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Unconventional fractional quantum 
Hall effect in bilayer graphene
Janusz Edward Jacak

Recent experimental progress in Hall measurements in bilayer graphene in the so-called open-face 
configuration of boron nitride encapsulated samples, together with the earlier technique of suspended 
samples, allows for precise observation of the fractional quantum Hall effect (FQHE) in all 4 subbands 
of the Lowest Landau level (with n = 0 and n = 1) and in the next LL subbands (with n = 2) in the bilayer 
system. Many newly observed FQHE features do not agree with a conventional model of composite 
fermions and reveal a different hierarchy in comparison to monolayer graphene or GaAs 2DEG. We 
explain the peculiarity of the FQHE hierarchy in the bilayer system in the framework of a topological 
approach, which includes the composite fermion model as its special case. Inclusion of a topological 
effect caused by the hopping of electrons between the two sheets in the bilayer system allowed for 
an explanation of the FQHE hierarchy in the graphene bilayer in satisfactory accordance with the 
experimental observations.

The fractional quantum Hall effect (FQHE) is one of the most spectacular and mysterious quantum phenomena 
in condensed matter. Despite intensive experimental and theoretical studies of FQHE since the 80 s of the last 
century, the effect still eludes complete understanding. The FQHE apparently exceeds the conventional frame-
work of local quantum mechanics and displays a trade-off between the Coulomb interaction induced localization 
and disorder1. It is commonly acknowledged that in the induced by the interaction formation of nonlocal specific 
correlations in FQHE, the central role is played by an exceptional topology of the planar continuum. An exami-
nation of FQHE in graphene is especially challenging. Graphene is perfectly two dimensional but with a 
pseudo-relativistic band structure. The band electron dynamics in graphene are dominated by the Dirac-like 
points in the corners of the hexagonal Brillouin zone, where the locally conical-shaped valence band meets the 
similarly conical-shaped conduction band, resulting in a linear-in-momentum local Hamiltonian2. This leads to 
non-equidistant LLs structure in the graphene monolayer, with energy proportional to n  (n is number of the LL) 
instead of the ~n dependence in conventional 2DEG. In bilayer graphene, an interlayer tunnelling of electrons 
restores the parabolic local energy and almost-equidistant LLs, −~ n n( 1) 3. The specific graphene 
pseudo-relativistic band structure close to the Dirac points, however, does not influence the topological con-
straints imposed on trajectories (upon the path-integral quantization), because the band structure is induced by 
a local electric interaction-type crystal field, which does not perturb the path topology, and the FQHE is observed 
in graphene, similarly to conventional semiconductor 2DEG systems.

In recent years, advances in the manufacturing methods of monolayer and bilayer ultra-clean graphene sam-
ples accelerated the development of the Hall experiment in this material, and several new observations of FQHE 
have been reported. Remarkably, the observations of FQHE in bilayer graphene4–8 reveal significant distinctions 
from FQHE manifestation in the graphene monolayer9–12. This is in conflict with a conventional imagination that 
FQHE is a manifestation of hypothetical composite fermions (CFs)13, i.e., electrons dressed with even number 
of localized on particles flux quanta of some auxiliary magnetic field. According to CF theory, such effective 
quasiparticles should be present both in monolayer and bilayer Hall systems, what however, does not agree with 
experimental observations in bilayer graphene4–8.

Important progress in the Hall experiment in graphene has been achieved by the invention of a measurement 
technique for suspended graphene small scrapings (both monolayer and bilayer)4–8,11,12 and by the mastering of an 
independent method for reducing substrate perturbations of graphene layers in samples supported by hexagonal 
boron nitride (hBN) crystal substrate7,9,10. The absence of a substrate (for suspended samples) or the avoidance 
of lattice mismatch (for hBN substrate) favour the delicate correlations induced by the interaction of 2D elec-
trons, resulting in FQHE manifestation. The triggering role for FQHE organization is played by high electron 
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mobility, well exceeding 100,000 cm2/(Vs) in both abovementioned experimental setups for Hall measurement 
in graphene.

A graphene sheet has regular planar hexagonal crystalline structure with two equivalent sublattices (two car-
bon atoms in the Bravais cell). This feature, together with the vanishing of the forbidden semiconductor gap at 
Dirac points, results in the four-fold spin-valley degeneracy of LLs in graphene monolayer2. Moreover, for Dirac 
points, the specific Berry phase-like shift for chiral 2D carriers additionally influences the LL spectrum, which 
finally results in the ν = +( )n4 1

2
 series for fillings at which the integral quantum Hall effect (IQHE) plateaus 

manifest themselves in monolayer graphene2. These plateaus in the monolayer graphene occur at the centres of 
the consecutive LLs (not completely filled LLs)14. In bilayer graphene, an extra degeneracy of the n = 0 and n = 1 
oscillatory states in the LLL occurs and the twice as large Berry phase for chiral carriers shifts the IQHE plateau 
positions to the edges of LLs3. LLs in bilayer graphene are also four-fold spin-valley degenerate, except for the 
eight-fold degenerate lowest LL (LLL) (due to n = 0 and n = 1 degeneracy in the LLL)2,14,15. In the case of mon-
olayer graphene, FQHE features are observed in the first six subbands of LLs with n = 0 and n = 19–12, which 
reproduce a hierarchy similar to that in conventional semiconductor 2DEG. In bilayer graphene, observation of 
FQHE reaches even subbands with n = 2, revealing a different and unexpected FQHE hierarchy there5,10. 
Especially interesting are observations of unusual even-denominator fillings for FQHE in bilayer graphene in the 
LLL, including the most pronounced feature at ν = − 1

2
4, which does not find any counterpart in monolayer sys-

tems. In particular, this state cannot be explained with the CF approach, as for CFs the Hall metal state is pre-
dicted at ± 1

2
13.

In the present paper, we summarize the recent and controversial experimental observations of FQHE in 
bilayer graphene and compare them with the data for graphene monolayer. We identify the specific topological 
features that can explain the oddness of the correlated multi-particle states in the bilayer system in accordance 
with experimental observations. We propose an explanation for the exotic even-denominator fractions for FQHE 
in the LLL and the whole FQHE hierarchy in bilayer graphene in the framework of the topological commensura-
bility approach16–18. Within this topological nonlocal braid group approach, we explain the structure of fractional 
fillings of LL subbands in accordance with experimental data and explain the reason for the insufficiency of the 
CF model in the bilayer graphene case. The topological braid group approach, formerly developed in refs19,20,  
gives the hierarchy of FQHE in agreement with the available experimental data for monolayer Hall systems and 
can be extended to the bilayer graphene case via identification of topological differences between mono and 
bilayer situations.

