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Lineage structure of Streptococcus 
pneumoniae may be driven by 
immune selection on the groEL 
heat-shock protein
José Lourenço  1, Eleanor R. Watkins1, Uri Obolski1, Samuel J. Peacock1, Callum Morris2, 
Martin C. J. Maiden  1 & Sunetra Gupta1

Populations of Streptococcus pneumoniae (SP) are typically structured into groups of closely related 
organisms or lineages, but it is not clear whether they are maintained by selection or neutral processes. 
Here, we attempt to address this question by applying a machine learning technique to SP whole 
genomes. Our results indicate that lineages evolved through immune selection on the groEL chaperone 
protein. The groEL protein is part of the groESL operon and enables a large range of proteins to fold 
correctly within the physical environment of the nasopharynx, thereby explaining why lineage structure 
is so stable within SP despite high levels of genetic transfer. SP is also antigenically diverse, exhibiting 
a variety of distinct capsular serotypes. Associations exist between lineage and capsular serotype but 
these can be easily perturbed, such as by vaccination. Overall, our analyses indicate that the evolution 
of SP can be conceptualized as the rearrangement of modular functional units occurring on several 
different timescales under different pressures: some patterns have locked in early (such as the epistatic 
interactions between groESL and a constellation of other genes) and preserve the differentiation of 
lineages, while others (such as the associations between capsular serotype and lineage) remain in 
continuous flux.

Streptococcus pneumoniae (the pneumococcus) is a gram-positive bacterial pathogen which, although commonly 
carried asymptomatically in the nasopharynx, can cause pneumonia, meningitis, septicemia and bacteremia in 
the young, elderly and immuno-compromised, being responsible for about 11% of worldwide deaths in children 
under 5 years of age1, 2. Populations of S. pneumoniae are antigenically diverse and can be stratified into more than 
90 serotypes according to the antigenic properties of the expressed polysaccharide capsule, of which only 10–15 
are responsible for most cases of invasive disease worldwide3. Reductions in disease rates have been achieved by 
the deployment of the PCV7 vaccine targeting 7 of the most common serotypes in invasive disease, and more 
recently through the use of PCV13 which extends coverage to an additional 6 serotypes. However this has been 
accompanied by an increase in the frequency of non-vaccine serotypes in many parts of the world, likely due to 
the removal of competition from vaccine serotypes4.

Like many other bacterial pathogen populations, S. pneumoniae may be organised into a number of so-called 
clonal complexes on the basis of allelic diversity at selected housekeeping loci (determining Multilocus Sequence 
Type5, 6,). Pneumococcal populations are also structured at a whole genome level into co-circulating lineages or 
Sequence Clusters (SC) bearing unique signatures of alleles7–9. The relationships between clonal complex, line-
age and serotype are often found to be non-overlapping8, 10, although subject to perturbations such as through 
vaccination11.

The maintenance of discrete major lineages, and their associations with distinct serotypes and clonal com-
plexes, is hard to ascribe to purely neutral processes, given the high rate of genetic exchange in these pathogen 
populations12, 13. We have previously proposed that extensive co-adaptation between loci may give rise to these 
patterns, as even small fitness differences among different combinations of alleles can lead to the loss of less fit 
genotypes under intense competition for resources14. Bacterial populations could also segregate into a set of 
successful metabolic types which are able to co-circulate by virtue of exploiting separate metabolic niches and 
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thereby avoiding direct resource competition15. As an example, specific differences in the ability to absorb par-
ticular carbohydrate resources have been observed in functional genomics studies of S. pneumoniae16, and these 
may reflect specialization upon different resources within the same environment as a means of avoiding compe-
tition. Establishing the contribution of co-adaptation and competition in the maintenance of discrete lineages is 
important since the outcome of certain interventions, such as vaccination, depends crucially on these underlying 
determinants of population structure17.

