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Helical edge states and edge-state 
transport in strained armchair 
graphene nanoribbons
Zheng-Fang Liu1,2, Qing-Ping Wu1,2, Ai-Xi Chen1,3, Xian-Bo Xiao4, Nian-Hua Liu5 &  
Guo-Xing Miao2

A helical type edge state, which is generally supported only on graphene with zigzag boundaries, is 
found to also appear in armchair graphene nanoribbons in the presence of intrinsic spin-orbit coupling 
and a suitable strain. At a critical strain, there appears a quantum phase transition from a quantum 
spin Hall state to a trivial insulator state. Further investigation shows that the armchair graphene 
nanoribbons with intrinsic spin-orbit coupling, Rashba spin-orbit coupling, effective exchange fields 
and strains also support helical-like edge states with a unique spin texture. In such armchair graphene 
nanoribbons, the spin directions of the counterpropogating edge states on the same boundary 
are always opposite to each other, while is not conserved and the spins are canted away from the 
-direction due to the Rashba spin-orbit coupling, which is different from the case of the zigzag 
graphene nanoribbons. Moreover, the edge-state energy gap is smaller than that in zigzag graphene 
nanoribbons, even absent in certain cases.

Edge states are special electronic states existing only on the edges, surfaces, or interfaces of materials, and qual-
itatively distinct from the interior bulk states. They are important to the transport properties especially for 
low-dimensional systems, because they can provide current carrying channels even when the bulk conductance 
is gapped, and are often associated with quite distinct and unique properties. For graphene, which is an atomically 
thin layer of carbon atoms arranged in a honeycomb crystalline lattice1, the bulk states follow a linear Dirac dis-
persion and the bulk carriers are therefore massless and relativistic. On the edges of a graphene sheet, because of 
the abrupt change in translational symmetry, edge states with different properties appear depending on the type 
of the edge termination: zigzag and armchair (illustrated in Fig. 1, left and top edges). We will focus our attention 
on functionalizing graphene in order to not only allow charge conductance on these channels, but also permit 
spin and topology engineering with them.

In the case of zigzag edges, a monolayer graphene naturally supports the dispersionless zero-energy flat 
bands of edge states2–4, present even without magnetic fields5, 6. Such flat-band edge states can evolve into heli-
cal or chiral ones. In time-reversal (TR) invariant two-dimensional topological insulators, the helical edge state 
is the key characteristic and naturally gives rise to the quantum spin Hall (QSH) effect7, 8. In this QSH phase, 
current-carrying states are confined on the edge of the sample, whereas the bulk is insulating. These edge states 
are gapless and protected against backscattering from non-magnetic impurities9–11 and their propagation direc-
tions are helical, that is, opposite spin states counterpropagate along a given edge of the sample. The QSH state has 
been observed in HgTe quantum wells12, but several works13–15 showed that intrinsic spin-orbit coupling (SOC) 
is probably too small in pristine graphene to allow for experimental verification of this novel phase of matter. 
Moreover, perturbations violating TR symmetry are usually unavoidable16, so people attempt to find QSH-like 
phases in systems where TR symmetry is broken16, 17. The helical edge state can also be induced by other physical 
origins that may break TR symmetry18–20, such as the study on the QSH effect in ferromagnetic graphene19.

As for the armchair GNR, edge states can be created in the presence of a magnetic field21–24. It is generally 
believed that without a magnetic field, pristine non-modulated armchair edges cannot support a localized-state 
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band5, 6, 25, 26. But people found that modifications on armchair edges can induce complete flat bands, where the 
wavefunction has the character of valley polarization27. The use of edge potentials can also cause the formation of 
edge states, and the key is to turn on the pseudospin-flipped (intravalley) scattering processes28. In this case, the 
armchair edge bands behave similar to the zigzag ones. However, it has been demonstrated that the properties of 
armchair localized states depend sensitively on the type of edge modifications29.