Hierarchy of FQHE in graphene
The massive degeneracy of each LL subband in graphene is the same as in the conventional 2DEG, despite the 
different LL structure2,3, and is equal to BS

hc e/
 (where B is the external magnetic field, S is the sample surface, and hc

e
 

is the magnetic field flux quantum). Nevertheless, the number of subbands per LL in graphene is different than in 
a conventional semiconductor case and equals 4 in graphene; it corresponds to the Zeeman spin splitting and to 
the valley pseudo-spin splitting (absent in conventional semiconductors) due to the mixing of two inequivalent 
Dirac points with two sublattices in graphene crystal lattice2. The Zeeman splitting in graphene is small21 and the 
valley splitting is small as well2, which results in the 4-fold approximate spin-valley degeneracy (referred to as 
SU(4) band symmetry). The LLL subbands are divided between particles and holes from the conduction and 
valence bands2. Hence, the bottom of the LLL is shifted upward by 2 (in terms of the filling factor). Conventionally, 
filling rates for holes from the valence band are assigned as negative numbers and are mirror reflections of the 
positive numbers denoting filling rates for electrons in the conduction band. An additional opportunity in 
graphene, beyond the ability of conventional 2DEG, is a possible control over the transition between particles and 
holes by the shifting of the Fermi level passing the Dirac point. Experimentally, it is realized by application of a 
relatively small lateral voltage (up to several dozen V), which determines the filling rate independently of the 
magnetic field strength.

Due to the interlayer electron hopping the local Hamiltonian for bilayer graphene re-attains the quadratic 
form with respect to the momentum. Hence, the LL spectrum in bilayer graphene resembles that of the ordinary 
2DEG, but with four subbands for each LL level except for the LLL, which has eight-fold degeneracy2,3. As usual 
in graphene, the division of the LLL subbands equally between particles and holes causes the bottom, for uni-
formly charged carriers (electrons or holes), to be located in the centre of the 8-fold degenerate LLL. This extra 
degeneracy of the LLL is caused by the vanishing of energy of both the n = 0 and n = 1 oscillatory Landau states 
in the bilayer graphene, in contrast to the monolayer one. In the bilayer graphene, the Berry phase shift for chiral 
particles is also different (twice as large) in comparison to the graphene monolayer and is equal to 2π2. Hence, 
the consecutive plateaus of IQHE are located in bilayer graphene at integer filling rates, whereas in monolayer 
graphene were located at half-fillings of LLs2,3.

FQHE hierarchy in monolayer graphene. When the Fermi level is shifted (by the lateral voltage) to the 
conduction band and the magnetic field is strong enough that ν ∈ (0, 1], we address the fractionally filled first 
conduction subband of the electron LLL, denoted as = ↑n 0, 2  (in this notation, 2 denotes the valley pseudospin 
component and the arrow ↑ indicates the orientation of the ordinary spin along the magnetic field). For N < N0, 
the filling rate, v = N/N0, is fractional (the degeneracy N0 of each subband is =N BS

hc e0 /
).

To decipher the FQHE hierarchy in this subband in graphene monolayer, we apply the braid group topological 
approach developed for the ordinary 2DEG system17,22. To implement braid group generators, the cyclotron orbit 
must be commensurate with the interparticle separation (the details are presented in SI). An archetype of the 
commensurability is = =S

N
hc
eB

S
N0 0

 (where S is the sample surface, N is the number of electrons, and N0 is LL 
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degeneracy), as for ν = = 1N
N0

 and IQHE. Various more complicated patterns of the commensurability (cf. SI) 
define filling fractions for FQHE17,22.

In the case of graphene, an important property follows from the fact that cyclotron orbits in graphene are 
defined by the bare kinetic energy ω= +( )T nc

1
2

  with ω =c
eB
mc

, similarly to the conventional semiconductor 
2DEG (as in non-interacting 2D gas), despite the different pseudo-relativistic version of Landau-level energy. This 
is because the’relativistic’ oddness is caused by the peculiar crystal field (electric interaction of ions and electrons), 
which does not change the bare kinetic part of the Landau energy. Hence, the size of the braid cyclotron orbits for 
graphene is equal to the corresponding orbit size from the non-interacting gas.

Therefore, the cyclotron orbit size in the subband = ↑n 0, 2  is equal to =hc e
B

S
N

/

0
. Because this orbit size is 

lower than the interparticle spacing expressed by S
N

 (as <N N0), multi-loop braids with enhanced size are needed 
to match neighbouring particles17,22 (cf. also SI for more detailed explanation). The commensurability condition, 
in this case, is as follows: =q S

N
S
N0

, which gives ν = =N
N q

1

0
, (where q is an odd integer17). For the LL subband 

holes, the particle-hole symmetric filling rates ν = −1
q
1  are expected.

The next possible commensurability occurs when the last loop of the multi-loop cyclotron orbit is commensu-
rate with every lth particle separation (similarly to in lth LL), whereas the q − 1 antecedent loops take away an 
integer number of flux quanta (which are commensurate with nearest-neighbouring particles). For = …l 2, 3, , the 
last loop reaches every lth particles (next neighbours). In this manner, we obtain the hierarchy of fillings for FQHE 
in this LLL subband in the following form (the same as for the CF model): ν ν= = −

− ± − ±
, 1l

l q
l

l q( 1) 1 ( 1) 1
, 

where = …l 1, 2,  and the minus sign in the denominator, corresponds to the possibility of the reverse eight-figure 
orientation of the last loop with respect to the antecedent loop in the multi-loop orbit. Additionally, we notice that 
the filling rates for Hall metal states can be achieved in the limit → ∞l  in the above formula, which corresponds 
to the situation in which the residual flux passing through the last loop tends to zero. This means that in such a case, 
the last loop can reach the infinitely distant particles as for fermions at the absence of a magnetic field, which is 
referred to the case of the Hall metal archetype for ν = 1

2
 in the conventional 2DEG. Thus, in the limit → ∞l , we 

arrive at the hierarchy for the Hall metal states in the form ν ν= = −
− −

, 1
q q

1
1

1
1
.

Let us notice that the hierarchy of FQHE filling factors in the LLL of monolayer graphene is similar to the 
FQHE hierarchy in the conventional 2DEG (GaAs), due to the same commensurability structure in both cases. 
The role of the commensurability in identification of the FQHE filling factor hierarchy has been noted earlier23, 
inspired by its fractal-like character and by the Hofstadter’s butterfly picture24, on the other hand. The latter dis-
plays the commensurability of 2D cyclotron orbits with the crystalline cell, what, however, requires giant mag-
netic fields (~105 T), which are out of reach in the experiment24. The commensurability with larger spatial scale, 
which in case of a diluted Wigner lattice is comparable with the magnetic length, =lB

c
eB

, may happen at lower 
magnetic fields, by four orders of magnitude, and can reproduce the fractal-like structure of FQHE filling factors, 
provided that the commensurability is defined under the braid group scheme, including multi-loop orbits.

One can also observe that other variants of commensurability may concern multi-loop orbits. Namely, each 
loop of the multi-loop structure may in principle be adjusted to particle separation in a different and mutually 
independent manner, matching nearest or next-nearest neighbours under various schemes. One such possibility 
may correspond to the situation in which q-loop orbit q − 1 loops are adjusted to every xth particle 
( = …x 1, 2, 3, ), whereas the last one fits with every l ≠ xth particle separation. This commensurability scheme 
is observed in ordinary 2DEG Hall systems within the LLL for some exotic fractions, e.g., ν = …, , , ,4

11
5
13

3
8

3
10

 
(beyond the CF hierarchy corresponding only to x = 1, as detailed in SI). It is noticeable, however, that this series 
of exotic FQHE filling fractions have not yet been observed in the LLL in graphene, though they are observed in 
the first LL in monolayer graphene (as will be discussed below).

