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Levobuipivacaine-Induced 
Dissemination of A549 Lung Cancer 
Cells
Shun-Ming Chan1,2,3, Bo-Feng Lin1,2,3, Chih-Shung Wong2,4, Wen-Ting Chuang1,3, Yu-Ting 
Chou5 & Zhi-Fu Wu1,2,3

While anaesthetics are frequently used on cancer patients during surgical procedures, their 
consequence on cancer progression remains to be elucidated. In this study, we sought to investigate 
the influence of local anesthetics on lung cancer cell dissemination in vitro and in vivo. A549 human non-
small lung cancer cells were treated with various local anaesthetics including ropivacaine, lidocaine, 
levobupivacaine and bupivacaine. Cell barrier property was assessed using an electric cell-substrate 
impedance sensing (ECIS) system. The epithelial-to-mesenchymal transition (EMT) of treated cells 
was studied by immunofluorescence staining. In vitro and in vivo cancer cell dissemination were 
investigated.Gene expression microarray and quantitative real-time PCR (qrt-PCR) assays were used 
to identify the genes responsible for levobupivacaine-mediated cancer cell dissemination.The results 
illustrated that only levobupivacaine induced EMT in the treated cells and also caused the dissemination 
of cancer cells in vitro. In addition, after intravenous injection, levobupivacaine encouraged cancer cell 
dissemination in vivo. Gene expression microarray, qrt-PCR and immunoblotting revealed that after 
levobupivacaine treatment, the hypoxia-inducible factor (HIF)- 2α gene was upregulated in cancer cells. 
Our findings suggest that levobupivacaine may induce A549 lung cancer cell dissemination both in vitro 
and in vivo. More specifically, HIF-2α signaling possibly contributes to levobupivacaine-mediated A549 
lung cancer cell dissemination.

Lung cancer is one of the most common causes of death worldwide and surgical resection remains the major 
treatment option of early-stage tumor1. However, metastasis and tumor recurrence after surgery represent major 
clinical challenges that are responsible for the low survival rate of lung cancer patients. Multiple risk factors in the 
perioperative period contribute to tumor cell proliferation and eventual metastasis2. Several studies have shown 
that frequently used local anaesthetics inhibit the invasion of cancer cells by blocking the sodium channel3, 4 
while other studies have attributed the anti-metastatic ability of local anaesthetics to other relevant pathways5, 6. 
Furthermore, retrospective analysis of patients who underwent surgery for breast or prostate cancer suggests that 
regional anaesthesia reduces cancer recurrence and improve survival rate of patients7–9. In contrast, other obser-
vational studies of patients who underwent non-small lung cancer surgery have shown that epidural bupivacaine 
anaesthesia does not improve the overall survival rate10, 11. Thus, a clear relationship between local anaesthesia 
and the clinical outcome of patients with cancer is currently unestablished12.

Tumor invasion and metastasis can be attributed to epithelial to mesenchymal transition (EMT), which is the 
process in which epithelial cells lose epithelial characteristics and acquire migratory potential to become inva-
sive13. Recent studies have suggested that moderate hypoxic conditions can trigger the EMT process, which in turn 
causes different human cancer cells to invade and become resistant to therapy14, 15. Hypoxia of the non-dependent 
lung where the cancer mass is located is often encountered during thoracic surgeries. This is further complicated 
by the fact that cancer patients are often immunosuppressive and surgical manipulation may contribute to tumor 
metastasis16. Hypoxia-inducible factors (HIF) are a family of transcription factors related to tumor progression 
and regulates both overlapping and unique downstream target genes involved in critical aspects of cancer activity 
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such as cell proliferation, angiogenesis, glucose metabolism and cell invasion17–20. Currently, the expression of 
HIF-2α under hypoxic conditions are unclear. To the best of our knowledge, the triggering of EMT in human 
cancer cells by HIF-2α or other pathways after local anaesthetics has not yet been explored.

In the present study, we hypothesized that local anaesthetics induces EMT in lung cancer cells by activating 
HIF-2α. Due to the lack of relevant studies, the aim of this investigation was to discuss the influence of local 
anaesthetics on HIF-2α expression in lung cancer cells.