Here, we attempt to elucidate potential drivers of lineage structure by applying a machine learning technique 
known as the Random Forest Algorithm (RFA) to a dataset containing 616 whole genomes of S. pneumoniae 
collected in Massachusetts (USA) between 2001 and 20078. RFA-based methods have been robustly applied in 
genome-wide association studies of cancer and chronic disease risk18, species classification19, or in the search 
of viral determinants for host tropism, for instance by identifying the key amino-acid sites that determine host 
specificity of zoonotic viruses20, and by selecting the clear genetic distinctions in avian and human proteins of 
Influenza viruses21, 22. In the context of bacterial pathogens, these RFA-based and similar machine learning meth-
ods have been sucessfully used to analyse the genetic background of Escherichia coli cattle strains more likely 
to be virulent to humans23, to identify Staphylococcus aureus genetic variants associated with antibiotic resist-
ance24, and to discover that repertoires of virulence proteins within different Legionella species are largely unique 
(non-overlapping)25. An RFA is an ensemble method that combines the information of multiple, regression or 
classification trees built around predictor variables towards a response variable. The output of an RFA is com-
posed both of the classification success rates of the response variable and a ranking of the predictor variables 
quantifying their relative role in the classification process.

We used as response variables (i) the capsular serotype of each isolate (which had been determined by sero-
logical means), and (ii) the monophyletic Sequence Cluster (SC) to which samples had been assigned8. We 
set the predictor variables to be the 2135 genes for which we had obtained allelic profiles (effectively using a 
whole-genome multi-locus sequence typing approach, wgMLST)26 for each of the 616 isolates17. Using this 
method, we confirmed that capsular genes predict serotype, but found a clear disjunction between these genes 
and those which predict SC (lineage). Furthermore, our analyses revealed that, contrary to the expectations of 
neutrality, genes which predict lineage are non-randomly distributed across the genome, clustering within and 
around the groESL operon, leading us to propose that a combination of immune selection and coadaptation oper-
ating upon these loci may be the primary determinants of lineage structure.

Results
Classification success for serotype and sequence cluster. Classification of SC by the RFA was accu-
rate (Fig. S1B) with all SC types being predicted with 100% success. This is a reflection of the strong correspond-
ence between classification trees and taxonomy when based on genetic information, as explored in other studies19, 
and demonstrated by Austerlitz and colleagues when comparing the success of RFA, neighbour-joining and max-
imum-likelihood methodologies on simulated and empirical genetic data27.

By contrast, the success rate in identifying the capsular serotypes of the 616 whole genomes, although also 
very high (above 75% for the majority of serotypes), was not perfect (Fig. S1A). This is to be expected given the 
imperfect association between lineage and serotype, and also because certain serotypes were represented by very 
small numbers of isolates (as an extreme example, only a single isolate of serotype 21 was present and therefore 
classification success was nil).

The capsular locus is a strong predictor of serotype but performs indifferently in predicting 
sequence cluster. As might be expected, genes within the capsular locus (defined as being within but not 
including the genes dexB and aliA) were highly predictive of serotype, with their RFA scores appearing as outli-
ers in the top 2.5% of the distribution defined by all 2135 genes in the dataset (Fig. 1A, see Methods). However, 
these did not score above average in predicting SC, as their RFA scores shifted closely to the distribution’s aver-
age (Fig. 1B). We noted, however, that many of these genes contained what appeared to be a high proportion of 
deletions across samples but, in fact, had not been matched with any known gene in the database (alleles ‘0’, see 
Methods) due to their high diversity at the level of the population (see, for example ref. 28). For certain genes, 
such as those encoding the polysaccharide polymerase Wzy and the flippase Wzx, the allelic notation process 
failed at least 50% of the time for over 90% of the isolates, essentially working only for serotype 23F (the reference 
genome) and the closely related 23A and 23B serotypes. In general, the degree of success in allelic notation of each 
gene was closely linked to the potential for alignment with its counterpart in the 23F reference genome (Fig. S4). 
Nonetheless, the same shift towards lower RFA scores of capsule-associated genes in predicting SC rather than 
serotype was observed upon performing a series of sensitivity classification exercises after excluding all genes 
which contained >50% (Fig. S2) or >10% (Fig. S3) of gene mismatches/deletions. When imposing an exclusion 
criterion of >10% we retained only the genes wze, wzg and wzh (in addition to two pseudogenes) within the 
capsular locus, and these could also clearly be seen to shift from above the upper 97.5% limit into the neutral 
expectation of RFA scores when predicting SC (Fig. S3).