For lower magnetic fields, the next subband, the last one in the LLL, = ↓n 0, 2 , is gradually filled with elec-
trons. In this subband, the cyclotron orbit size S

N0
 is still lower than the interparticle separation 

−
S

N N0
 (because 

− <N N N0 0), similarly as in the antecedent subband, which causes repeating of the FQHE filling structure from 
the previous subband, but shifted ahead by 1. After complete filling of this subband, the LLL is completely filled 
as well. This gives the IQHE according to its main-line hierarchy, ν = +( )n4 1

2
, at n = 0.

In an analogous way, one can consider fillings of the following LLs. The nearest one corresponds to n = 1. This 
level has four, electron type subbands. The bare kinetic energy in this LL (in all its subbands) is equal to ω3

2
c . In 

this subband, the cyclotron orbits are thus of size S
N
3

0
 (larger in comparison to the LLL) and they must be adjusted 

to the interparticle separation between electrons in this subband, 
−

S
N N2 0

. For a small number of electrons in the 
subband (close to the subband edge), we may have to deal with the multi-loop orbits if the single-loop orbits are 
too short, <

−
S

N
S

N N
3

20 0
. The q-loop orbits satisfy the commensurability condition =

−
q S

N
S

N N
3

20 0
, where q is an 

odd integer, which defines the main series for FQHE (multi-loop) in this subband, ν = +2
q
1

3
, however, shifted 

towards the subband edge in comparison to the LLL subband case. This main filling-line can be complemented to 
the complete related hierarchy, ν ν= + = − = = …

− ± − ±
l i i2 , 3 /3, 1, 2,l

l q
l

l q3( 1) 1 3( 1) 1
, with the Hall 

metal hierarchy in the limit → ∞l , like that described in the case of the LLL. These series of filling rates are 
located closer to the subband edges in comparison to the FQHE rates in the LLL due to larger size of cyclotron 
orbits in the n = 1 LL subband.
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Simultaneously, in the central part of this higher LL subband, a new type of commensurability is possible, 
which is not accessible in the LLL. This new commensurability occurs when =

−
S

N
xS

N N
3

20 0
 and x = 1, 2, 3, i.e., when 

the cyclotron orbit size exceeds the particle separation. Then, the single-loop orbit (large enough in this subband) 
can fit with every xth particle (x-order next-nearest neighbours). From this new commensurability opportunity, 
one finds fractions ν = , , 37

3
8
3

 corresponding to single-loop cyclotron orbits (similarly to IQHE). Thus, for 
ν = ,7

3
8
3
, we address the FQHE (single-loop). This is a new Hall feature that manifests only in higher LLs, where 

cyclotron orbits may be larger than the interparticle separation and single-loop orbits can reach next-nearest 
neighbours.

Let us note that the special case of the commensurability, = .
−

S
N

S
N N

3 1 5
20 0

, can be identified at ν = 5
2

. This com-
mensurability concerns the paired particles, rather than the single ones. The pairing does not change the cyclo-
tron radius (being invariant upon doubling of mass and charge), but reduces by half the carrier number −N N2

2
0, 

which gives the above commensurability for pairs at ν = 5
2

. Hence, at this filling rate, one can expect a manifesta-
tion of IQHE-type correlation, but for paired electrons (the considered correlation corresponds to p-like pairing 
due to the spin polarization in this subband).

A similar scheme of commensurability may be applied to the following subbands with n = 1. Moreover, an 
interesting new possibility for commensurability occurs for q-loop orbits with next-nearest neighbours. The sizes 
of particular loops in the multi-loop structure may, in general, be adjusted to the interparticle spacing in an inde-
pendent way, resulting in new filling rates. In particular, this results in the hierarchy ν = +

− ±
2(3, 4, 5) xl

l q3( 1) 1
, 

ν = −
− ±

3(4, 5, 6) xl
l q3( 1) 1

 in all subbands of the first LL, which for = = = =q x l i i3, 2, 3, /3, 1, 2, 3 

reproduces ν = ,7
3

8
3
, ,12

5
13
5

, ,17
7

18
7

, ,22
9

23
9

, ,10
3

11
3

, ,17
5

18
5

, ,24
7

25
7

, ,13
3

14
3

, ,22
5

23
5

. This opportunity for FQHE well 
agrees with the recent observations of FQHE in the first three subbands of the n = 1 LL in monolayer graphene at 
ultra-low temperatures10—cf. Fig. 1.
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Figure 1. Fitting to experimental data of cyclotron braid hierarchy for FQHE in monolayer graphene in the first 
three subbands in the first LL (n = 1), ν ∈ (2, 5]. Upper panel—Rxx after experiment10, lower panel—the 
theoretical hierarchy. The larger residual longitudinal resistance (in the upper panel for , ,12

5
17
7

22
9

 and for other 
fractions with denominators 5, 7, 9) corresponds to correlated states of next-nearest electrons, of every second 
(x = 2) or every third (x = 3) particle, according to the commensurability series ν = +

− ±
2(3, 4) xl

l q3( 1) 1
 with 

= = = =q x l i3, 2, 3, , 1, 2, 3i
3

 (lower panel) (x = 1 corresponds to CF-like commensurability)—
uncorrelated electrons enhance resistance.
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FQHE hierarchy in bilayer graphene. In bilayer graphene, the topology of braid trajectories changes 
considerably in comparison to the monolayer system. The bilayer graphene is not strictly two dimensional and 
this opens a new possibility for the topology of the trajectories, as illustrated in Fig. 2.

Two sheets of the bilayer graphene lie at a close distance and electrons can hop between them. Multi-loop 
cyclotron orbits (and related braids) may thus reside in both layers simultaneously, i.e., loops may be distributed 
among both sheets. This makes a difference in comparison to the monolayer case because each sheet contributes 
to the total flux of the external magnetic field independently with its own surface, which strongly affects the cyclo-
tron orbit size and braid commensurability condition. (cf. Fig. 2).

The simplest commensurability instance in the LLL (subband = ↑n 0, 2 ) with 3-loop cyclotron orbit located 
in both sheets of bilayer graphene (as illustrated in Fig. 2) results in filling fraction ν = 1

2
, not 1

3
 as in the mon-

olayer case. This exceptional fraction is observed experimentally (actually for holes at ν = − 1
2

)4 and cannot be 
explained by the CF model (the CF model predicts a Hall metal state at ν = ± 1

2
).

The fact that the second loop of any pair of loops may be located in the opposite sheet of bilayer graphene with 
respect to the first loop—cf. Fig. 3—is the source of an oddness of FQHE hierarchy in bilayer graphene.

