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Topological superconductors from 
one-dimensional periodically 
modulated Majorana chains
Yang Lin1, Weichang Hao1, Mei Wang1, Jianqiang Qian1 & Huaiming Guo1,2

By analogy to the topological models of fermions in one-dimensional periodically modulated lattices, 
we provide a systematic method to construct topological superconductors in BDI class. We then create 
superlattices of Majorana fermions to interpolate several Majorana chains, and realize topological 
superconductors with arbitrary winding numbers. Two kinds of chiral symmetries are identified in the 
systems with multiple chains. Of the two winding numbers associated to the chiral symmetries, one 
counts the number of zero-energy modes, while the other counts the difference of the numbers of 
α- and β-type Majorana zero states. We also show that one α- and one β-type Majorana zero modes 
collapse into fractional charged zero states when they are spatially intertwined. In the systems with 
odd number of chains, it induces topological superconductors with coexistence of fractional charged 
zero states and Majorana zero states. Finally by introducing symmetry breaking term, we present an 
intuitive explanation of the Z2 nature of the topological invariant in the D class.

Majorana fermions, which are their own antiparticles, have been a very active pursuit in condensed matter phys-
ics due to their fundamental significance and potential applications in topological quantum computation1–4. As 
pointed out by Kitaev, Majorana fermions can emerge on the boundaries of a one-dimensional (1D) spinless 
p-wave superconductor5. Recently the toy model has been engineered in different experimental setups and possi-
ble signatures of Majorana fermions have been observed6–9.

The search for Majorana fermions simulates theoretical constructions of topological superconductors from 
various approaches. The topological classification shows that there should be four classes of topological supercon-
ductors due to the different symmetries, i.e., BDI, CII, D and DIII10. The 1D Kitaev chain with complex (real) pair-
ing belongs to the D (BDI) class. The ones belonging to other classes are attracting growing studies11–14. Besides 
the strict 1D system, it is suggested that 1D topological superconductors can be realized in narrow strips of 2D 
ones15–18. It is also found that topological superconductors can be constructed by simply adding superconduct-
ing pairing in 1D topological insulators, such as the Creutz model, the Su-Schrieffer-Hegger (SSH) model19–22.  
Another route to obtain unpaired Majorana fermions is from the cores of vortices in the two-dimensional px + ipy 
topological superconductors23, 24. Although there exist experimental hurdles for such kind of proposals, their 
advantages are obvious, such as the realization of the non-abelian statistics. Specially in the setups, we can extend 
from single Majorana zero mode to Majorana lattices, which will provide the opportunity to study systems with 
Majorana fermions as the basic particles25, 26.

Motivated by the progress, we figure out a natural way to construct topological superconductors, i.e., simply 
replacing fermion operators with Majorana operators in the known topological models of fermions. If the result-
ing systems with Majorana operators hold on, the boundary states exist and are in terms of Majorana operators. 
Then the systems should be topological superconductors. The approach seems reasonable, but it has a problem 
since not all fermionic terms are realistic under such simple replacements. For example, there are no on-site 
terms with Majorana operators in that γ†γ = 1 (γ is Majorana operator). Also for the hopping terms, the ampli-
tudes should only be imaginary. Though the approach doesn’t work for general cases, it can be applied to specific 
topological systems with only pure real or imaginary hopping terms. Fortunately we indeed have such kind of 
topological systems, one of which is 1D lattices with periodically modulated nearest-neighbor (NN) hoppings 
(also known as off-diagonal Harper model)27, 28.
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In the paper, we start from the topological models of fermions in one-dimensional periodically modulated lat-
tices. By simply replacing fermion operators with Majorana operators, we obtain a class of 1D topological super-
condcutors in BDI class. While the above methods generate topological superconductors with the topological 
invariant 1, the topological systems with arbitrary topological invariants can be obtained by interpolating multi-
ple Majorana chains. Such systems exhibit rich physical properties. Two kinds of chiral symmetries are identified, 
corresponding to which two winding numbers are defined. It is found that one winding number counts the num-
ber of zero-energy modes, while the other counts the difference of the numbers of α- and β-type Majorana zero 
states. The physical meaning behind the latter winding number is the destruction of different type Majorana zero 
states when they are spatially interwined. The mechanism induces the realization of topological superconductors 
with coexistence of fractional charged zero states and Majorana zero states. By changing the topological class 
of the system from BDI to D, an intuitive explanation of the reduction of the topological invariant is presented.

