U

a
L

a
c L

a
L

a
L

a
L

a
c U

a
U

a
U

a
U

0,
,

0, 1,
,

0, 1,

1,
,

0, 1, 0,
,

0,

0,
,

0,(1 ) 0,
,

0,(1 )

1,
,

0,(1 ) 1,(1 )

1,
,

0,(1 ) 1,(1 )

a
U a

U

a
L

a
L a

L

a
U

a
U a

U

a
L a

L

d a
U

d a
L

d a
L

d a
L

d a
U

d a
U

0 0

0

0

Then, we have

= −

= −

= −

= −

q q q q

q q q

q q q

q q

,

,

,

, (16)

a
c L

a
t L

a
c L

a
c U

a
t U

a
c U

a
c L

a
t L

a
c L

a
c U

a
t U

a
c U

0,
,

0,
,

0,
,

0,
,

0,
,

0,
,

1,
,

1,
,

1,
,

1,
,

1,
,

1,
,

1 0 1

0 1

0 1

0

where



www.nature.com/scientificreports/

5ScieNTific RePoRts | 7: 11370  | DOI:10.1038/s41598-017-09367-y

ω µ δ µ δ ω µ δ µ δ

ξ µ δ µ δ ξ µ δ µ δ

τ τ

µ µ δ µ δ µ µ δ µ δ

=






− + −






=






+ + +






= − − = + +

= − = −

= − + − = + + + .

µ µ µ µ

µ µ µ µ

η µ η ω η µ η ω

µ µ µ µ

−


+ − 


−


+ − 
e e

1
2

(1 ) (1 ) , 1
2

(1 ) (1 ) ,

(1 ) (1 ) , (1 ) (1 ) ,

(1 ) , (1 ) ,

(1 ) (1 ), (1 ) (1 ) (17)

a
L

a
U

a
L

a
U

a
L

a
U

L U

1 2 1 2

1 2 1 2

(1 ) (1 )

1 2 1 2

d
L

d a
L

d
U

d a
U

1 2 1 2

1 2 1 2

1 2 1 2

 

Bob has the same process as Alice. Next, we will calculate the lower bound of Q c c
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where the parameters are in the condition of using µ real
1 , µ real

2 , υ real
1  and υ real

1 .
Then, applying −Q Qc c c c1 1 0 0

, we can get

∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

− = − + − +

− + −

+ − +

− + − .

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

Q Q Q Q Q Q Q

Q Q Q

Q Q Q

Q Q Q
(19)

c c c c
c c c c

c c c c

m
m

c c

m
m

c c

n
n
c c

n
n
c c

m
m

c c

m
m

c c

n
n
c c

n
n
c c

n m
nm
c c

n m
nm
c c

11 11 00 00
1

0

1
0

1
0

1
0

2
1

2
1

2
1

2
1

2 2 2 2

0 0 1 1
0 0 1 1

1 1 0 0 1 1

0 0 1 1 0 0

1 1 0 0 1 1

0 0 1 1 0 0

The common point between the passive decoy state and the active decoy state is that the counting rates and the 
error rates of pulse of the same photon number states from the signal states and the decoy states shall be equal to 
each other37. Thus, in our study, we assume they are still equal to each other in the case of intensity fluctuation. 
Then, we use the following inequalities to substitute the elements in Eq. (19):
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Finally, we obtain the lower bound of Q c c
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The key generation rate with intensity fluctuation is
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Statistical Fluctuation. In practical, the number of key distribution is finite, which will bring some statis-
tical fluctuation into the parameter estimation. In this section, we will discuss the effect of the finite size on the 
security of MDI-QKD with our passive decoy state method based on the standard statistical analysis38, 39.

When consider the statistical fluctuation, the total gain λQc ci j
 and the overall error rate λEc ci j

 are turned from 
determined values into intervals, which can be written as
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Here σα is the number of standard deviations, which is related to the failure probability of the security analysis. we 
choose σα = 5, which means the failure probability is 5.73 × 107. These parameters used in our method are the 
same as those in the refs 12 and 29. λNc ci j

 is the length of data in the situation that Alice has the ci mode and Bob has 
the cj mode, where i,j = 0 or 1. Thus, the lower bound of λY11 and the upper bound of λe11 given by Eqs (9) and (12), 
respectively, can be modified to ref. 29
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We can also modify the lower bound of Q c c
11

1 1 and the upper bound of λe11 given by Eqs (22) and (25), respectively, 
as follows
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Substituting Eqs (29) and (30) into Eqs (7), (31) and (32) into Eq. (26), we can respectively estimate the key 
generation rate with or without intensity fluctuation in the case of finite resource in different data length. In our 
method, we assume that Alice’s and Bob’s data length are the same for each pair of intensities.