In addition, it is known that strains can be intentionally introduced on graphene by tensions at the sample-lead 
contacts on suspended graphene devices30, or by deforming the substrates on which the graphene is depos-
ited31–35. It was shown that a uniform strain can mimic the effects of a uniform “pseudomagnetic field”, which 
has opposite signs on the two low-energy graphene valleys36, 37 (i.e., in the neighborhoods of the K and K′ Dirac 
points). Unlike real magnetic fields, pseudomagnetic fields and strain both preserve the overall TR invariance. 
Graphene is able to sustain reversible elastic tensile strain of up to 25%38, 39. Most importantly, strains can lead to 
a uniform pseudomagnetic field on the order of 10T in graphene flakes40 even 300T in graphene nanobubbles38, 
which can open up interesting applications in graphene nanoelectronics. To date, such pseudomagnetic fields 
have been realized using two distinct experimental approaches38, 41, and in both experiments, the fields realized 
were strong enough to drive the electronic structures of each valley deep into the quantum Hall regime, in line 
with theoretical predictions.

In this work, we address one of the crucial features in strained armchair GNRs, namely, the topological nature 
of their edge states. The purpose of this paper is to find a way to tailor the graphene edge states into supporting 
such nontrivial electronic structures by incorporating a number of intrinsic and extrinsic effects with experimen-
tally realistic parameters. By enabling the armchair boundaries to also support helical edge states, it is possible to 
realize spin Hall effect all around a piece of graphene independent on its detailed edge structures. The results show 
that the combined effects of strain and intrinsic SOC can induce spin Hall edge states with nontrivial topology in 
armchair GNRs, where the spins are split and show a canted helical spin texture in the momentum space.

System Hamiltonian
We first consider a graphene honeycomb lattice in the x − y plane in the presence of uniaxial strains with 
homogeneous Rashba SOC, intrinsic SOC, and an effective exchange fields (EEF) interaction. In this paper, we 
assume that electrons in the bulk of the graphene sheet are described by the real space π-orbital tight-binding 
Hamiltonian with nearest-neighbor hopping:
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Here, α
†ci  and ciα are π-orbital creation and annihilation operators for an electron with spin α on site i. The first 

term describes hopping between nearest neighbors i, j on the honeycomb lattice with the hopping amplitude 
= = δ− . −t t t eij i 0

3 37( 1)i 42, where the unstrained graphene hopping amplitude is ≈ − .t 2 9eV0 , the deformed and 
undeformed lattice distances are δi and a0. Because the tension is along the armchair direction, the deformed 
bond lengths δ δ ε εσ= = + −11 3

3
4

1
4

, δ εσ= −12 , where σ = 0.165 is the Poisson’s ratio of graphite and ε is 
the tensile strain43. The second term is the mirror symmetric intrinsic SOC with a coupling strength tSO. Here 

= s s ss ( , , )x y z  are the Pauli matrices, and i and j refer to the next-nearest neighboring sites that have a common 
nearest neighbor k connected by vectors dik and dkj. dij represents a unit vector pointing from site j to site i. The 
third term corresponds to a uniform out-of-plane EEF, and M is the exchange field strength. The last term repre-
sents the Rashba SOC with coupling strength tR.

Figure 1.  The honeycomb lattice geometry. The lattice structure of graphene is made out of two 
interpenetrating triangular lattices (a1 and a2 are the lattice unit vectors). The nearest-neighbor vectors are δ

��
1, δ
��

2, 
and δ
��

3. The armchair edge is at the x direction, and Strain is along the y direction.
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In the geometry of Fig. 1, the unit-cell vectors of the undeformed lattice are =a ( 3 , 3)a
1 2

0 , =a (2 3 , 0)a
2 2

0 , 
and the corresponding reciprocal-lattice vectors are given by = =π π −b b(0, ), ( , )
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these distances distorts the reciprocal lattice as well, and positions of the high-symmetry points are also shifted. 
For uniaxial tension along the armchair direction, the two Dirac points move to the new positions 
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. With the increase of tension, the Dirac points 
always approach each other and will eventually merge. Moreover, the system can become gapped at a critical 
tensile strain ε > .0 2342, which means a phase transition is triggered here.

Unless many-body effects are of crucial importance, in the vicinity of Dirac points K or K′, the low-energy 
electronic properties of a monolayer graphene are well described by the Dirac-type equation

ν τσ σ τλ σ τ σ= − + + + + ⋅ .σH i k k x s M s1 1 A( ) ( ) (2)F x x y y s SO z z z i

here σi and si =i x y z( , , ) are the Pauli matrices acting on the sublattice (A,B) and physical spin (↑ ↓, ) spaces, 
respectively. τ = ± labels K and K′ valleys. The Fermi velocity and intrinsic SOC are given by ν =F

a t3
2

0  and 
λ = t3 3SO SO. In most of the following expressions we set ν = 1F  for simplicity. = A x yA ( , ) is the in-plane 
pseudogauge field induced by the uniaxial strain, which is defined as36, 44–46
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where uij is the in-plane strain tensor. The constant β δ= ∂ ∂tln / ln , where t is the nearest-neighbour hopping 
parameter, and δ is the distance between nearest carbon atoms47, 48. Due to the y axis is oriented along the arm-
chair direction, εσ= −uxx  and ε=uyy ; as a result, the strain causes only a finite but constant βε= =A A ty