We next performed the same analysis excluding all genes which showed mismatches or deletions above a 
threshold of 1%, in an attempt to eliminate possible biases in RFA output due residual information arising from 
the distribution of mismatches/deletions. This left us with 1581 genes which were shared by essentially all the 
samples in our dataset and for which function could be correctly ascertained by querying the reference genome. 
It is likely that these genes correspond to the approximately 1500 core cluster of orthologous genes (COGs) iden-
tified by Croucher et al. in their recent analysis of the same dataset7, although this could not be evaluated in 
detail given that this publication did not contain the list of COGs. This strict approach eliminated all of the genes 
considered above as belonging within the capsular locus, although flanking genes were retained and a number of 
these achieved the top 2.5% of RFA scores in predicting serotype (Fig. 2A, Table 1): 38% of the top genes occurred 
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within 10 genes downstream and upstream of the capsular locus, and 90% were situated within 129 genes (which 
amounts for 6% of the genome). The remaining 10% of top-scoring genes, lytC, trpF, patB and SPN23F00400 
were located at significantly longer distances from the capsular locus, at 963 (45% of the genome), 710, 469 and 
270 (13% of the genome) genes away, respectively. None of the genes achieving the top 2.5% of RFA scores in pre-
dicting serotype (shown in red in Fig. 2) remained in the top 2.5% category when asked to predict SC. Similarly, 
all genes which achieved top scores in predicting SC (Table 2) were only of average importance in elucidating 
serotype (shown in green in Fig. 2).

The groESL operon is a strong predictor of sequence cluster. The majority of top-scoring genes 
for SC (75%) were randomly distributed along the genome (Fig. 2B), while 10 genes were found to be contigu-
ous and contained within the groESL operon (clustering was statistically significant with p-value ≈ 1.52 × 10−06, 
Fig. S9). Notably, this operon, encoding the GroEL chaperone and GroES co-chaperone proteins (Table 2), has 
been reported in other studies to ascertain phylogeny and classification within the Streptococcus genus29 and 
between species of the S. viridans and S. mutans Streptococci groups30, 31.

A number of other top scoring genes in predicting SC have also previously been demonstrated to be powerful 
discriminators of genealogy in a range of bacterial species. For instance, sodA, encoding for the manganese super-
oxide dismutase, critical against oxidative stress and linked to both survival and virulence, has been highlighted 
in numerous studies for its relevance in identification of rare clones of pneumococci32, 33 and streptococci at the 
species level34, 35. Another example is the lmb gene, encoding for an extracellular protein with a key role in phys-
iology and pathogenicity36, 37. Homologs of this protein have been documented to be present and discriminatory 
of at least 25 groups of the Streptococcus genus with possible similar functions38, 39.

The housekeeping genes included in multilocus sequence typing (MLST) classification performed no better 
than average in predicting SC across the sensitivity experiments (Figs 1 and S1–3). The exception was the Signal 
Peptidase I gene (spi), which featured in the top-scoring genes predicting SC under the strict 1% cutoff (Table 2). 
This is unsurprising, however, as MLST genes are unlikely to dictate lineage differentiation through selective pro-
cesses, which endorses their choice as good discriminators of recent neutral diversification, in particular within 
recent epidemiological events5, 6.

Top-scoring genes for serotype are associated with resource competition and antibiotic resist-
ance. When analyzing the 39 top-scoring, non-capsular genes which were highly predictive of serotype, we 
found 24 (62%) with compelling support for functional background that could mediate pneumococcal competi-
tive interactions or niche specialization, at least in related streptococcal species (reviewed in detail in supplemen-
tary text). For instance, ATP-binding cassette (ABC) transporter genes, critical for intake, antibiotic resistance 
and metabolism, were found 5 times more frequently in the genes predictive of serotype compared to those deter-
mining SC (Tables 1 and 2). Notably, our approach selected the genes encoding for the pit ABC transporter, a key 
player in iron uptake known to exhibit strain-specific variation40, but did not select two other operons encoding 