Results and Discussions
Majorana fermions in 1D periodically modulated chains.  Consider Majorana fermions in 1D chains 
with periodically modulated hopping amplitudes, which is described by the following Hamiltonian,

∑ α β β α= +
=

− +H i t t( ),
(1)j

L

j j j j j j
1

2 1 2 1

where α = + †c cj j j , β =
− †

j
c c

i
j j  are Majorana operators and †c c( )j j  is the fermion annihilation (creation) operator; 

the hopping amplitudes are periodically modulated, i.e., tj = tj+T with T the period. Since the system has Majorana 
fermions in sequence, T should be even. By analogy to 1D periodically modulated lattices of fermions, it is 
expected that the above models support topological superconductors with unpaired Majorana fermions.

Firstly we study the case of T = 2. Passing to the fermionic basis, we have
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In the momentum space and under the basis ψ = −
†c c{ , }k k k

T
1, 1, , it is written as ψ ψ= ∑ †H k( )k k k1 1 , where 

σ σ= − + +k t k t t k( ) ( cos ) sinz y1 2 1 2  with σj(j = x, y, z) the Pauli matrices. The energy spectrum is directly 
obtained: = ± − + +E k t k t t k( ) ( cos ) ( sin )2 1

2
2

2 . The gap closes when |t1| = |t2|. Since the parameters of the 
above Hamiltonian are all real, it has time-reversal symmetry = −−k k( ) ( )1

1
1TH T H  with the time-reversal oper-

ator T K=  (the complex conjugate). The Hamiltonian also has chiral symmetry  = −−C k C k( ) ( )1
1

1  with the 
chiral operator C = σx. So the system belongs to the BDI class, whose topological invariant is an integer. We can 
transform the chiral operator to the diagonal form with an unitary transformation U, i.e., U−1CU = σz. Meanwhile 
since the Hamiltonian anticommunicates with the chiral symmetry, it becomes off-diagonal under the same 
transformation,

 =









.−

†U k U
V k

V k
( )

0 ( )
( ) 0

1

The topological invariant is the winding number of Det(V), which is defined as refs 29–31,
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For the above Hamiltonian k( ) , the transformation matrix is,

=
−( )U i i

1
2

1 1 ,
(4)

and the resulting off-diagonal element is V(k) = i(t1 − t2e−ik). Its winding number is N = 1 for |t1| < |t2|, while 
N = 0 for |t1| > |t2|. We can interchange the Majorana operators α, β in Fig. 1(a). The resulting Hamiltonian in 
the fermionic basis still has the form of Eq. (2), except the signs of the chemical potentials and the NN hopping 
amplitudes. Following the above procedure, we have V′(k) = −i(t1 − t2eik). The winding number is N = −1 for 
|t1| < |t2|. The sign of the winding number is from the winding direction of Det(V) and reflects the type of the 
unpaired Majorana fermion at the boundary.