σ+(1 )46 while Ax = 0. This can be taken into account by simply shifting Py in this region. The wave function 
corresponds to a spinor comprising four components Ψ = Ψ Ψ Ψ Ψ′ ↑ ′ ↓ ′ ↑ ′ ↓ ′x y( , ) ( , , , )K K A K K B K K B K K A K K( ) ( ) ( ) ( ) ( ) .

Electronic states of Armchair GNRs within the continuum Dirac model.  In this section, we cal-
culate the electronic states of an armchair GNR within the continuum Dirac model. To understand the role of 
strains clearly, we only consider the effects of intrinsic SOC and strains in this section. Dispersion relation of the 
armchair GNR can be derived by solving the Schröinger equation in the following form
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here the Hamiltonian can be expressed as:

τλ τ

τλ τ

τ τλ

τ τλ

=













−∂ − ∂ +

∂ − ∂ −

∂ − ∂ − −

−∂ − ∂ + −













.H

i A
i A

i A
i A

0 ( ) 0
0 0 ( )
( ) 0 0
0 ( ) 0

SO y x

SO y x

y x SO

y x SO

where Ψ α ′A B K K( ) ( ) is the wave function of spin α ↑ ↓( , ) state on the sublattice A(B) near the K and K′ points.
Translational symmetry guarantees that the total wave function can be written in the form
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Upon solving Eq. (3), we obtain the energy dispersion relation:
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where μ = ± stands for the conduction (+) and valence (−) bands.
The general solution of Eq. (3) is a sum of plane waves
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The total wave function has the form Ψ = Ψ + ′ Ψ⋅ ⋅
′e eiK

K
iK

K
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Due to the boundary conditions at the edges of the ribbon (located at x = 0 and x = L, where L is the ribbon 
width),

Using the above equations, we can obtain:
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Where, λ= − + −k E k A( )x y SO
2 2 2 . If kx are real, Eq. (6) corresponds to confined modes in the graphene 

ribbon; while imaginary kx corresponds to edge states because they decay exponentially into the ribbon. But the 
intrinsically small λSO makes the edge states negligibly small in general. Fortunately, Eq. (6) shows that the disper-
sion of the wave function may be modulated with strains. In Fig. 2, we plot the probability density profile of the 
edge state wave functions. The evolution of the edge states with increasing intrinsic SOC and strains are clearly 
shown: the edge states are absent in the unmodulated armchair GNR [Fig. 2(a)]; even for λ = . t0 02SO 0, the prob-
ability density still mainly shows the characteristics of bulklike states (these electronic edge states not only trans-
port along the edges of graphene but also penetrate into the interior of the system obviously) [Fig. 2(b)] akin to 
that of armchair graphene nanoribbons modulated by edge potential28; only for large intrinsic SOC [Fig. 2(c)], the 
armchair GNR can embody obvious features of edge states, which is however difficult to achieve experimentally. 
But a striking finding is that, when strains are also considered (e.g. = .A t0 06 0, that is, ε ≈ .0 03), the armchair 
GNR can support the edge state structures even for small intrinsic SOC [Fig. 2(d)]. Here the role of strains is not 
to change the energy gap but to modulate the phase position. To understand the behavior of this kind of edge 
states more clearly, we further use the tight-binding method to study the edge states of the armchair GNRs in the 
presence of intrinsic SOC, Rashba SOC, EEF, and strains in the next section.