Figure 1. Random forest classification. (A) Random forest analysis (RFA) for serotype classification. (A, top) 
Density function of RFA scores obtained for each gene in the dataset. The 95% boundaries are marked by the 
dashed lines. Small bars highlight the RFA scores of genes within particular groups (yellow for MLST genes, 
blue for capsular locus genes). (A, bottom) Genomic position for each gene in the dataset against their RFA 
score (normalised to [0,1]). The circular genome is presented in a linear form on the y-axis, with the first gene 
being dnaA and the last gene parB. MLST genes are marked in yellow diamonds (spi, xpt, glkA, aroE, ddlA, tkt) 
and genes within the capsular locus with blue diamonds (pseudogenes tagged with ‘x’). (B) RFA analysis for 
sequence cluster classification; figure details the same as in A. Blue shaded areas in both A and B subplots mark 
the capsular locus (genes within aliA and dexB).
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iron transporters (piu, pia), which are conserved between S. pneumoniae strains40 and therefore unlikely to be 
predictors of serotype. Transport of essential substrates is also achieved by alternative systems which were also 
captured by our approach, such as the passive channel sodium symporter GlyP41 or the use of menaquinones and 
ubiquinones for electron transport (mevalonate pathway)42–44. We also found some of the top-scoring entries to 
be involved in functions associated with respiration (ecsA, mvaD, mvaK2) and amino acid, fatty acid and cell wall 
or capsular biosynthesis which amounted for approximately 25% of the top-scoring genes (trpF, fabG, lysC, mvaD, 
mvaK2, ritR, pbp1A, pbpX, mraW and mraY).

High RFA scores for serotype were also found among a number of genes flanking the capsular locus which 
are involved in antibiotic resistance, such as penicillin-binding protein genes pbpX and pbp1A, the 16S rRNA 
cytosine-methyltransferase gene mraW and the phospho-N-acetylmuramoyl-pentapeptide-transferase gene 
mraY. Genes involved in resistance to other antibiotics such as tomethicillin, vancomycin, daptomycin (vra 
operon)45 and the broad-spectrum quinolones family (patB)46–48 were also featured in the top-scoring genes. 
Also of note were entries linked to direct inter- and intra-species competition, either through factors related 
to immune escape or warfare. These included genes linked to pneumolysin expression and biofilm formation 
(luxS)49, 50, and production of bacteriocins (blpH)51, 52, ammonia (glmS)53 and lysozymes (lytC)54, 55.

Several top-scoring genes for SC classification are also key determinants of phenotype. The 
top-scoring genes predicting SC were discordant to the ones determining serotype and approximately 30% were 
found to have unknown functions (Table 2). However, we also found several examples of genes whose func-
tions (reviewed in supplementary text) would be expected to be naturally linked with particular phenotypes such 
as virulence (sodA, lmb, pdhB, varZ, licA)32, 33, 36, 37, 56–58 or specific virulence traits such as host-cell adherence 
(pclA)59 or laminin binding (lmb)39. Several genes were also found to encode or directly produce proteins or 
protein-complexes which are highly immunogenic, such as the groEL60–62, lmb39, carB63, 64, and licA58, 65 genes.

Discussion
Our aim, in this paper, was to test the hypothesis that the stratification of pneumococcal populations into dis-
tinct sequence clusters or lineages occurred through neutral processes, with serotype diversity being superim-
posed upon the ensuing clonal framework to minimize antigenic interference between lineages. To this end, 
we applied a Random Forest Algorithm (RFA) to assess the contribution of different genes in determining the 
serotype or sequence cluster of isolates within a dataset containing 616 whole genomes of S. pneumoniae col-
lected in Massachusetts (USA)8, for each of which we had obtained allelic profiles of 2135 genes of both known 
and unknown function17. By selecting the 2.5% of top RFA scores, we effectively focused on the subset of possi-
bly selected units (genes) which present combinations of alleles that appear statistically more informative than 
expected at the genome level (see Methods for details). We show that by comparing the genomic localization and 

Figure 2. Random forest classification excluding data with gene mismatches. (A) Random forest analysis 
(RFA) for serotype classification when excluding genes for which the allelic notation process had <99% 
positive matches with the reference genome. (A, top) Density function of RFA scores obtained for each gene 
in the dataset. The 95% boundaries are marked by the dashed lines. Small bars highlight the RFA scores of 
genes within particular groups (red for serotype, green for SC genes). (A, bottom) Genomic position for each 
gene in the dataset against their RFA score (normalised to [0,1]). The circular genome is presented in a linear 
form on the y-axis, with the first gene being dnaA and the last gene parB. Red and green diamonds mark the 
top 2.5% ranking genes for serotype and Sequence Cluster classification, respectively. (B) RFA for Sequence 
Cluster classification; figure details the same as in A. Blue shaded areas in both A and B mark the capsular locus 
(genes within aliA and dexB). Green shaded areas in both A and B mark the genes contiguous and including the 
groESL operon (Table 1).
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function of these top-scoring units (genes), general expectations concerning population structure can be revis-
ited66, and inferences can be made concerning the evolutionary processes underlying the formation, relationship 
and maintenance of serotype and sequence cluster (lineage) at the population level.

