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Five-partite entanglement 
generation between two optical 
frequency combs in a quasi-periodic 
χ(2) nonlinear optical crystal
Guangqiang He1,2,3, Yu Sun1, Linxi Hu1, Renhui Zhang1, Xikun Chen1 & Jindong Wang4

We theoretically prove five-partite entanglement can be produced among modes of two simultaneously 
generated optical frequency combs via second-order nonlinear interaction in a designed periodically 
poled lithium niobat (PPLN) crystal. An extendible model is proposed to analyze the entanglement 
characteristics of generated comb modes by applying van Loock and Furusawa criteria. Our proposal 
provides a potential approach for generating multipartite entangled states, the so-called cluster states, 
which are the key resources for quantum computation. Moreover, simultaneously generation of two 
entangled combs can provide much higher efficiency to generate cluster states.

Quantum entanglement is at the central part of applications such as quantum computation and quantum com-
munication, such as quantum teleportation1–3, quantum key distribution4, quantum secure direct communica-
tion5–7, quantum machine learning8, and so on. To experimentally implement quantum computation, scalability 
is one of the most essential requirements9. Thus a so-called one-way quantum computer model10, in which quan-
tum computation resource is provided by cluster states11, was proposed for the requirement. A cluster state is a 
multipartite entangled state in which any algorithm can be implemented by one-particle measurements only. 
Motivated by this discovery, a large number of works related to cluster states have been carried out9, 12–20. Various 
generation methods of cluster states are investigated, such as using beta-barium borate (BBO)13, cavity quantum 
electrodynamics (QED) techniques15, and optical frequency combs (OFCs)9, 18–20. Among these works, resorting 
to optical frequency combs is quite appealing. Some interesting works have been proposed about entanglement 
generated in optical combs. it is shown that optical-frequency combs are formed by the interaction between a 
cavity mode and a continuous-wave two-tone driving laser consisting of a pump field and a seed field via quan-
tum dot-induced strong nonlinearity21. A large-scale quantum entanglement between two comb modes has very 
recently been explored in an interacting semiconductor quantum dot-photonic molecule system22.

OFCs have already found its way to applications such as precision spectroscopy, frequency transfer, astronom-
ical spectral calibration, and generation of low-phase-noise microwave and radio frequency oscillators23. Initially, 
optical frequency combs were produced by mode-locked femtosecond laser23, it is stable but bulky and complex. 
For the sake of miniaturization, microresonators have been proposed and experimentally demonstrated to gener-
ate optical frequency combs based on the cascaded four-wave mixing (FWM), allowing considerable reduction of 
complexity, size and power consumption24, 25. FWM is third-order nonlinear effect and its conversion efficiency 
is much less than second-order nonlinear effects such as second-harmonic generation (SHG) and sum-frequency 
generation (SFG). Thus optical frequency combs generated via second-order nonlinearity have drawn growing 
attention. Iolanda et al.26 and Ville et al.27 have shown that two OFCs can be produced simultaneously by cascaded 
SHG and SFG. In their works, different features and generation regimes are investigated, good spectral quality is 
also shown. Inspired by their works, we proposed a novel model to analyze the entanglement characteristics of the 
two combs in this paper. Simultaneously generation of two entangled combs can provide much higher efficiency 
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to generate cluster states, making an important step for quantum computation. Without loss of generality, we 
simplify the two combs with three modes in each comb, thus there are six modes in total.

The rest of this paper is arranged as follows. In result and discussion, system model and output fluctuation 
spectra are given as two parts. First, we describe the physical model for the generation of five-partite entangle-
ment, then derive the main values and fluctuations of the output fields in system model. In output fluctuation 
spectra, the entanglement characteristics of the modes in two frequency combs are investigated. In method, we 
introduce the principle of designing the model and analyzing the four-partite entanglement.

Results and Discussion
System Model. In this model, two output frequency combs consisted of six modes are generated by cascaded 
second-order nonlinear processes as shown in Fig. 1. First, a pump with frequency ω0 generates the beam with 
frequency ω3 through a second-harmonic generation. Then, two beams with frequency ω1 and ω2 are generated 
by a down-conversion process. Last, two beams with frequency ω4 and ω5 are generated by two sum-frequency 
processes.