Due to bulk-boundary correspondence, there appear zero boundary modes on open chains in the topological 
phases. To give concrete examples, we take the cosine modulations λ ϕ= 


+ + 


π( )t t 1 cosj

j
T

2  with phase factor 
ϕ and t = 1 taken as the energy unit. We calculate the energy spectrum under open boundary condition as a func-
tion of ϕ, which is shown in Fig. 1. The topological phases appears in alternating regions separated by the gapless 
points ϕ = +π ( )nn T

2 1
2

, = … −n T0, , 1 and have the winding number N = 1. In the topological phases, there 
appears a pair of zero boundary modes, which are Majorana fermions. We also study the case with T = 4, which 
are the SSH model with p-wave superconduncting pairings, and the results are similar. More generally, the above 
procedure is applicable to any even T and the resulting models remain in extended parameters’ regions.
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Thus we provide a systematic method to construct topological superconductors in BDI class with |N| = 1 and 
a pair of Majorana zero modes. It is desirable to study cases with arbitrary winding numbers. A direct way is to 
simply put the above 1D Hamiltonians together. Instead to make the system coupled, we create superlattices of 
Majorana fermions to interpolate several Majorana chains.

Destruction of two Majorana zero states with opposite chiralities.  We firstly consider the case of 
two Majorana chains with the configuration shown in Fig. 2(a), which is described by the Hamiltonian,
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Transforming it to the fermionic basis we have,
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Though the system is decoupled with Majorana operators, it is not in the fermionic basis. In the momentum space 
and under the basis ψ = − −

† †c c c c{ , , , }k k k k k
T

1, 1, 2, 2, , it is written as ψ ψ= ∑ †H k( )k k k2
(2) 1

2 2
(2)  with

Figure 1.  Schematic illustration of the model Eq. (1) (upper) with the period: (a) T = 2; (b) T = 4. The red 
(pink) circles represent Majorana fermions α (β). The lower ones schematically illustrate the corresponding 
models in terms of fermions (blue circles). The energy spectrum on an open chain as a function of ϕ: (c) T = 2; 
(d) T = 4. The winding number as a function of ϕ: (e) T = 2; (f) T = 4. The parameter λ = 0.6 is used.



www.nature.com/scientificreports/

4ScieNtific REPOrTs | 7: 9210  | DOI:10.1038/s41598-017-09160-x

=







− −
−
−






⁎ ⁎
⁎ ⁎

k
w z

z w
w z
z w

( )
0 0
0 0

0 0
0 0

,

(7)
2
(2)

where = − ′ − − ′ −w t t t t e( ) ik
1 1 2 2 , = − + ′ + + ′ −z t t t t e( ) ( ) ik

1 1 2 2 . Its energy spectrum is, E(k) = ±|w ± z|. The 
gap closes when |t1| = |t2| or ′ = ′t t1 2 .  k( )2

(2)  can be writen compactly in terms of Dirac matrices,
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The above real Hamiltonian has chiral symmetry = −−C k C k( ) ( )2 2
(2)
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2
(2)   with the chiral operator C2 = I ⊗ σx. 

So it belongs to the BDI class. By a unitary transformation
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Its determinant is = − − ′ − ′−V t t e t t eDet( ) 4( ) ( )ik ik
1 2 1 2 , thus the winding number is N = N1 + N2 with N1, N2 the 

winding number of individual Majorana chain. Depending on the parameters, the winding number can be N = 0, 
±1 (see Table 1).

It is noticed that the Hamiltonian has been block off-diagonal in its original form, which means that by putting 
two chains together the combined system obtains an additional chiral symmetry with the chiral operator 

τ′ = ⊗C Iz2 . The topological invariant is the winding number of ′ = − ′ − ′− −V t t e t t eDet( ) 4( ) ( )ik ik
1 2 1 2  with V′(k) 

the upper off-diagonal block of 2
(2). Thus we identify a system in BDI class, but with two kinds of chiral symme-

tries and characterized by two winding numbers. It is interesting to ask what are the meanings of the winding 
numbers.