Reassuringly, genes of the capsular locus (cps) and many of those flanking it achieved high RFA scores in pre-
dicting serotype. We also found a preponderance of genes scoring highly for serotype prediction to be associated 
with key functions that could define unique metabolic types that would have diversified in order to avoid direct 
resource competition, as previously proposed4, 17. However, 90% of the selected genes were at a distance of less 
than 6% of the genome to the cps locus and was therefore not possible to determine whether these had become 
segregated through competition or by physical (see e.g ref. 67) and/or functional associations with this locus. It 
should be noted that linkage disequilibrium is extremely high in this dataset (Fig. S7), and even if the selected 
genes had been found across the genome, it would be difficult to quantify the role of these genes in determining 
a metabolic type17.

Genes that were highly informative in predicting lineage (sequence cluster) were entirely distinct from those 
determining serotype. Contrary to what would be expected from a population structure maintained mostly by 
neutral processes, around a quarter of these genes co-localized within and around the groESL operon (marked 
with * in Table 2), which encodes the macromolecular machinery for a well-studied protein folding system 

SPN23F Name Type/Function

00400 Hypothetical protein

02300 a pitA Ferric iron ABC transporter, permease protein

02320 a pitB Ferric iron ABC transporter, ATP-binding protein

02540 b glmS Glucosamine-frutose-6-phosphate aminotransferase

02550 b Luciferase-like monooxygenase/Oxidoreductase

02560 b spuA Surface-anchored pullulanase

02600 polC DNA polymerase III PolC-type

02870 c Maltodextrin glucosidase

02880 c basA Glutathione peroxidase family protein

03060 * d mraW 16S rRNA cytosine-methyltransferase

03070 * d ftsL Cell division protein

03080 * d pbpX Penicillin binding protein/cell division protein

03090 * d mraY Phospho-N-acetylmuramoyl-pentapeptide-transferase

03110 * d clpL ATP-dependent Clp proteinase

03130 * d luxS S-ribosylhomocysteinase lyase

03140 * d ATP-dependent Zinc protease

03150 * d dexB Glucan-1 6-alpha-glucosidase

03390 * e aliA Oligopeptide ABC transporter

03410 * e pbp1A Transpeptidase/Penicillin-binding protein

03420 * e recU Holliday junction resolvase

03430 * e Hypothetical protein

03450 * e 23S rRNA/guanine-methyltransferase

03470 * e gnd 6-phosphogluconate dehydrogenase

03480 * e ritR Response regulator

03540 f mvaD Mevalonate diphosphate decarboxylase

03550 f mvaK2 Mevalonate kinase

03560 f fni Isopentenyl-diphosphate delta-isomerase

03570 f vraT Cell wall-active antibiotics response protein

03580 f vraS Sensor histidine kinase

03840 g glyP Sodium glycine symporter

03860 g shetA Exfoliative toxin

03870 g serS Seryl-tRNA synthetase

03890 g lysC Aspartokinase

03960 fabG 3-oxoacyl-acyl-carrier protein reductase

04740 h ecsA ABC transporter ATP-binding protein

04790 h blpH Histidine kinase of the competence regulon ComD

15900 lytC Glucan-binding domain/Lysozyme M1

18330 trpF Phosphoribosylanthranilate isomerase

20980 patB Multidrug resistance ABC transporter

Table 1. Top genes for Serotype prediction. Genes marked with * flank up to 10 genes, upstream or 
downstream from the capsular locus. Letters a to h denote groups of contiguous genes (minimum proximity of 
2 genes).
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centred around the chaperone GroEL and co-chaperone GroES68. In Escherichia coli, approximately 10% of total 
cytosolic proteins, including 67 essential proteins, have been demonstrated to have stable binding to GroEL, with 
50 of these confirmed to depend on groESL folding via GroEL-depletion experiments69. GroEL is also known to 
be highly immunogenic in S. pneumoniae61, 70, as well as in other bacterial species62, 71, 72. This raises the radically 
alternative possibility that sequence clustering may have arisen from immune selection operating on groEL in 
conjunction with extensive coadaptation with genes encoding the proteins which rely on this chaperonin system.