In general, in a bilayer system, loops of a multi-loop orbit may be located partly in both 2D sheets. To account 
for this effect in topological terms, adjusted to braid trajectories and commensurability requirements, one must 
neglect the contribution of a single loop in the multi-loop structure when the total flux of the external field is 
divided into fractions per loop. This single loop captures its own flux, whereas the remaining loops will share an 
identical flux—the one which passes through any cyclotron orbit in the monolayer case. Removal of the single 
loop must be performed independently of how the loops are distributed among two sheets. When we consider a 
selected loop located in the opposite sheet with respect to the antecedent loop, the next loops must fill both sheets 
of the bilayer structure as additional loops, regardless their specific distribution. Thus, all these loops, except one, 
take part in the division of the external field flux in exactly the same manner as in the monolayer case, provided 
that the selected loop is omitted together with the flux passing through this loop. This trick reduces the bilayer 
system to a monolayer one in the braid-loop topology sense. Thus, we can write the commensurability condition 

B0B0

S,N
S,N

S,N
S,N

A = S/NA = S/N

A/2

Φ1 = 2B0A/2 = hc/e
Φ2 = 2B0A = 2hc/e

Φ3 = 3B0A = 3hc/e

interlayer hopping of an electron

external magnetic field B = 2B0, ν = 1/2
(B0 at ν = 1)

external magnetic field B = 3B0, ν = 1/3
(B0 at ν = 1)

Figure 2. In the bilayer system, there are two possible topologically non-equivalent types of three-loop 
cyclotron trajectories (corresponding to particle exchange along the braid generator with one additional loop, 
σj

3, built from half of the 3-loop cyclotron orbits22). In the left panel, the three-loop orbit is distributed between 
two sheets—both sheets contribute their own magnetic fluxes, in contrast to the case when the three-loop orbit 
is located in a single sheet (right panel). This leads to the different commensurabilities in the following two 
situations. If loops are distributed between both layers, only two loops participate in the increasing of the orbit 
size, which gives the commensurability condition ν= = = → =A N2 ,S

N
S

N
BSe
hc0

1
20

. In the case when all 
three loops are placed in a single layer, the commensurability repeats that from the monolayer case and ν = 1

3
.

B0 B0

S,N

S,N
S,N
S,N

A = S/N
A = S/N

A = S/N

Φ = B02A
Φ = B02A

Φ = B02A

interlayer hopping of an electron

Figure 3. If a 2-loop orbit is distributed among two sheets (right), then the sizes of both loops are the same as 
that of a single loop (in the figure, A = S/N, as for v = 1 at B0), but if both loops are placed in a single sheet, the 
double planar orbit is twice as large (left). This results in different commensurabilities in those two situations at 
the same magnetic field.
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in the bilayer graphene in the case of too short single-loop cyclotron orbits in the following form (as an example, 
for the subband = ↑n 0, 2  of the LLL):

ν

− =

= =
−

= …

q hc
eB

S
N
N
N q

( 1) ,

1
1

1
2

, 1
4

, 1
6

, ,
(1)0

where N is the number of electrons in each sheet, =N BSe
hc0  is the degeneracy of any subband, S is the surface of 

the sample (the surface of the single sheet), and q is an odd integer (it must be odd to ensure that half of the cyclo-
tron orbit defines the braid17, similarly to monolayer case). After omitting a single loop, the next loops must 
duplicate the former ones, no matter in which way the loops are distributed between both sheets. Thus, only q − 1 
loops take part in the enhancement of the effective q-loop cyclotron orbit size in bilayer graphene, taking into 
account the same instances of commensurability as in the monolayer case.

It must be emphasized that for multi-loop orbits in bilayer graphene, the total number of loops is still q 
(despite avoiding one loop in the commensurability condition (1)). Therefore, the generators of the correspond-
ing cyclotron subgroup are of the form σj

q, which results in the standard Laughlin correlations with the Jastrow 
polynomial with exponent q. Due to commensurability (1), the resulting main line of filling fractions is ν =

−q
1

1
 

(p-odd) in the first particle-type subband of the LLL, i.e., in the subband = ↑n 0, 2 . The even denominators in this 
main series for the FQHE hierarchy for bilayer graphene coincide well with the experimental observations4.

For holes in this subband (holes corresponding to empty states in the almost-filled subband of particle type), 
we can write ν = −

−
1

q
1

1
. The generalization to the full hierarchy of FQHE in this subband thus attains the form 

ν ν= = −
− ± − ±

, 1l
l q

l
l q( 2) 1 ( 2) 1

, where l > 1 describes the lth-order next-nearest neighbours commensurate 
with the last loop of the q − 1 loops, similarly to the monolayer case (as previously, the limit → ∞l  defines the 
hierarchy for the Hall metal). For the commensurability of the first q − 2 loops with xth-order (x > 1) next-nearest 
neighbours, ν =

− ±
xl

l q x( 2)
, but similarly to the monolayer graphene, this hierarchy line also has not yet been 

observed in the LLL of bilayer graphene.
In the following subbands of the LLL, = ↓n 0, 2  (assuming that this subband succeeds the former one), the 

hierarchy is repeated in the same form, but uniformly shifted ahead by 1 (because the commensurability condi-
tions are similar for all subbands with the same n due to the same size of the cyclotron orbits). A novelty occurs, 
however, in the next two subbands of the LLL, = ↑n 1, 2  and = ↓n 1, 2 . Because of the larger size of cyclotron 
orbits for n = 1, the FQHE main series in the first of these subbands of the LLL, = ↑n 1, 2 , attains the form

ν

= <
−

− = − =
−

= = +
−

= + + + … .

hc
eB

S
N

S
N N

p hc
eB

p S
N

S
N N

N
N q

3 3
2

,

( 1)3 ( 1)3
2

,

2 1
3( 1)

2 1
6

, 2 1
12

, 2 1
18

,
(2)

0 0

0 0

0

The generalization of this main series for holes in the subband and to the full FQHE hierarchy in this subband 
is formulated as follows: for subband holes, ν = −

−
3

q
1

3( 1)
, and for the full FQHE hierarchy in this subband, 

ν ν= + = −
− ± − ±

2 , 3l
l q

l
l q3( 2) 1 3( 2) 1

, = = …l i, 1, 2, 3,i
3

 (the Hall metal hierarchy may be obtained in 
the limit → ∞l ).

In the subband = ↑n 1, 2 , the cyclotron orbit may be larger than the particle separation (similarly to n = 1 in 
monolayer graphene), which allows single-loop commensurability with next-nearest neighbours. For 

=
−N

x
N N

3
20 0

 for x = 1, 2, 3, one obtains the fillings rates ν = , , 37
3

8
3

. These rates are related with single-loop cor-
relations, similar to those for IQHE (though the first two correspond to non-integer filling rates) and are referred 
to as FQHE (single-loop). Similarly, to the monolayer case, one can consider a paired state for x = 1.5 in the above 
formula, which corresponds to the perfect commensurability of cyclotron orbits of electron pairs with the sepa-
ration of these pairs at the electron filling rate ν = 5

2
. Fillings of the last subband = ↓n 1, 2  in the LLL in bilayer 

graphene satisfy similar conditions because in all subbands with n = 1, the cyclotron orbits have the same size and 
the FQHE hierarchy is only shifted by 1 from the antecedent subband.