It is direct to see that the winding number N′ associated with the chiral symmetry ′C2 equals the number of 
zero-energy states, as shown in Fig. 3(a,b). We also notice the winding number N associated with the chiral sym-
metry C2 equals the difference of the numbers of α- and β-type Majorana zero states. It is noted that the topolog-
ical invariant N has already been given in the form of index theorem32, which has exactly the same physical 

Figure 2.  Schematic illustration of the models. (a) Eq. (5) (upper) and Eq. (6) (lower). The system of three 
Majorana chains described by Eqs (12) and (13) is shown separately in (b–d). The red (pink) circles represent 
Majorana fermions α (β) and the blue circles represent fermions.
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meaning with ours. The physical meaning of the winding number N can be interpreted as the destruction of 
Majorana zero states with opposite chiralities. The effect is particularly evident when the Majorana zero states are 
spatially intertwined. In the following we study the effect from the case with N = 0, N′ = 2, which has one α- and 
β-type Majorana zero states at each boundary.

Firstly we show the abvoe phase is adiabatically connected to non-superconducting case. We change the pair-
ing amplitudes in Eq. (6) + ′t t( )1 1 , + ′t t( )2 2  to Δ1, Δ2 and map the gap of the system in the (Δ1, Δ2) plane. As 
shown in Fig. 4(a), the white dot corresponding to the topological phase with N = 0, N′ = 2 is adiabatically con-
nected to non-superconducting case, which is the SSH model. Then we study the property of the zero-energy 
quasiparticles. We can consider the limit case t1 = 0, ′ =t 01 , which is adiabatically connected to the general cases 
[see Fig. 4(b)]. The limit case can be exactly solved since the end sites become isolated and the system can be 
decoupled to central part and the end sites. The states on one end site can be |0〉, |1〉 (0, 1 the number of electron) 
with zero energy. Suppose the ground-state wavefunction is |GS〉 and the ground-state wavefunction of the whole 

(a)

|t1| < |t2| |t1| > |t2|

  ′ < ′t t1 2 N = 0, N′ = 2 N = −1, N′ = 1

  ′ > ′t t1 2 N = 1, N′ = 1 N = 0, N′ = 0

(b)

|t1| < |t2| |t1| > |t2|

  ′ < ′t t1 2 N = 1, N′ = 3 N = 0, N′ = 2

  ′ > ′t t1 2 N = 2, N′ = 2 N = 1, N′ = 1

Table 1.  The winding numbers associated with the two chiral symmetries: (a) the case of two Majorana chains; 
(b) the case of three Majorana chains with ″ < ″t t1 2  [the case with ″ > ″t t1 2  is the same with (a)].

Figure 3.  The open energy spectrum for the case of two Majorana chains: (a) ′ = − . ′ = − .t t0 8, 0 41 2  with the 
winding number N = 1, N′ = 1; (b) ′ = − . ′ = − .t t0 4, 0 81 2  with the winding number N = 0, N′ = 2. (c,d) the 
conductance of a normal lead/topological superconductor junction as a function of voltage with the topological 
superconductors described in (a,b), respectively. In (c), the width of the peak is controlled by the transparency 
of the junction, i.e., the hopping tc between the normal and superconducting sides of the junction. The width 
increases as tc is decreased, which is similar to the case of unconventional superconductor33. The other 
parameters are t1 = 0.5, t2 = 1.
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system can be obtained by a direct product: = ⊗ ⊗GS GS0(1) 0(1)T L R [L(R) denote the left (right) end 
sites], which is four-fold degenerate. Thus we have four zero-energy quasiparticle operators † †C C C C, , ,N N1 1 , 
which are just electrons or holes. The zero-energy modes are just like those in the SSH model and we can term 
them as fractional charged zero states. Thus we show that the two Majorana zero states α, β at each end collapse 
into an electron or hole.

The destruction of two Majorana zero states with opposite chiralities results in the suppression of local 
Andreev reflection in a normal lead/topological superconductor junction. We calculate the differential conduct-
ance as a function of the bias voltage34, 35. The zero bias conductance is calculated as ref. 35,

α

δ δ

= −

= − + Γ Γ .