Classification success by our RFA approach was accurate for SC but was lower for serotype. Several factors 
may have influenced this discrepancy. For instance, the mean number of samples per serotype was lower than 
for SC (19.8 versus 38.5), providing in some cases very low levels of information per serotype to the machine 
learning technique. The capsular locus, where the majority of best predictors for serotype were located, also 
had the highest levels of allelic notation mismatches and crucial information may have been lost when applying 
the strict cutoff of 1%. In this context we note that the best predictors for serotype and lineage were found to be 
non-overlapping. This implies that capsular switches, assuming that only the cps had been switched, would not 
have affected the classification success of serotype (see ref. 8 for examples of switches in this dataset). On the other 

SPN23F Name Type/Function

00090 Phospholycenate mutase

00540 recO DNA recombination and repair protein

00660 vanZ Teicoplanin resistance protein

02370 Transcriptional regulator

03790 spi Signal peptidase I

04050 Hypothetical protein

04730 Histidine triad nucleotide-binding protein

06210 ABC transporter, ATP-binding protein

06880 sodA Manganese superoxide dismutase

07240 Hypothetical protein

07340 Hydrolase/Haloacid dehalogenase-like family

07930 iscU Putative iron-sulfur cluster assembly scaffold protein

08320 Putative membrane protein

09040 O-methyltransferase family protein C1

09280 lmb Laminin-binding protein

09460 N-acetyltransferase GNAT family protein

10040 Cytosolic protein containing multiple CBS domains

10480 Hypothetical protein

10670 pdhB Acetoin dehydrogenase E1 component β-subunit

11320 Acetyltransferase GNAT family protein

11630 licA Choline kinase

11660 carB Membrane protein/O-antigen and teichoic acid

13490 Hypothetical protein

14640 lta Bacterocin transport accessory protein

15100 pclA Putative NADPH-dependent FMN reductase

16930 Hypothetical protein

17080 Hypothetical protein

18130 Hypothetical protein

19240 * a recX Regulatory protein

19250 * a Cysteinyl-tRNA synthase related protein

19300 * b groEL Heat shock protein 60 family chaperone

19310 * b groES Heat shock protein 60 family co-chaperone

19330 * b Short-chain dehydrogenase

19340 * b ytpR Phenylalanyl-tRNA synthetase domain protein

19360 * b Hypothetical protein

19370 * b Hypothetical protein

19380 * b Membrane protein

19390 * b Response regulator of LytR/AlgR family

20880 c Hydrolase, haloacid dehalogenase-like family

20900 c thrC Threonine synthase

22500 mreD Rod shape-determining protein

Table 2. Top genes for Sequence Cluster prediction. Genes marked with * flank up to 10 genes, upstream or 
downstream from the groESL operon. Letters a to c denote groups of contiguous genes (minimum proximity of 
2 genes).
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hand, switches involving genes that flank the cps could explain the lower success rates found for serotype. Dealing 
with the effects of these different factors, however, requires better sample representation per serotype, better 
annotation algorithms and detailed data on capsular switching events and in particular on the genes involved. 
At the moment such data are not available but achieving better serotype classification success is a possible line of 
future research.

Our results provide a mechanistic basis for the distinction proposed by Croucher and colleagues7, in the con-
text of the same dataset, between infrequent macroevolutionary changes providing a stable backdrop for more 
frequent, and often transient, microevolutionary changes (see Fig. 3). The differentiation of the groESL operon 
would be a striking example of macroevolution, not only driving the emergence of S. pneumoniae sequence 
clusters but also serving to genealogically distinguish closely related bacterial species29–31. Several other genes 
scoring highly for SC were also found to encode or directly produce proteins or protein-complexes which are 
highly immunogenic (eg. lmb, carB, licA), and these may contribute to the maintenance of lineage structure 
by co-selection with groEL in accordance with the strain theory of host-pathogen systems in which immune 
selection operating on multiple immunogenic loci can cause the emergence of non-overlapping combinations of 
alleles75–77. In contrast, the emergence and maintenance of serotypes within major lineages would be dictated by 
differentiation in genes within and surrounding the capsular locus, and less permanent associations could arise 
between SC and serotype (at a microevolutionary scale) through resource competition14, 17 or indeed multi-locus 
immune selection operating on GroEL, the capsule, as well as other surface antigens74.