The situation changes significantly, however, in the next LL (the first one beyond the LLL). The cyclotron 
orbits are determined here by the bare kinetic energy with n = 2, which gives the cyclotron orbit size =hc

eB
S

N
5 5

0
. 

These orbits are large; thus, multi-loop orbits may be needed only in regions of low electron density close to the 
subband edges. In the subband = ↑n 2, 1 , the main multi-loop series and the related full hierarchy for FQHE 
(multi-loop) are shifted towards subband edges: ν = +

−
4

p
1

5( 1)
, ν = + = >

− ±
l i4 , , 1l

l p
i

5( 2) 1 5
 (for subband 

holes, 5− is substituted for 4+ in both of the above formulae). As before, the limit → ∞l  determines the Hall 
metal hierarchy. Because the orbit size for n = 2 may be larger than the particle separation (especially in the cen-
tral part of the subband), the commensurability of this orbit with the next-nearest neighbours ought to be taken 
into account. As in the monolayer graphene subband with n = 2, one can expect the presence of four (2n) satellite 
FQHE (single-loop) states, symmetrically located around the central paired state. In the subband n = 2, 1, ↑, these 
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satellite states occur at ν = , , ,21
5

22
5

23
5

24
5

 and the central paired state at ν = 9
2

. Such states are visible in experi-
ments in conventional 2DEG for subbands with n = 2—cf. ref.25, whereas in bilayer graphene, the experimental 
picture is different5. This peculiarity is again caused by the specific topology of the double-sheet structure.

To solve this puzzle, let us note that in the bilayer system, distinct topological realizations of single-loop orbits 
may occur that are impossible in the monolayer system. This new opportunity is visualized in Fig. 4, when a part 
of a single loop is located in one sheet, whereas the rest of this loop in the opposite one, in such a way that particles 
interchange along cyclotron orbit pieces located in opposite sheets. Such a topology of a single loop can be real-
ized due to interlayer hopping of electrons. Because both electrons may have their individual trajectories in oppo-
site layers when they interchange, the mutual distance between electrons may not be conserved, in contrast to the 
monolayer case (left panel in Fig. 4). Hence, the braid built from the orbits, as in Fig. 4 (central panel), defines the 
exchange of electrons that are separated by a distance smaller than the orbit size hac

eB
5  (right panel in Fig. 4). This 

corresponds to effective reduction of the cyclotron orbit size, or in other words, to a leakage of flux passing 
through the effective cyclotron orbit. The resulting commensurability can be thus associated with smaller effective 
cyclotron orbits despite its nominally larger value for n = 2. Orbits can change only by integer numbers of flux 
quanta, thus for the initial nominal flux for n = 2, hc

e
5 , one obtains the following final reduced single-loop flux 

possibilities: hc
e

, hc
e

2 , hc
e

3  and hc
e

4 . These effective orbits yield the following new fractions for FQHE (single-loop) 
due to commensurability with nearest and next-nearest neighbours: ν = +4 1

3
 and +4 2

3
 for the commensura-

bility of orbit 3hc
e

 with nearest and every second (next-nearest) neighbours, respectively. These fractions are 
observable experimentally in the first three subbands with n = 2 in bilayer graphene5—cf. Figs 5 and 6. The corre-
sponding states are more stable because they are associated with single-loop correlations, similarly to IQHE. 
These states have nothing in common with CFs, as the related correlations are described by single-loop braids. It 
must be emphasized that the pairs of states +4(5, 6, 7) 1

3
 and +4(5, 6, 7) 2

3
 are not the particle and hole part-

ners (like the particle 1
3
 and hole 2

3
 multi-loop states in the LLL)—these pairs with denominator 3 in subbands of 

n = 2 LL correspond to single-loop braid commensurabilities of nearest and next-nearest (every second) neigh-
bours, respectively. This is confirmed by the asymmetry in the corresponding local minima of Rxx for these pairs, 
which is observable experimentally5 and illustrates the situation that in states at +4(5, 6, 7) 2

3
, every second 

electron is correlated, whereas at +4(5, 6, 7) 1
3
, all electrons are correlated. Uncorrelated electrons can scatter, 

B

1

2

1

2 1 2

interlayer hopping of an electron

Figure 4. When electrons can hop between two sheets, as in bilayer graphene, the topology of the single-loop 
interchange of particles may change: both particles can hop between sheets and may be in opposite layers when 
they traverse their own orbits (centre). In this case, particles may not conserve their mutual distance. This 
results in leakage of flux of the cyclotron orbit and a smaller-than-nominal orbit (left) that can match particles 
that lie closer together (right).
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Figure 5. Longitudinal resistivity Rxx measured in bilayer graphene (encapsulated in hBN with open face) 
for n = 2 subbands (first LL)—experiment5. The series of fractions with denominator 3 is consistent with the 
single-loop braid commensurability at the leakage of flux to the opposite sheet in the bilayer structure; the same 
holds for fractions with denominator 2 or 4. Fractions with denominator 5 correspond to single-loop braid 
commensurability for n = 2 (experiment5 is repeated with different samples). [adapted from ref.5 under CC-BY 
4.0, coloured fractions are added].
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which enhances Rxx at ν = +4(5, 6, 7) 2
3

. The similar effect of reducing the relative strength of the FQHE fea-
tures can be associated with the lowering of the fraction of electrons per subband with rising subband number. 
The gradual lowering of full octets in the first and the second subbands for n = 2 and the disappearance of a 
half-octet of FQHE features in the third subband, together with no features being registered in the fourth subband 
with n = 2 (at least in the temperature range of the experiment, down to 0.5 K)5, are consistent with this explana-
tion (the smaller fraction of correlated electrons results in lower energy gain, which can be insufficient to over-
come the disorder).

The orbits reduced due to flux leakage to hc
e

 are too short for single-loop commensurability, whereas orbits hc
e

2  

and hc
e

4  give ν = +x 1
2

 and ν = + ( )x ,1
4

1
2

3
4

, respectively, x = 4, 5, 6, 7. Some traces of these features are notice-
able in the experiment, as marked in Fig. 5, which is also consistent with the braid commensurability approach.

Specific to bilayer graphene FQHE hierarchy change caused by the type of the LLL 2xSU(4) 
degeneracy lifting. Bilayer graphene has a different subband structure than monolayer graphene and con-
ventional semiconductor 2DEG, as illustrated in Table 1.

In bilayer graphene, the extra degeneracy of the n = 0 and n = 1 states results in 8-fold degeneration of the 
LLL, which is twice the 4-fold spin-valley degeneracy of the LLL in the monolayer case3. The Coulomb interaction 
causes mixing of the n = 0 and n = 1 states via various schemes induced by stress, deformation, structural imper-
fections and magnetic field enhancement (as demonstrated in ref.26 by exact diagonalization in small models), 
which lifts their degeneracy in the LLL in bilayer. After the degeneracy lifting, the order of the subbands with 
n = 0 and n = 1 occurs to be of particular importance. The sequences n = 0, 1 and n = 1, 0 lead to different FQHE 
hierarchies. The FQHE hierarchy for the sequence n = 0, 1 is described in paragraph 1.2. However, in the opposite 
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Figure 6. Resistivity Rxx for the bilayer graphene experiment5 for the first two subbands with n = 2 from the 
first LL (ν ∈ (4, 6)) (a third sample). The pronounced FQHE features for fractions with denominator 3 for 
single-loop commensurability (due to leakage of flux between the two sheets of the bilayer structure) and for 
fractions with denominator 5, also for single-loop braid commensurability, are marked. [adapted from ref.5 
under CC-BY 4.0, coloured fractions are added].