Numerical Simulation. From our security analysis, we can obtain the yield Y Z
11 and the error rate e X

11, respec-
tively, when Alice and Bob send single-photon pulses to Charles, as well as the total gains and the overall error 
rates in both the X basis and the Z basis. Then, we can get the key generation rate plotted in Fig. 2. The practical 
parameters for numerical simulations used in our method are ηd = 14.5%, ed = 1.5%, Y0 = 3 × 10−6, fe = 1.16 and 
α = 0.2 dB/km. These experimental parameters, including the detection efficiency ηd, the total misalignment error 
ed and the background rate Y0, are from the 144 km QKD experiment reported in ref. 40. Since two PDs (Photon 
Detectors) are used in ref. 40, the background rate of each PD here is roughly a quarter of the value there. We 
assume our model that the six PDs in MDI-QKD (see Fig. 1) have identical ηd and Y0.

In Fig. 2, we compare the key generation rate of MDI-QKD given by our passive decoy state method with 
that given by an active decoy state method with two decoy states in ref. 12 and recently optimal active decoy state 
method in ref. 17. The key generation rate is maximized by optimizing the intensity of sources. It can clearly be 
seen that the passive decoy state method can provide a performance comparable to the active one. We also com-
pare the key generation rate of MDI-QKD given by our passive decoy state method which based on polarization 
encoding mode with that based on phase encoding mode in ref. 29, due to these two encoding modes are both 
applied in practical systems.

In addition, we will characterize the relationship between the key generation rate and the intensity fluctuation 
when transmission distance d is fixed. The result is shown in Fig. 3. Define R(δ)/R(0) as the fidelity of the the key 
generation rate with passive decoy state method, where R(δ) denotes the the key generation rate R with intensity 
fluctuation and R(0) denotes the the key generation rate R with no intensity fluctuation. From Fig. 3, we can see 
that the R(δ)/R(0) is getting to 0 with δ getting to 0.1. It indicates that when intensity fluctuation increases, the 
fidelity decreases, so does the key generation rate. Furthermore, we can also get that the effect of intensity fluctu-
ation on the key generation rate monotonously increases with the increase of the transmission distance. So when 
we analyse the performance of MDI-QKD, the influence of intensity fluctuation can not be neglected, especially 
over long-distance communications.

Figure 4 shows the key generation rate of MDI-QKD given by our passive-decoy-state method with different 
intensity fluctuation. We can find that intensity fluctuation obviously limit the secret key rate. In order to further 
study the effect of intensity fluctuation for different total numbers of transmitting signals N, we show the relations 
between R(δ)/R(0) and the secure transmission distance given that the intensity fluctuation is fixed to be 0.05 in 
Fig. 5. We can find that the smaller the data size of total transmitting signals is, more obvious the effect of intensity 
fluctuation is.

Figure 2. Key generation rate versus the total transmission distance with the passive decoy state method based 
on polarization encoding mode (red solid line) compared to the passive decoy state method based on phase 
encoding mode (red dot-dashed line; ref. 29), the active decoy state method using two decoy states (blue dot-
dashed line; ref. 12), and recently optimal active decoy state method (blue solid line; ref. 17).
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Discussion
In conclusion, we applied the passive decoy state method in the MDI-QKD based on polarization encoding mode, 
and gave a security analysis of this protocol. Using the passive decoy state method, not only all detector side chan-
nel attacks can be removed, but also side channel attacks on the sources can be overcome, which the active source 
modulation method may bring. We analysed the security of this protocol, and found that the MDI-QKD with 
our passive decoy state method can have a performance comparable to the protocol with the active decoy state 
method and the passive decoy state method based on phase encoding mode. To fit for the demand of practical 

Figure 3. The fidelity of the the key generation rate R(δ)/R(0) versus intensity fluctuation δ.

Figure 4. Secret key rate R versus the transmission distance with δ = 0.01,0.05,0.09,0.1 (curves from right to 
left).

Figure 5. Secret key rate R versus the transmission distance for δ = 0.05 and N = 1 × 10x with x = 9,10,11,12,13 
(curves from left to right).
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application, we discuss intensity fluctuation in the security analysis of passive decoy state MDI-QKD protocol. In 
this case, we got the key generation rate through the formulas of yield and error rate derived in our paper. Based 
on the total gain and the overall error rate derived in our paper, we gave numerical simulations for our proto-
col. We showed that intensity fluctuation has a non-negligible effect on the secret key rate of the passive decoy 
state MDI-QKD protocol, especially in the case of small data size of total transmitting signals and long distance 
transmission. In addition, our analysis of statistical fluctuation shows that the finite-size effect also limits the key 
generation rate of MDI-QKD with passive decoy state method.
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