We note that genes belonging to the Rec family are positioned in close proximity to both the contiguous clus-
ters of top-scoring genes for SC and serotype (Tables 1 and 2). For example, the top-scoring gene recX is in close 
proximity to the groESL operon and encodes a regulatory protein that inhibits the RecA recombinase in multiple 
species of bacteria78–81. Restriction-modification systems (RMS) have been proposed as a means of maintaining 
species identity in a number of bacterial systems82 and this idea has been extended to the maintenance of lineages 
within meningococcal83 and pneumococcal7 species. Within our framework, RMS would act at even more local 
scale, principally to conserve the function of critical operons such as groESL, rather than prevent their recombi-
nation with other genes or operons. It has recently been demonstrated that GroEL in E. coli can be functionally 
replaced, at least partially, by an eukaryotic chaperonin84 indicating that the maintenance of particular associa-
tions of genes with the groESL operon is a consequence of their superior fitness rather than an inability to recom-
bine. It is therefore tempting to speculate that RMS play a role in protecting the modularity of the genome and 
that population structure arises through selection favouring particular combinations of variants of these modules.

Figure 3. Population structure and vaccination. Conceptual representation of phylogenetic relationships 
between serotypes and Sequence Clusters (SC), where the former are defined by variation at the cps locus 
(arbitrarily designated X, W, Y, Z, M, and L, respectively coloured purple, yellow, green, orange, cyan and pink) 
and the latter are linked to variation in the groESL operon (arbitrarily designated A and B and respectively 
coloured red and blue). Circles symbolize genotypes, with size relative to their prevalence at the population 
level. Inner genome arcs represent epistatic links: those with the groESL operon extend across the genome, while 
links with the cps locus are more local. Within our framework and according to observed patterns8, serotypes 
will be dominantly associated with an SC. Current vaccine strategies (white inner area) that target a selection of 
capsular serotypes can lead to the expansion of non-vaccine serotypes (VISR73, 74), potentially within the same 
sequence cluster (VIMS17). Vaccine strategies based on groESL variants (grey area) would target entire lineages 
instead, including all uncommon serotypes within and thereby preventing their expansion.
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The proposed approach does not depend on the universal existence of the SCs described in the Croucher 
et al. dataset8. Instead, we rely on the fact that any whole genome dataset can be stratified and classified into 
major lineages by phylogenetic approaches. The research presented in the study is therefore intended to be a 
proof-of-principle under an ideal dataset for which SC and serotype classifications exist. Overall, our analyses 
support the hypothesis that lineage structure in maintained by co-adaptation and competition14 and show that 
these selection pressures converge upon the capsular locus and, surprisingly, the groESL operon. Our results 
endorse the development of vaccines against the associated chaperone protein, groEL, since targetting its protein 
folding machinery may provide a robust method (Fig. 3) of eliminating particular highly successful lineages 
rather than promoting the survival of those genotypes within it which carry cps loci encoding non-vaccine capsu-
lar serotypes17. We hope, for these reasons, that this work will stimulate further empirical testing of our hypothe-
sis that immune selection against groEL may be a primary driver of lineage differentiation in the pneumococcus.

Methods
Sequence Data and Allelic Annotation. We used a dataset sequenced by Croucher et al., comprising 616 
carriage S. pneumonaie genomes isolated in 2001, 2004 and 2007 from Massachusetts (USA). The data included 
133, 203, 280 samples from 2001, 2004, 2007, respectively; and is stratified into 16 samples of serotype 10A, 50 
of 11A, 7 of 14, 24 of 15A, 60 of 15BC, 8 of 16F, 5 of 17F, 6 of 18C, 73 of 19A, 33 of 19F, 1 of 21, 21 of 22F, 33 of 
23A, 23 of 23B, 17 of 23F, 11 of 3, 4 of 31, 5 of 33F, 6 of 34, 49 of 35B, 18 of 35F, 2 of 37, 9 of 38, 47 of 6A, 17 of 6B, 
33 of 6C, 3 of 7C, 11 of 7F, 4 of 9N, 6 of 9V and 14 of NT (see ref. 8 for collection details). Sequence reads were 
taken from the project ERP000889 on the European Nucleotide Archive (http://www.ebi.ac.uk/) and assembled 
using an automated pipeline with the Velvet algorithm17. In summary, we performed a whole genome multi-locus 
sequence typing (wgMLST) allelic notation26 using the BIGSdb software with an automated BLAST process85 and 
the Genome Comparator tool (with ATCC700669 serotype 23F, accession number FM211187, as the reference 
genome)17. This wgMLST approach resulted in the identification of 2135 genes in common between the refer-
ence and all the samples in the dataset. Alleles identical to the reference were classified as ‘1’, with subsequent 
sequences, differing at least by one base, labelled in increasing order. Genes were further classified as allele ‘0’ 
when genetic data present had no match to the genome of interest, or were found to be truncated or non-coding. 
For a visual representation of the allelic annotation and diversity please refer to S1 dataset of Watkins et al.17. 
Functional characterization of genes and gene families was done by literature search and access to the Kyotto 
Encyclopedia of Genes and Genomes (KEGG) database (www.genome.jpkeggpathway.html).The allelic matrix 
as obtained by this approach and used in the RFA analysis (see below) is herein made available in supplemen-
tary Table S1, which also includes the Accession Numbers, gene name, gene product, gene position in reference 
genome, and year of collection, Sequence Cluster and serotype of each sample.