Type of system Subbands of the LLL Subbands of the first LL Subbands of the second LL

bilayer graphene

(n = 0, 2, ↑, ν ∈ (0, 4]) (n = 2, 1, ↑, ν ∈ (4, 8]) (n = 3, 1, ↑), ν ∈ (8, 12])

(n = 0, 2, ↓) conduction band (n = 2, 1, ↓) (n = 3, 1, ↓)

(n = 1, 2, ↑) (n = 2, 2, ↑) (n = 3, 2, ↑)

(n = 1, 2, ↓) (n = 2, 2, ↓) (n = 3, 2, ↓)

monolayer graphene

(n = 0, 2, ↑), ν ∈ (0, 2]) (n = 1, 1, ↑), ν ∈ (2, 6] (n = 2, 1, ↑), ν ∈ (6, 10]

(n = 0, 2, ↓) conduction band (n = 1, 1, ↓) (n = 2, 1, ↓)

(n = 1, 2, ↑) (n = 2, 2, ↑)

(n = 1, 2, ↓) (n = 2, 2, ↓)

GaAs 2DEG
(n = 0, ↑), ν ∈ (0, 2] (n = 1, ↑), ν ∈ (2, 4] (n = 2, ↑), ν ∈ (4, 6]

(n = 0, ↓) (n = 1, ↓) (n = 2, ↓)

Table 1. Comparison of subband arrangements in bilayer graphene, monolayer graphene and GaAs 2DEG, and 
the corresponding filling rate ν = N

N0
 range (the nominal size of the cyclotron orbit corresponding to n is 

+n(2 1) hc
eB

; however, in the bilayer system, the orbit size can be reduced by flux leakage to the opposite sheet).
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case n = 1, 0, when the n = 1 subband is filled earlier than the n = 0 subband, the hierarchy is different: for the first 
subband = ↑n 1, 2 , multi-loop orbits occur for ν =

− ±
l

l p3( 2) 1
 and ν = −

− ±
1 l

l p3( 2) 1
, whereas single-loop 

orbits occur for ν = ,1
3

2
3
 and a paired state occurs for ν = 1

2
. For the next subband (in this ordering), = ↑n 0, 2 , 

one obtains the following hierarchy: multi-loop orbits for ν = +
− ±

1 l
l p( 2) 1

, ν = −
− ±

2 l
l p( 2) 1

 and no 
single-loop orbits. The origin of such differences is related to the distinct cyclotron orbit sizes for n = 1 and n = 0. 
The comparison of reverted orderings of the first two LLL subbands is summarized in Table 2. This evidences that 
the state at ν = 1

2
 corresponds to FQHE only when the subband with n = 0 is filled earlier than the subband with 

n = 1. In the inverted ordering of these subbands, the state 1
2

 is of the paired type, cf. Table 2. The FQHE hierarchy 
in bilayer graphene with the visible state at ν = − 1

2
, observed experimentally in a suspended sample4, is shown in 

Fig. 8.
One can also consider the situation in the LLL of bilayer graphene when the degeneracy of the n = 0, 1 states 

is lifted in such a way that both levels cross at a certain filling factor v* < 1 (cf. ref.26, where mixing between n = 0, 
1 states has been analysed numerically in small models on the torus or sphere). Let us assume, for an example, 
that the n = 1 subband ( = ↑n 1, 2 ) is energetically favourable up to some filling fraction v*. At this filling rate, the 
subband = ↑n 1, 2  crosses the subband = ↑n 0, 2  and the latter becomes the lower one for ν ν ν+ > >⁎ ⁎1 . The 
hierarchy of fractional fillings corresponding to such a situation looks like that of ordinary filling of the subband 

= ↑n 1, 2 , though with the insertion of the = ↑n 0, 2  subband hierarchy. Depending on the value of v*, various 
patterns are possible through a combination of hierarchy patterns, as illustrated in Table 2.

Comparison with Experiment
More precise observations of FQHE in graphene have been recently obtained through improvements of sampling 
and measurement techniques, including freely suspended graphene sample measurements4,11,12 and graphene 
samples supported by or encapsulated in hBN layers with similar hexagonal crystal structure5,9,10. The range 

LL subb. FQHE(single-loop), paired–not FQHE, IQHE FQHE(multi-loop) (q–odd, =
+

l n
i

2 1
, = …i 1 2 3, , , ) Hall metal
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−q
1

( 1)
 ( ),1
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−

1 q
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, −
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Table 2. Comparison of filling hierarchies in the LLL level in bilayer graphene for two mutually inverted 
successions of the two lowest subbands: = ↑n 0, 2 , = ↑n 1, 2,  (upper – first two rows) and = ↑n 1, 2 , = ↑n 0, 2  
(lower – last two rows). FQHE at ν = 1

2
 exists for the upper sequence of subbands and it disappears for the 

lower subband sequence.
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Figure 7. For comparison—measurements of resistivity Rxx in conventional 2DEG for a wide range of magnetic 
fields corresponding to n = 1, 2 in the high-mobility GaAs/AlGaAs heterostructure (following ref.25). In red 
colour, fractions are indicated for the FQHE (single-loop)—doublets with denominator 3 in subbands with n = 1 
and quartets with denominator 5 for n = 2, in accordance with braid commensurability predictions. The pair 
with denominator 3 for n = 0 (blue, 5/3, 4/3) corresponds to 3-loop orbits. At 11/2, 9/2, 7/2, and 5/2, the braid 
group approach predicts paired states, but for 3/2 and 1/2, it predicts Hall metal. A similar structure of FQHE is 
predicted for monolayer graphene, though the data for n = 2 in monolayer graphene are not available yet.
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of observation of FQHE reaches the first six subbands in monolayer graphene10 and the first eight subbands in 
bilayer graphene (using the technique of hBN encapsulation with’open face’)5.

While the sequence of FQHE fillings in the LLL of monolayer graphene well fits the CF predictions, an expla-
nation of the FQHE filling structure in the next subbands (with n = 1) deviates from the CF picture10–12. In the 
bilayer graphene, the incompatibility of the CF model with experimental observations is manifested both in 
the LLL4 and in higher LLs5. Various scenarios of breaking of the approximate SU(4) spin-valley symmetry in 
graphene do not solve this problematic situation despite many theoretical attempts, which evidences the insuffi-
ciency of the CF model in this case.

It seems to be more efficient to understand the FQHE in graphene through the braid group-based commensu-
rability approach. The hierarchy for FQHE predicted in this way is consistent with the current experimental data, 
in both monolayer and bilayer graphene.