According to the above nonlinear processes, The energy conversion and phase-matching conditions can be 
written as follows:

ω ω ω+ = + + =SHG k k G k: , , (1)0 0 3 0 0 1 3

ω ω ω+ = + + =PDC k k G k: , , (2)1 2 3 1 2 2 3

ω ω ω+ = + + =SFG k k G k1: , , (3)0 1 4 0 1 3 4

ω ω ω+ = + + = .SFG k k G k2: , (4)0 2 5 0 2 4 5

ki(i = 0, 1, 2, 3, 4, 5) are the corresponding wave vectors of the six output modes with frequency ωi(i = 0, 1, 2, 3, 4, 
5). G1, G2, G3, G4 are the four reciprocals needed to compensate the phase mismatching. The quasiphase-matching 
sketch is plotted in Fig. 2.

To obtain the reciprocal-lattice vector for corresponding quasiphase mismatch, an optical superlattice (OS) 
is needed, and the superlattice can be designed using a dual-grid method. Due to Iolanda et al.’s work26, we 
set the six wavelengths with frequency ωi(i = 0, …, 5) at 1064.45, 1065.54, 1063.36, 532.225, 532.50, 531.95 nm, 
respectively, and the temperature is 39.5 °C. The tiling vectors of the OS are calculated to be 1.739, 1.740, 1.735, 

Figure 1. Second-harmonic generation (SHG) with cascaded down-conversion (PDC) process gives rise to the 
frequency components ω3, ω1 and ω2, which in turns leads to two sum-frequency processes (SFG1, SFG2) and 
generate another two subharmonic components ω4, ω5.

Figure 2. The quasi-phase matching scheme for the cascaded nonlinear processes.
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1.742 μm. The structure of the PPLN OS is shown in Fig. 3(b), where the index of refraction of the black blocks 
is negative and the index of refraction of the white blocks is positive. The unit of length in Fig. 3b is micrometer.

Since the structure of the PPLN crystal is obtained, we design a schematic diagram of physical system as 
shown in Fig. 3. The system is pumped by a continuous-wave pump laser at 1064.45 nm, amplified by a Yb:fiber 
amplifier. Then the pump beam enters the cavity through a plane coupling mirror, while other mirrors are 
high-reflectivity. The high-reflectivity plane mirror is mounted on a piezoelectric actuator (PZT) for cavity length 
control and the designed PPLN crystal is placed between the two curved mirrors. The nonlinear processes give 
rise to the output frequency combs, which will finally be separated by an arrayed waveguide grating (AWG) and 
analyzed by the Fabry-Perot (FP) analysis cavities.

Due to the nonlinear processes proposed above, the interaction Hamiltonian Hi for the nonlinear processes, 
the Hamiltonian for the pump beam Hp are as follow:

 ε= + . .†H i a H c , (5)p 0

 κ κ κ κ= + + + + . .† † † † †H i a a a a a a a a a a a a H c( ) (6)i 1 0 0 3 2 1 2 3 3 0 1 4 4 0 2 5

where κi(i = 1, 2, 3, 4) are the dimensionless nonlinear coupling coefficients of the nonlinear processes, âi are 
annihilation operators of the modes with frequency ωi.

An optical oscillator is an open system since it not only exhibits intrinsic scattering loss with a photon decay 
rate of γk0 (for mode k), but also couples waves to the coupling waveguide with an external coupling rate of γkc. In 
order to describe such an open system, we present the loss and out-coupling terms as:

ρ γ ρ ρ ρ= − − .ˆ ˆ ˆ ˆ† † †L a a a a a a(2 ) (7)k k k k k k k k

where ρ̂ stands for the density matrix of system and γk = γkc + γk0 represents the damping rate of the loaded cavity. 
Then the output field is determined by the well-known input-output relation given as ref. 28

γ− = .b b a (8)out in

in which b is the boson annihilation operator for the bath field outside the cavity.
As for the system model presented previously, whole procedure could be governed by the following master 

equation:

 ∑ρ
ρ ρ

∂
∂

= − + + .
=

ˆ ˆ ˆ
t

i H H L[ , ]
(9)p i

k
k

0

5

The above master equation can be converted into the equivalent c-number Fockker-Planck equation in P rep-
resentation, which may be written as a completely equivalent stochastic differential equation:

α η∂
∂

= +
t

F B , (10)

where

Figure 3. Experimental setup. (a) A four-mirrors travelling wave cavity, with a PPLN crystal, is pumped by an 
amplified cw laser. The nonlinear cavity output beams are separated by an arrayed waveguide grating (AWG) 
and then analyzed by the Fabry-Perot (FP) analysis cavities. (b) The structure of the PPLN OS.
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α α α α α α α α α α α α α= ⁎ ⁎ ⁎ ⁎ ⁎ ⁎[ , , , , , , , , , , , ], (11)0 1 2 3 4 5 0 1 1 3 4 5

η η η η η η η η η η η η η= [ , , , , , , , , , , , ], (12)1 2 3 4 5 6 7 8 9 10 11 12

=










⁎F

f
f

,
(13)

γ α ε κ α α α α κ α α
γ α κ α α κ α α
γ α κ α α κ α α
γ α κ α α κ α α

γ α κ α α
γ α κ α α

=







− + + +
− +
− +
− +

−
−







.

⁎ ⁎ ⁎

⁎ ⁎

⁎ ⁎
f

v2

(14)

0 0 1 0 3 3 1 4 4 2 5

1 1 2 2 3 3 0 4

2 2 2 1 3 4 0 5

3 3 1 0 0 2 1 2
4 4 3 0 1
5 5 4 0 2

α α δα= +i i i, where αi are the fields with frequency ωi, αi are mean values of αi, and δαi are the fluctuations of 
the fields. ηi(i = 1, … 12) are the real noise terms. Matrix B could be obtained by the relationship D = BBT. D 
matrix we introduced here stands for the diffusion matrix, which is given by

= ⁎( )D d
d
0

0
,

(15)

where d is given by

Figure 4. Four variances versus frequency of pump plots when γc/γ is 0.05, 0.3, 0.7, 1. The pump power is fixed 
at 1.5εth.



www.nature.com/scientificreports/

5SCIENtIfIC RepoRtS | 7: 9054  | DOI:10.1038/s41598-017-09346-3

κ α κ α κ α
κ α κ α
κ α κ α=







− − −
−
−







.d

2 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 (16)

1 3 3 4 4 5

3 4 2 3

3 5 2 3

In order to obtain the steady-state solutions of the above processes, the noise terms and all the fluctuations can 
be neglected; thus the equations for the mean values of the fields can be written as:

δα
γ α ε κ α α κ α α κ α

∂
∂

= − + + +⁎ ⁎ ⁎

t
2 , (17)

0
0 0 1 0 3 3 1 4 4 2

δα
γ α κ α α κ α α

∂
∂

= − +⁎ ⁎

t
, (18)

1
1 1 2 2 3 3 0 4

δα
γ α κ α α κ α α

∂
∂

= − +⁎ ⁎

t
, (19)

2
2 2 2 1 3 4 0 5

δα
γ α κ α α κ α α

∂
∂

= − +
t

, (20)
3

3 3 1 0 0 2 1 2

δα
γ α κ α α

∂
∂

= −
t

, (21)
4

4 4 3 0 1

δα
γ α κ α α

∂
∂

= − .
t (22)

5
5 5 4 0 2

Firstly we get the steady-state solution by setting the =δα∂
∂

0
t

i . Though the pump threshold can be obtained in 
analytical solution, it is too complex. So we choose to get the pump threshold by a numerical method. For exam-
ple, when γ0 = 0.01, γ1 = 0.01, γ2 = 0.01, γ3 = 0.01, γ4 = 0.01, γ5 = 0.01, κ1 = 0.03, κ2 = 0.03, κ3 = 0.01, κ4 = 0.01, 
the threshold is εth = 0.003243. Notice that, when the pump wave power is below the threshold, there would be no 
steady solution for output waves. Thus we only investigate the entanglement characteristics above the threshold. 
Since the mean values of the fields in the cavity are obtained, they can be used to linearize the classical motion 
equations for the fields in the cavity to obtain the equations of the fluctuations of the fields:

δα δα η∂
∂

= +



t
M B , (23)

in which δα δα δα δα δα δα δα δα δα δα δα δα δα=


⁎ ⁎ ⁎ ⁎ ⁎ ⁎[ , , , , , , , , , , , ]T0 1 2 3 4 5 0 1 2 3 4 5 . M is the drift matrix given by

=






⁎ ⁎M

m m
m m ,

(24)
1 2

2 1

Figure 5. The minimum variance as a function of pump power. The external coupling coefficient is fixed at 
γc = γ.
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where m1 and m2 is

γ κ α κ α κ α
γ κ α κ α

γ κ α κ α
κ α κ α κ α γ

κ α κ α γ
κ α κ α γ

=







− − − −
− −

− −
− − −

−
−







⁎ ⁎ ⁎

⁎ ⁎

⁎ ⁎
m

0 0 2
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2 0 0
0 0 0

0 0 0
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(25)

1

0 1 0 3 1 4 2

1 2 2 3 0
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3 1 3 0 4

4 2 4 0 5

κ α κ α κ α
κ α κ α
κ α κ α=







− − −
−
−







.m

2 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 (26)

2

1 3 3 4 4 5

3 4 2 3

4 5 2 3

For the validity of linearised quantum-fluctuation analysis, the quantum-fluctuation must be small enough 
compared with mean values. If the requirement that the real parts of the eigenvalues of −M stay non-negative 
is satisfied, the fluctuation equations will describe an Ornstein-Uhlenbeck process29, for which the intracavity 
spectral correlation matrix is given by

ω ω ω= − + − − .− −S M i I D M i I( ) ( ) ( ) (27)T1 1

We introduce the quadrature operators for each mode in order to discuss the five-partite entanglement:

= + †X a a , (28)k k k

= − − †Y i a a( ), (29)k k k

with a commutation relationship of [Xk, Yk] = 2i. Thus we know that V(Xk) ≤ 1 could stands for the squeezed state 
based on our operator definition. V(A) = 〈A2〉 − 〈A〉2 indicates the variance of operator A.

The output fields is determined by the well-known input-output relations Eq. 8. In particular, the spectral 
variances and covariances have the general form

ω γ ω= +S S( ) 1 2 ( ), (30)X
out

c Xi i

Figure 6. Extracavity variance versus frequency of pump power. The external coupling coefficient is fixed at: 
γc = γ.
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ω γ ω=S S( ) 2 ( ), (31)X X
out

c X X, ,i j i j

Y quadratures have the similar expressions.
Multipartite entanglement criteria is given by the Van Loock and Furusawa (VLF)30. In our discussion, we con-

sider Fokker-Planck equation in P representation and then analyse the entanglement condition that van Loock 
and Furusawa criteria are violated simultaneously. By using the above quadrature definitions, the five-partite 
criteria is given by

= − + + + + + + ≥S V X X V Y Y g Y g Y g Y g Y( ) ( ) 4, (32)01 0 1 0 1 2 2 3 3 4 4 5 5

= − + + + + + + ≥S V X X V g Y Y Y g Y g Y g Y( ) ( ) 4, (33)12 1 2 0 0 1 2 3 3 4 4 5 5

= − + + + + + + ≥S V X X V g Y Y g Y g Y Y g Y( ) ( ) 4, (34)14 1 4 0 0 1 2 2 3 3 4 5 5

= − + + + + + + ≥ .S V X X V g Y g Y Y g Y g Y Y( ) ( ) 4 (35)25 2 5 0 0 1 1 2 3 3 4 4 5

in which gk(k = 0, …, 5) are arbitrary real parameters that are used to optimize the violation of these inequalities. 
Considering the frequency component of ω3 is generated by SHG, it is hardly to entangle with other modes, we 
only investigate entanglement characteristics among other five mode. According to the symmetry between ω1 and 
ω2, we choose to investigate S01, S12 and S14 in our rest analysis.