Random Forest Approach. We implement a machine learning approach based on a Random Forest 
Algorithm (RFA) to predict particular features (serotype or Sequence Cluster) of each pneumococci isolate from 
information on the wgMLST allelic composition of the 2135 genes86. In summary, the RFA process takes the 
following pseudo-steps: (I) the response variable and predictor variables are chosen by the user; (II) a predefined 
number of independent bootstrap samples are drawn from the dataset with replacement, and a classification tree 
is fit to each sample containing roughly 2/3 of the data, for which predictor variable selection on each node split 
in the tree is conducted using only a small random subset of predictor variables; (III) the complete set of trees, 
one for each bootstrap sample, composes the random forest (RF), from which the status (classification) of the 
response variable is predicted as an average (majority vote) of the predictions of all trees. Compared to single 
classification trees, RFA increases prediction accuracy, since the ensemble of slight different classification results 
adjusts for the instability of the individual trees and avoids data overfitting87.

Here we use randomForest: Breiman and Cutler’s Random Forests for Classification and Regression, a soft-
ware package for the R-statistical environment88. Predictor variables are set to be each gene in our genome sam-
ples and the response variable is set to the serotype or Sequence Cluster classification of each genome (as per 
ref. 8). We use the Mean Decrease Accuracy (MDA), or Breiman-Cutler importance, as a measure of predictor 
variable importance, for which classification accuracy after data permutation of a predictor variable is subtracted 
from the accuracy without permutation, and averaged over all trees in the RF to give an importance value87. The 
strategy herein employed is not of quantitative nature, as the absolute scale of scores produced by the RFA is 
dependent on the dataset being analyzed86. Instead, we focus on the 2.5% of top RFA scores as presented by the 
resulting MDA distribution for all genes, thus selecting the subset of genes which present combinations of alleles 
that appear statistically more informative than expected at the genome level (i.e. we assume that 95% of the scores 
should fall between the 2.5th and 97.5th percentiles). With this assumption and the approach detailed below, we 
effectively select the genes which present a p-value <0.05 given an intrinsic distribution of scores generated by 
data permutation (a null distribution of scores).

For the results presented in the main text, we assume the predictor variables to be numerical (as opposed 
to categorical). This assumption is known to introduce RF biases, as classification is effectively made by regres-
sion and artificial correlations between allele numbering and the features being selected (serotype and Sequence 
Cluster) may be present. The assumption is herein necessary since the RFA R-based implementation (version 
3.6.12) has an upper limit of 53 categories per predictor variable and we find some genes to present up to 6 times 
this limit in allele diversity. The categorical constraint is a common feature of RFA implementations, as predic-
tor variables with N categories imply 2N possible (binary) combinations for an internal node split, making the 
RFA method computationally impractical. Given this inherent RFA limitation, we implemented an input ran-
domization strategy (random reassignment of values to alleles) to minimize potential bias. For this, M random 
permutations of each gene’s variant allelic numbering in the original dataset is performed, effectively creating M 

http://www.ebi.ac.uk/
http://www.genome.jpkeggpathway.html
http://S1
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independent input matrices. The RFA is run over the input matrices and in the main results we present each gene’s 
average MDA score. Sensitivity analyses were performed by comparing RFA results between two independent sets 
of M = 50 input matrices (effectively comparing 100 independent runs) (Figs S5 and S10). Results suggest that 
the existing biases in independent runs of the RFA due to the assumption of numerical predictors are virtually 
mitigated with our input randomization strategy approach, specially for the experiments presented in the main 
results (i.e. using a 1% cutoff of gene mismatches, Fig. S10).
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