Edge states and transport properties of Armchair GNRs.  It is well known that intrinsic SOC can induce 
helical edge states in GNRs with zigzag edges7, 8. Generally, such helical edge states are absent in armchair GNRs. If 
armchair GNRs could also support helical edge states, we would obtain a way to achieve QSH effect independent of 
the graphene’s edge structures. In addition, strains can also induce QH effect41, so we analyse the edge state structure 
of an armchair GNR with the modulation of intrinsic SOC and strains by calculating the band energy, conductance 
and local density of states (LDOS). The conductance and LDOS are calculated with the non-equilibrium Green’s 
functions (NEGF). Across the whole system, the conductance from an arbitrary lead l to lead r is given by ref. 49

= Γ Γ †G e hTr G G/ [ ], (7)l D r D
2
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Here †G G( )D D  is the device retarded(advanced) Green’s function, Γl r,  is the broadening function, and Σl r
R
,  is the 

boundary self energy term. The diagonal elements of the total Green’s function yield the LDOS at the site r 
ρ = −

π
r E Im G r r E( , ) [ ( , , )]D

1 .
Firstly, we only consider the role of intrinsic SOC on the energy band structures of an armchair GNR 

[Fig. 3(a)–(b)]. Figure 3(a) shows that there is an obvious edge-state band gap in the energy spectrum for small 
intrinsic SOC, which can also be seen from the edge-state conductance in Fig. 3(a). Such an energy band structure 
results in the absence of edge states, which can also be seen from the LDOS [Fig. 3(a)]. Even for = .t t0 01SO 0 
[Fig. 3(b)], the LDOS still embody the features of bulk states. The edge-state band gap still exists but negligibly 
small. As a result, the edge-state conductance is nonzero due to tunneling effect. When the strain is also consid-
ered, the edge-state band gap disappears [Fig. 3(c)], and we find that the LDOS distribution has the typical char-
acteristics of edge state structures, which makes the edge-state conductance nonzero and constant. Therefore 
strains are very important to edge-state transport. But it is well known that large strains can also generate a bulk 
spectral gap for ε ε> ≈ .0 23C

42. Such a bulk spectral gap makes the above edge-state features disappear for 
ε = .0 25 [Fig. 3(d)]. As a result, the edge-state conductance G = 0 and the LDOS resembles the features of bulk 
states and is completely suppressed on the edges.

The above discussions show that strains can assist the intrinsic SOC in generating edge states in the armchair 
GNR. Next, we analyze the probability density of the edge-state wavefunctions using the tight-binding method. 
As to be shown below, GNRs with armchair edges, when modulated with intrinsic SOC and strains, can possess 
robust gapless helical edge states akin to those from zigzag GNRs modulated with only intrinsic SOC.

The seminal work of Kane and Mele50 showed that intrinsic SOC can open a topologically nontrivial gap in the 
zigzag GNR at zero magnetic field. This bulk gap hosts two counterpropagating edge modes per edge with opposite 
spins (one Kramers pair), which are the helical edge states related by TRS. This topological phase is known as the 
QSH state, and may be regarded as two opposite QH phases (i.e., each spin produces one copy of QH effect, with 
opposite chirality). The TR invariance is considered a prerequisite for the QSH effect. As discussed above, the com-
bined effect of the strain and the intrinsic SOC not only induces the edge states, but also preserves the overall TR 
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invariance36. Now we further consider the probability density of these edge-state wavefunctions [Fig. 4(a)]. For a 
given Fermi level in the gap [as marked in Fig. 3(c)], there exist four edge states labeled as A, B, C, and D, note that 
A and B (C and D) are degenerate. From 


= ∂

∂
v k( ) E k

k
1 ( ) , one can find that states A and B (C and D) propagate along 

the same y(−y) direction. By analyzing the probability density of the edge-state wavefunctions for the states labeled 
as A, B, C, and D in Fig. 3(c), one can find that the wave functions of state A with spin up and positive velocity and 
state C with spin down and negative velocity are localized on the upper boundary, whereas state B with spin down 
and positive velocity and state D with spin up and negative velocity counterpropagate along the lower boundary 
[Fig. 4(a)]. This indicates that the system possesses the desired QSH features with a helical edge state structure.

The emergence of helical edge states in the bulk gap is intimately related to the topological properties of the 
bulk Bloch states in the valence bands, which can be described by the Z2 indices50 or the spin Chern  
numbers17, 51, 52. It has been shown that the Z2 indices and spin Chern numbers yield equivalent descriptions for 

Figure 2.  Probability density across the single layer armchair GNR of the edge states in the presence of different 
intrinsic SOC and strain λ = 0so  and A = 0 (a), λ = 0so  and A = 0 (b), λ = . t0 2so 0 and A = 0 (c), and λ = . t0 02so 0 
and = .A t0 06 0 (d). The GNR width is set to be 240 carbon atoms.
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TR invariant systems52–56. Here we utilize the spin Chern numbers to describe the characters of the QSH effect in 
graphene with intrinsic SOC and strains. The spin Chern number is defined as α= ∑αβ αβC Cs