α α

αβ
αβ

α β

†G e
h

Tr I sgn S E S E

S i G

[ ( ) ( ) ( )],

[ ] [ ] (11)

ij
e

ij
e

ij ij i
r

i

2

1/2 1/2

αβSij  is an element of the scattering matrix which denotes the scattering amplitude of a β particle from lead j to a α 
particle in lead i, where i, j = 1, or, 2, and α(β) denotes electron (hole). As shown in Fig. 3(c), when there is one 
Majorana zero state at the end, the resonant local Andreev reflection happens and there appears zero bias con-
ductance peak with the height =G e

h
2 2

. However the zero bias conductance peak vanishes in the presence of two 
spatially interwined Majorana zero states with opposite chiralities [see Fig. 3(d)], which is consistent with the fact 
that the two Majorana zero states are interwined36.

Coexistence of fractional charged and Majorana zero states.  Next we consider the case of three 
Majorana chains with the configuration shown in Fig. 2(b–d). It is described by the Hamiltonian,
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In the fermionic basis it becomes,
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In the momentum space and under the basis ψ = − − −
† † †c c c c c c{ , , , , , }k k k k k k k

T
1, 1, 2, 2, 3, 3, , we have,

Figure 4.  The gap for the case of two Majorana chains: (a) in the (Δ1, Δ2) plane; (b) in the ′t t( , )1 1  plane. The 
parameters are t1 = 0.5, t2 = 1, ′ = − . ′ = − .t t0 4, 0 81 2 , when the topological phase is with N = 0, N′ = 2 and is 
denoted by the white dots in the figures.
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of individual chains, which counts the difference of the numbers of α and β-type Majorana fermions at the left 
end. Besides the above chiral symmetry, we also identify another chiral symmetry with the chiral operator 
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we have ′ ′ ′ = − − −−U C U diag{1, 1, 1, 1, 1, 1}3 3 3
1 . And ′ ′−U U3 3

(2)
3

1  is block off-diagonal with the upper block,

′ =







−
−

− ″ − ″







.
−

V k
v k v k
v k v k

i t t e
( )

0 ( ) ( )
0 ( ) ( )

2 ( ) 0 0ik
3

1 2

2 1

1 2

where,

= − ′ − + ′

= + ′ − − ′ .

− −

− −

v k t e t e t t

v k t e t e t t

( ) 3
2

( )

( ) 3
2

( )
(16)

ik ik

ik ik

1 2 2 1 1

2 2 2 1 1

Its determinant is ′ = − − ′ − ′ ″ − ″− − −V i t t e t t e t t eDet( ) 6 ( ) ( ) ( )ik ik ik
3 1 2 1 2 1 2 . Its winding number counts the number 

of zero modes.
Thus the case of three Majorana chains is similar to the one of two Majorana chains. By tuning relative 

strengthes of the hopping amplitudes, we can obtain topological superconductors with different winding num-
bers, which are listed in Table 1. Of the various topological phases, we want to point out the case with N = 1, 
N′ = 3, in which each boundary has two α and one β Majorana zero states. As discussed in the previous section, 
the α and β Majorana zero states on the same site will intertwine and becomes fractional charged zero modes. 
Thus a topological phase with coexistence of fractional charged and Majorana zero states is realized.

The reduction of the topological invariant from Z to Z2.  We consider the terms breaking the sym-
metries of the system. Our discussions are based on the system with three Majorana chains since it exhibits more 
topological phases. We firstly add the NN hopping terms of Majorana fermions to the Hamiltonian Eq. (12), 
which is described by,
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∑η α β=
=

H iNN
i

L

i i
1

3

1

The term couples the different Majorana chains. Under the same basis as that of Eq. (14), it is written as 
η σ σ σ= diag{ , , }NN z z z1 , which describes the on-site energies of the electrons. The term breaks the chiral sym-

metry ′C3 in that ′ ′ ≠ −−C CNN NN3 3
1  . Then the total system belongs to the standard BDI class with one chiral 

symmetry C3. Its topological invariant corresponds to the number of Majorana zero modes on each boundary. As 
stated in the previous section, the topological invariant associated to the chiral symmetry C3 counts the difference 
of the numbers of α- and β-type Majorana zero states and it may not equal the number of zero-energy states. The 
above term gaps every pair of α- and β-type Majorana zero modes, thus now the topological invariant always 
equal the number of zero-energy states.