The effectiveness of the CF model in the LLL of graphene monolayer is linked with the fact that exclusively in 
the LLL, cyclotron orbits are always shorter than the interparticle spacing and additional loops are necessary to 
exchange neighbouring particles along cyclotron braids. These additional loops can be simulated by auxiliary 
fictitious field flux quanta attached to CFs (as detailed in SI). However, in the case when the more complicated 
commensurability conditions support particular FQHE states even in the LLL (known as out-of-CF hierarchy, 
e.g., ν = …, , ,5

13
4

11
3

10
) or in higher LLs, when loops correspond to exchanges of next-nearest electrons, the CF 

model is insufficient (as proven in SI, Appendices A and B). Simultaneously, the braid commensurability approach 
reproduces all features described correctly by the CF model and, moreover, explains details that are inaccessible 
using the CF approach. A generalization of the CF model is especially required in higher LLs because in these 
levels, the central regions of all subbands with n ≥ 1 correspond to cyclotron braid orbits larger than the particle 
separation, and the multi-loop braids equivalent to CF picture are useless. In this case, the single-loop braid com-
mensurability with next-nearest neighbours is involved beyond the CF concept. In the first LL in monolayer 
graphene (n = 1), the following doublets of fillings are observed: ( ),7

3
8
3

, ( ),10
3

11
3

, ( ),13
3

14
3

, ( ),16
3

17
3

, correspond-
ing to the single-loop braid commensurability of the nearest and next-nearest (every second) neighbours. These 
doublets are observable in experiments9–12. The number of centrally located filling rates for FQHE (single-loop) 
grows with the LL number as 2n (this is observed experimentally in conventional 2DEG: at n = 2, four of the fill-
ings with denominator 5 are noticeable, as illustrated in Fig. 7). In monolayer graphene, the repeating doublets of 
filling ratios (with denominator 3) for n = 1 have been observed in very accurate measurements in suspended 
samples11,12, in addition to those on the hBN substrate9,10. Worth noting is the observation10 that the stability of 
corresponding FQHE (single-loop) states is of similar strength to that of the IQHE states and is higher in compar-
ison to the FQHE (multi-loop) states, as shown in Fig. 9. This evidences stronger correlations related to 
single-loop braids, similar to those present in IQHE states.

Note that in higher LLs, multi-loop braids may be needed close to subband edges for small filling rates when 
the separation of diluted carriers would exceed the orbit size for n ≥ 1 (equal to +n BSe

hc
(2 1) ). These multi-loop 

FQHE features are thus shifted towards subband edges and may be washed out by IQHE re-entrant.
In the n = 1 LL, new features were observed, in addition to the above mentioned doublets, up to the full octets 

visible in Fig. 1 in the first two subbands. They are associated with non-vanishing longitudinal resistivity Rxx, 
opposite to the fully developed FQHE states in the LLL. This property is supported by the fact that in agreement 
with the braid commensurability, not all electrons participate in the corresponding correlated states, but rather 
every second or every third particle. Scattering of uncorrelated electrons enhances resistivity. These features in the 
first LL of monolayer graphene (n = 1), recently reported10 at ν = , , , , , , , , , , ,7

3
8
3
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, are reproduced one to one by the braid commensurability series ν = 2(3, 4) + 

− ±
xl

l q3( 1) 1
 with = = = =q x l i3, 2, 3, , 1, 2, 3i

3
, as shown in Fig. 1. One can notice, however, that the 

FQHE at the filling rates , , , , ,7
3

8
3

10
3

11
3

13
3

14
3

 may be single-loop states, which are more stable than the multi-loop 
ones, which is consistent with the experimental data presented in Fig. 9 and shown in the upper panel of Fig. 1.
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Figure 8. Observation of FQHE at T = 0.25 K in bilayer suspended graphene, magneto-resistance Rxx (blue 
curve) and Rxy (black curve) at the lateral voltage −27 V, after experiment4. Shown in red is the fitting with the 
cyclotron braid group hierarchy (as in the upper part of Table 2) for mirror valence-band FQHE states, 
including ν = − 1

2
 (the mirror fraction to ν = 1

2
). [adapted with permission from ref.4, Copyright 2014 

American Chemical Society, coloured fractions are added].
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In bilayer graphene, the manifestation of FQHE deviates from the CF picture also in the LLL due to the pecu-
liarity of the double-layer topology caused by interlayer hopping of electrons. As was presented in the paragraph 
1.2, in the lowest subband of the LLL in bilayer graphene, even-denominator filling fractions for FQHE appear4. 
The commensurability braid group approach for bilayer graphene reproduces all the experimentally observed 
FQHE hierarchies in the LLL, including the pronounced state at ν = − 1

2
 —cf. Fig. 8, the illustration in Fig. 2 and 

Table 2.
Let us emphasize that the FQHE state at ν = 1

2
 was discovered earlier in the bilayer structure of conventional 

2DEG27,28, which is also consistent with the commensurability braid group predictions and evidences that this 
non-CF fraction is caused by the double-layer topology and not by specific material properties of bilayer 
systems.

Surprisingly, the FQHE state at ν = − 1
2

 observed in the bilayer structure in the suspended sample disappears, 
however, in bilayer graphene on hBN substrate4–8. We propose to explain this effect by the commensurability 
braid group approach, noting that the occurrence of the ± 1

2
 FQHE state depends on the order of the LLL subband 

degeneracy lifting, as shown in Table 2. We suppose that the external conditions related to the presence of the 
hBN substrate reverse the ordering in the breaking of 2xSU(4) symmetry of the LLL in bilayer graphene, resulting 
in the disappearance of the FQHE state at ν = ± 1

2
 (as illustrated in Table 2), in comparison to the suspended 

sample.
The most spectacular observations of FQHE in bilayer graphene were reported recently5 for the first LL 

beyond the LLL, i.e., for n = 2 in bilayer graphene (in the first three subbands for filling rate ν ∈ (4, 7], which is 
the record for the range for FQHE observations). The unprecedented accuracy of Hall measurement in bilayer 
graphene encapsulated in hBN for samples with ‘open face’5 revealed pronounced FQHE features in subbands 
with n = 2 at filling rates with denominator 3. The fractions with denominator 5 are also noticeable but are weaker 
in comparison to those with denominator 3 (actually, 2/5 and 3/5 are clearly visible, whereas 1/5 and 4/5 could be 
identified only as small local bends in the longitudinal resistivity curves). We have explained these astonishing 
unexpected features, distinct in comparison to conventional 2DEG in n = 2 LLs25, by a specific double-layer topol-
ogy of bilayer graphene and by an effective leakage of flux due to electron interlayer hopping, as described in 
paragraph 1.2. The resulting commensurability hierarchy for FQHE in the first LL with n = 2 in the bilayer system 
(as derived in paragraph 1.2) is perfectly consistent with the experimental data5. We have obtained agreement 
with topological predictions not only for fractions with denominators 3 and 5 but also with denominators 2 and 
4 (noticeable at temperature ca. 0.5 K—cf. Fig. 5). The latter features with even denominators are related to the 
leakage of two flux quanta from the nominal cyclotron orbit at n = 2 due to trajectory interlayer hopping, as 
described in paragraph 1.2. The related correlations for all these features (including fractions with denominator 3 

543210

B(
T)

0

5

10

V    (V)BG

-3 -2 -1 0 1 2 3

8
33

10
3

11
3

13

-1-2-3-4-6

-7

-8

-10

1 2 3 4 6

7

8

10

R   (kΩ)xx

Figure 9. Fan diagram for Rxx(V. B) in monolayer graphene up to 11 T from experiment10. The noticeable 
property is the closeness in value of Rxx of the FQHE features for fractions with denominator 3 for n = 1 with 
those for IQHE, which supports the FQHE single-loop braid correlations in corresponding states, similar to the 
case of IQHE.
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for n = 2) are not of CF type, because all correspond to single-loop commensurability instances (as is presented in 
SI in more detail).