1
2

, here αβC  is the 
Chern number for the spin-αβ sector and can be expressed as = ∑αβ η αβ

ηC C , η = ± is the valley index. The valley 
Chern number can be calculated from

∫∑π
= Ωαβ

η
αβ
ηC dk dk1

2
( ) ,

(9)n BZ
x y xy

n

here α β = ±( )  is the spin index and Ωxy
n  is the Berry curvature of the nth band

Ω = ∂ − ∂A A , (10)xy
n

k k k kx y y x

Figure 3.  Edge-state band structure, conductivity G and LDOS of armchair GNR for ε= . =t t{ 0 005 , 0}so 0  (a), 
ε= . =t t{ 0 01 , 0}so 0  (b), ε= . = .t t{ 0 01 , 0 18}so 0  (c), and ε= . = .t t{ 0 01 , 0 25}so 0  (d) in the tight-binding model. The 

GNR width is set to be 240 carbon atoms.
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Ak k( )x y
 is the Berry connection, which is defined as

∑= 〈Φ| ∂ |Φ〉
 

A i ,
(11)

k k k k( )
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( )x y x y

where Φ represents the eigenstates of the Hamiltonian defined in Eq. (2) and can be written as:
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Where λ= − + + +E k A k( )k y x SO
2 2 2  and λ= − − + +′E k A k( )k y x SO

2 2 2 . Figure 4(b) plots the spin Chern 
number as a function of the strain for λ = . t0 03SO 0. In Fig. 4(b), we observe that there is a critical strain value 

ν=A kC F y
m , where ky

m is the maximal value of ky in the first Brillouin zone, and if the strain exceeds the critical 
value AC, the spin Chern number ≈C 0s , in line with the edge-state conductance in Fig. 3(d). On the other hand, 
for <A AC, the spin Chern number =C 1s , in agreement with the number of helical edge states from the 
tight-binding calculations, i.e., the QSH effect can be formed in the armchair GNR with suitable strains. Note that 
the spin Chern number is defined by Eq. (12) without considering any boundary conditions57. One can see that 
the spin Chern number is still 1 under the condition A = 0, which can be achieved in zigzag GNRs. Here we would 
like to emphasize that strains not only can induce the QSH effect in the armchair GNR, but also can achieve a 
quantum phase transition from the QSH phase to a trivial insulator phase.

Usually, the QSH state of matter is considered to be protected by the TR symmetry. But QSH-like phases in sys-
tems where the TR symmetry is broken have also been suggested17. It was found that the QSH-like state appears in a 
zigzag GNR with the combined effects of intrinsic SOC, Rashba spin-orbit coupling and an exchange field. Here we 
further consider the effect of strains on such QSH-like states in a zigzag GNR. From Fig. 5(a), one can easily distin-
guish the edge states from the bulk states. Due to the Rashba SOC, sz is not conserved and the spins of the edge states 
can be rotated to canted orientations. Therefore, we compute the spin polarization = 〈 |∑ | 〉†P m c s c mm

j
i i j i  (where m  

is the mth band, i and j are the lattice site indices, and =j x y z, , ) to obtain information about the spin states, and 
then label the spin directions with the small arrows in Fig. 5(a). Through analysis on the spatial distribution of the 
wave functions, we find that the spin-textured edge states can be divided into two regions at low energies, and 
regardless of the spin-texture regions, the edge states from the bands labeled with red and green (blue and cyan) lines 
are mainly located on the lower (upper) boundary. However, the spin textures are significantly different in these two 

Figure 4.  (a) Probability densities of the wave functions of the edge states labeled by A, B, C, D in Fig. 3(c), the 
inset is the schematics which indicate the propagation directions of the edge modes. (b) The calculated spin 
Chern numbers within the continuum Dirac model as a function of strain A with λ = . t0 03so 0. The GNR width 
is set to be 240 carbon atoms.
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regions. For region I [shaded yellow in Fig. 5(a), close to the Dirac points], spins of the counterpropogating states on 
the same boundary are not strictly opposite to each other, only their out-of-plane components are opposite. In 
Fig. 5(b), we plot the probability density profile of edge state wave functions for the four edge states labeled with A, 
B, C and D in Fig. 5(a), and we find that edge states with average spin down and negative velocity (red symbols) and 
those with average spin up and positive velocity (green symbols) propagate along the lower boundary, and edge 
states with average spin down and positive velocity (blue symbols) and those with average spin up and negative 
velocity (cyan symbols) propogate along the upper boundary, in agreement with ref. 17. The case of region II(further 
away from the Dirac points) is different from that of region I. In region II, the spin directions of the counterpropo-
gating states on the same boundary are nearly opposite to each other. Thereby, varying the GNR’s chemical potentials 
also can fine tune the spin directions in the edge conductance channels.