Next we consider a NNN hopping terms of Majorana fermions, which is described by,

∑η α α β β= + .
=

+ +H i ( )NNN
i

L

i i i i
1

3

2 1 1

Under the same above basis, it is written as,

η=






−
−

−






.

−

i
I Ie

I I
Ie I

2
0

0
0

NNN

ik

ik
2

The term is imaginary and breaks the time-reversal symmetry. The total system only has particle-hole symmetry 
underlying the superconductor, which is =P C3 . So the system belongs to D class of the 1D topological classi-
fication. Its topological invariant is a Z2 integer, which means that we can only have 1 or 0 zero-energy state. The 
reduction of the topological invariant from Z to Z2 is due to the NNN hopping terms. It gaps every two Majorana 
zero modes, thus the cases with even (odd) number of Majorana zero modes become identical and the topological 
invariant changes to Z2 integer.

To be specific, we plot the open energy spectrums with the symmetry breaking terms. In Fig. 5(a) we start 
from a topological phase with two α and one β Majorana zero modes at each end, when there are six zero-energy 
modes. After adding the NN hopping term, one α and one β Majorana zero modes at each end are gapped and 
only one pair of Majorana zero modes remain. In Fig. 5(b) we start from a topological phase with two α Majorana 
zero modes at each end. After adding the NNN hopping term, they are gapped. The results are consistent with 
our previous analysis. The NN and NNN hopping terms gap every two Majorana zero modes and at most one 
Majorana zero mode persists on each end. So the topological invariant is reduced from Z to Z2, which corre-
sponds to the change of the topological class from BDI to D. Thus we present an intuitive explanation of the Z2 
nature of the topological invariant in the D class.

Figure 5.  The open energy spectrum for the case of three Majorana chains. (a) The effect of NN hopping term 
in the topological phase with two α and one β Majorana zero modes at each end. (b) The effect of NNN hopping 
term in the topological phase with two α Majorana fermions at each end. The parameters in (a) are: 
′ = . ′ = .t t0 3, 0 91 2  and in (b) are: ′ = . ′ = .t t0 9, 0 31 2 , η1 = 0.1. The other parameters are t1 = 0.2, t2 = 1, 
″ = . ″ = .t t0 4, 0 81 2 . The insets schematically show the left boundary zero modes in the absence of the symmetry 

breaking terms.
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Conclusions
We present a systematic method to construct 1D topological superconductors in BDI class by simply replacing 
fermion operators with Majorana ones in 1D topological insulators. Arbitrary winding numbers are realized by 
interpolate multiple such Majorana chains. Interestingly the combined systems belongs to BDI class, but have two 
kinds of chiral symmetries. One of the associated winding numbers counts the number of zero-energy modes, 
while the other counts the difference of the numbers of different type Majorana zero states. The physics meaning 
of the latter one is the destruction of the spatially intertwined Majorana zero states, which induces topological 
superconductors with coexistence of fractional charged and Majorana zero states in the systems with odd number 
of chains. Finally by introducing the symmetry breaking terms, an intuitive explanation of the reduction of the 
topological invariant is presented.

The constructed topological superconductors with arbitrary winding numbers can be used to study the effects 
of disorder or interactions on the topological classification37. They can describe 1D interacting Majorana models 
under the mean-field approximation38. Experimentally the periodically modulated Majorana chains can be engi-
neered using Abrikosov lattice of vortices in the surface of a strong topological insulator coated with ordinary 
superconductors24, 25, 39.
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