An interesting opportunity to verify the exceptional bilayer FQHE filling structure due to interlayer hopping 
of braid trajectories arose from a new architecture in Hall measurement, in which additional vertical voltage is 
applied to the basal bilayer plane. By varying this voltage, the interlayer hopping of electrons in bilayer graphene 
can be tuned. The applied voltage can open a band gap at the charge-neutrality point and may change the topol-
ogy of multi-loop trajectories in the bilayer case, reducing them to instances available in the monolayer case. Such 
an experiment has been performed7 for bilayer graphene that is fully encapsulated between two hBN layers, with 
perpendicular electric field applied by additional bottom and upper electrodes (the displacement field was applied 
in the range ∈ −D ( 100, 100) mV/nm). The experiment demonstrates a significant rearrangement of the FQHE 
hierarchy in the n = 0 and n = 1 LLL subbands, as expected due to the blocking of interlayer trajectory hopping. 
The details of this experiment are presented with a discussion in SI. The authors of ref.7 argue that the reason for 
the observed phase transitions is linked with the different ordering of the LLL valley subbands induced by the 
voltage, since the observed transitions concern not only fractional states but also v = 1, 2 accompanying ν = ,2

3
5
3
, 

respectively. A contribution of the change of bilayer topology is, however, also noticeable by inspection of the data 
presented in ref.7 at ν = , ,1

2
3
5

1
3
, as indicated in the experimental curve for σxx shown in SI in Fig. 6. The experi-

ment7 did not reach the n = 2 subbands of the first LL, but in these subbands the expected phase transition due to 
the reduction of interlayer hopping is predicted to be more explicit and decisive, because pronounced features at 
filling rates with denominator 3 in subbands with n = 2 are generated by interlayer tunnelling (as described in 
paragraph 1.2) and they should be completely washed out by the blocking of interlayer hopping, in favour of 
monolayer-type features with denominator 5 (for n = 2).

The commensurability braid group approach can also be used to explain the experimental observation of the 
reduction of the FQHE inter-subband relative strength with growing subband number, and of the intra-subband 
relative strength, when one compares the so-called electron-hole pairs. Both effects correspond to the lowering of 
the fraction of electrons participating in correlations. This fraction of electrons is further reduced when there are 
correlated next-nearest electrons, as occurs for ostensible hole partners, e.g., at +x 2

3
 in the pair with +x 1

3
 (x–

subband number). For n > 1, these hole partners’ are not actually hole partners, but rather electron single-loop 
states with every second electron braided. The uncorrelated electrons in these states can scatter and enhance Rxx, 
in contrast to dual states with single-loop correlation of all electrons. The gradual diminishing of FQHE strength 
is visible in all subbands with n = 1 of the monolayer graphene10, and in all subbands with n = 2 of the graphene 
bilayer5. The FQHE energy gain (the activation energy) due to the lowering of the fraction of correlated electrons 
decreases and eventually drops below the disorder; then the FQHE features disappear in the experiment, as 
occurred in the fourth subbands of the n = 1 and n = 2 LLs in the monolayer and the bilayer graphene, respec-
tively5,10, at least down to the lowest temperature range in the experimental setup. In both experiments5,10, the 
lowest temperature was 0.5 K. It is quite probable, however, that these very delicate FQHE features might be 
exposed at mK temperatures. Note also that some FQHE features predicted by the theory may be washed out in 
experiments by the IQHE re-entrance effect if they are too close to integer fillings (this may concern the poorly 
visible states at +x 1

5
 and +x 4

5
, where x is the subband number in n = 2 LL subbands in bilayer graphene).

Conclusion
We have explained the FQHE hierarchy in graphene in accordance with the recent experimental observations 
of correlated states, up to the sixth subband in monolayer graphene and up to the eighth subband in its bilayer, 
revealing deviations from hierarchy schemes known from conventional GaAs 2DEG and apparently going beyond 
the standard CF model, for subbands with n = 1 in monolayer graphene, and in the LLL and the first subband 
(with n = 2) in the bilayer system.

The commensurability of cyclotron braids with interparticle spacing in homogeneous 2D charged systems 
in a magnetic field is utilized to verify the possibility of arrangement of correlated quantum multiparticle Hall 
states and to decipher the hierarchy of filling rates for FQHE. By identifying specific topology instances for braids 
in bilayer graphene caused by the interlayer tunnelling of electrons, we have successfully explained the recent 
experimental observations of FQHE in the bilayer system. The peculiarity of the FQHE hierarchy, evidenced 
experimentally in the bilayer graphene in comparison to monolayer graphene and conventional 2DEG, has been 
clarified in the first eight subbands of the bilayer LL structure.

In the monolayer graphene, it has been demonstrated that in subbands with n = 1 there can be present cor-
related states with single-loop braids that are not equivalent to CFs. The predictions of the braid group com-
mensurability approach reproduce one to one the experimentally observed features in these subbands (n = 1). 
Simultaneously, the relative strengths of the features, mutually compared intra- and inter-subbands, agree with 
the theory.

A similar consistency between the commensurability braid group theory and the experimental observations 
holds also in the case of the bilayer graphene. The new opportunities for braid group commensurability in the LLL 
and in higher LLs were identified in the double-sheet system and attributed to the interlayer hopping of electrons, 
which leads to a different topology than in the monolayer case and in the ordinary FQHE. The even-denominator 
main line of the fractional filling hierarchy in the LLL of bilayer graphene is derived in this way, in accordance 
with experimental observations. The unconventional hierarchy of FQHE that was observed recently in n = 2 
spin-valley subbands in bilayer graphene is also explained by the same topological arguments, specific to this 
material. An experimentally observed peculiarity of the FQHE hierarchy in the subbands of the first LL in bilayer 
graphene with n = 2 (different than in monolayer systems for n = 2 subbands) has been successfully explained 
in terms of the specific bilayer system topology caused by the interlayer hopping of electrons. By tuning or even 
blocking the interlayer tunnelling of electrons by application of voltage perpendicularly to the basal plane of 
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graphene bilayer, the predicted phase transition in the FQHE hierarchy has been experimentally demonstrated, 
which positively evaluated the topological braid group commensurability approach.

The applied braid group commensurability approach to monolayer and bilayer graphene generalizes the con-
ventional CF model. It is confirmed by up-to-date available experimental FQHE observations in graphene on BN 
substrate, as well as in suspended samples including monolayer graphene up to the sixth spin-valley subband and 
bilayer graphene up to the eighth spin-valley subband.
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