Output Fluctuation Spectra. According to Eqs [17–22], the stable solution is completely determined by 
three parameters: the total damping rate γ, the coupling coefficient κ, and the pumping power ε, which in turn 
determines the drift matrix M, the diffusion matrix D, and the intracavity spectral correlation matrix S. In addi-
tion, we also conclude that the parameter γc plays a role in the spectral correlation matrices according to Eqs [30 
and 31]. In the following work, we will vary these parameters to investigate the entanglement.

To begin with, we fix κ, γ and ε - the three parameters that governs the evolution in the cavity, and vary the 
γc/γ ratio to investigate its influence on the entanglement. To satisfy the validly of the linearization method and 
calculate the quantum correlation spectra, the parameters should be chosen properly. Therefore, we set γ0 = 0.01, 
γ1 = 0.003, γ2 = 0.003, γ3 = 0.01, γ4 = 0.01, γ5 = 0.01, κ1 = 0.03, κ2 = 0.03, κ3 = 0.01, κ4 = 0.01. With above param-
eters, we plot the minimum of the variances versus the analysis frequency normalized to γ in Fig. 4 when γc takes 
a portion of 0.05, 0.3, 0.75 and 1.

From Fig. 4, we can see that when γc/γ = 0.05, there is no entanglement between any two frequency modes. As we 
increase the out-coupling coefficient, the three frequencies in the first comb begin to entangle with each other. When 
γc/γ = 0.75, the ω1 and ω2, which are respectively in two different combs, begin to entangle. And eventually when 
we set the portion to the γc/γ = 1, the degree of entanglement is the largest compared with other case. Thus, we con-
clude that the entanglement among output modes increases as the radio γc/γ increases. This can be explained that 
the higher portion the coupling coefficient takes, the less consumed entangled pairs are wasted in the internal loss.

In order to investigate the effect the pump power brings to the degree of entanglement, we firstly set the γ0 = 0 
which means no intracavity loss in this part of discussion. With our previous discussion, the variance Si as a 
function of ω/γ is merely determined by the parameter ε/εth while choose proper κ and γ. We plot the minimum 
variance throughout the noise power spectrum as a function of the pump power which has been normalized by 
εth in Fig. 5. We plot the minimum variance versus frequency under different pumping power in Fig. 6.

It can be inferred from Fig. 5 that the variance of S01 and S14 would first decrease as the pump power increasing 
and reach their minimum values when ε = 1.5εth around. Then S01 and S14 would ascend with the pump power 
while S12 increases as the pump power since the beginning. Considering that S01 and S14 are the short slabs of the 
entanglement model, we conclude that the 1.5εth is the best pump power in our case. That explains why we choose 
ε = 1.5εth in previous investigation.

In conclusion, we propose the theoretical model for the five-entanglement among modes of two optical fre-
quency combs. By solving Fokker-Planck equation in P representation, we analysed the entanglement case where 
Van Loock and Furusawa criteria are violated. We analytically find that the intensity of entanglement is completed 
influenced by the ε/εth, ω/γ, and γc/γ. The results would offer a new path for the future study for entanglement 
over optical frequency combs generated via second-order nonlinear interaction.

Method
We design the PPLN crystal using the so-called generalized dual grid method (DGM), which will phase match 
the four nonlinear processes. In this method, a dual structure, called dual grid, which contains all the topological 
information required to built the quasi-crystal is constructed and transformed to a quasi-crystal.

We analyze the entanglement case based on the Van Loock and Furusawa criteria. First, we obtain the main 
equation and transform it into Fokker-Planck equation. After we get the steady-solution of the above equations, 
we can obtain the equations of the fluctuations of the fields. Then, we calculate the spectral variances and covar-
iances which will be applied into the Van Loock and Furusawa criteria. Finally, the influences of ε/εth, ω/γ, and 
γc/γ on the intensity of entanglement are analysed.

Our analysis method is also suitable for other types of entanglement, such as multi-partite GHZ state and 
logic-qubit entanglement, as long as the nonlinear processes are given we can derive the Hamiltonian expressions, 
then we can analyze the entanglement characteristics according to the method we propose above.
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