We further investigate the fate of the QSH-like effect in the armchair GNR in the presence of intrinsic SOC, 
Rashba SOC, strains and an exchange field. In the absence of strains, the edge states show obvious features of bulk 
states, although there exist edge states in the bulk gap [Fig. 5(c)–(d)]. If the strain is also considered, one can find 
clear edge states appearing in the bulk gap [Fig. 5(e)], and the edge states from the bands labeled with red and 

Figure 5.  Edge-state band structures and probability densities of the edge-state wave functions of zigzag (a,b) 
and armchair (c–f) GNRs for = . = . = .t t t t M t{ 0 01 , 0 02 , 0 01 }so R0 0 0 . The strain is set as ε = 0 for (a–d); and 
ε = 0.18 for the other figures. The GNR width is set to be 240 carbon atoms.
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green (blue and cyan) lines are located mainly on the upper (lower) boundary. Moreover, the probability density 
profile of the edge-state wave functions of the armchair GNR is similar to that of the zigzag GNR [Fig. 5(f)], that 
is to say, the armchair GNR in the presence of intrinsic SOC, Rashba SOC, strains and EEF also supports the 
QSH-like edge states. But there are distinct differences between the edge states of Fig. 5(b) and (f). In Fig. 5(b), 
the counterpropogating spins on the same boundary are not strictly opposite to each other. As a comparison, 
for the armchair GNR, the counterpropogating spins on the same boundary are strictly opposite to each other 
[Fig. 5(f)]. Such differences can be attributed to their different spin textures. For the zigzag GNR, its spin texture is 
divided into the two regions as described above [Fig. 5(a)], with spins in region I significantly noncollinear. Yet in 
the armchair GNR, the spin directions of the edge states on the same boundary are strictly opposite to each other, 
which is robust under the low energy conditions. From Fig. 5(a), one can also note that there is a small energy 
gap in the edge-state spectrum, leading to a low-dissipation spin transport similar to the result of ref. 17. But in 
the armchair GNR with the same modulations, such energy gap is smaller and even absent [Fig. 5(e)], which can 
greatly weaken scattering between forward and backward movers17, realizing a dissipationless spin transport.

Summary
In this paper, we studied the edge-state properties of armchair GNRs with intrinsic SOC, Rashba SOC, EEF 
and strains. Within the continuum Dirac model, we predicted that the armchair GNR, when strained along the 
armchair direction, can also support edge states even for very small intrinsic SOC. The strains can to some extent 
compensate the weak intrinsic SOC in graphene. Moreover, the conductance and LDOS, calculated based on the 
NEGF, show that the edge-state conductivity is quantized. And analysis of the spatial distribution of the wave 
functions and spin Chern numbers further illustrates that such edge states are helical type edge states, which con-
firms the presence of spin Hall effect in the armchair GNR. The spin Chern number further shows that a quantum 
phase transition from a QSH state to a trivial insulator state happens at a critical strain.

Owing to the broken sz spin conservation induced by the Rashba SOC, the spin textures are obviously different 
between the armchair GNR and the zigzag GNR. Specifically, in the zigzag GNR, the spin texture is closely related to 
the Fermi energy. For energies close to the Dirac point, the edge-state spin directions are not strictly opposite to each 
other for the counterpropogating states on the same boundary, only their out-of-plane components are opposite. And 
for energies further away, the spin directions of these states on the same boundary are opposite to each other. As a com-
parison, in the armchair GNR, the spin texture is invariant to the Fermi energy and the spin directions of these states 
on the same boundary are always opposite to each other. In addition, we also observe that a small edge-state band gap 
appears for the zigzag GNR, while for the armchair GNR, the edge-state energy gap is smaller and even absent.

In summary, helical dege states are supported by not only the zigzag GNR but also the armchair GNR when 
strains are present, and the strained armchair GNR can have unique advantage in achieving QSH-like effects with 
broken TR symmetry.
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