Results
Local anaesthetics reduced barrier function and induced EMT in A549 lung cancer cells. The 
first step of cancer cell dissemination involves the attenuation of barrier function. To examine the effect of anes-
thetics on the barrier function of lung cancer cells, A549 and H1975 cells were treated with various local anaes-
thetics and subjected to ECIS system analysis (Fig. 1A and Supplementary Figure S1). Levobupivacaine, lidocaine, 
ropivacaine and bupivacaine all reduced the barrier property in A549 lung cancer cells, but not H1975 cells. 
Furthermore, while levobupivacaine treatment induced morphological change in A549 cells from cuboidal to 
spindle-like (Fig. 1B), the same was not observed after lidocaine, ropivacaine and bupivacaine treatments. On 
the other hand, as determined by immunofluorescence staining, levobupivacaine treatment reduced the level 
of E-cadherin, an epithelial marker, and increased the expression of N-cadherin and vimentin, a mesenchymal 
marker (Fig. 1C). The enhancement of vimentin and N-cadherin expressions indicate EMT in A549 cells fol-
lowing levobupivacaine treatment21. In contrast, EMT was not observed in cells after lidocaine, ropivacaine and 
bupivacaine treatments.

Levobupivacaine induced A549 lung cancer cell dissemination in vitro and in vivo. As EMT 
contributes to cancer cell migration and invasion, the effects of levobupivacaine on cell migration and invasion 
in vitro were studied. Levobupivacaine treatment was found to encourage both cancer cell migration (Fig. 2A) 
and cancer cell invasion (Fig. 2B). For the in vivo study, cancer cell dissemination into the lungs of immuno-
deficient mice was monitored using IVIS after the injection of A549luc cells pre-treated with levobupivacaine. 
Promotion of cancer cell dissemination into the lungs of xenografted mice was observed, as depicted in Fig. 3A. 

Figure 1. Effects of ropivacaine, lidocaine, bupivacaine and levobupivacaine on cell barrier function and EMT 
of A549 lung cancer cells. (A) Barrier function of lung cancer cells with and without local anaesthetics treatment 
as assessed by electric cell-substrate impedance sensing (ECIS). Measurements were performed at 4 kHz. (B) 
Effect of levobupivacaine on the morphology of A549 cells. Levobupivacaine treatment induced morphological 
change after 24 hr exposure. (C) Immunofluorescence staining of E-cadherin (E-cad), N-cadherin (N-cad) and 
vimentin for A549 cells treated with or without levobupivacaine. Ropi indicates ropivacaine; Lido indicates 
lidocaine; Bupi indicates bupivacaine, Levo indicates levobupivacaine; and Ctrl indicates control. Scale 
bar = 200 μm.
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Figure 2. Levobupivacaine induced migration and invasion in lung cancer cells. (A) Transwell migration 
test for A549 cells treated with or without levobupivacaine. Migratory cells were quantified. Each column 
represents the mean ± SD **P < 0.01. (B) Transwell invasion test for A549 cells treated with or without 
levobupivacaine. Invading cells were quantified. Each column represents the mean ± SD *P < 0.05. Levo 
indicates levobupivacaine and Ctrl indicates control.

Figure 3. Levobupivacaine encouraged cancer cell dissemination in vivo. (A) IVIS imaging performed on nude 
mice after i.v. injection of A549luc cells treated with or without levobupivacaine (upper). Photographs of lungs 
harvested from xenografted mice (lower) (Day 86). (B) H&E staining for micro- or macro-nodules in the lungs 
of xenografted mice (left). Quantitative analysis for tumor nodules in the lungs of xenografted mice (right). 
Histologic examination revealed a higher proportion of tumor nodules in the levobupivacaine group than in 
the control group. Furthermore, the experimental group was associated with bigger tumor size. Levo indicates 
levobupivacaine and Ctrl indicates control.
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Staining of harvested lungs from xenografted mice revealed significantly more tumor nodules after the injection 
of levobupivacaine-treated cells than control cells (Fig. 3B). These results altogether suggest that levobupivacaine 
treatment encourages A549 cancer cell dissemination in vivo.

Levobupivacaine upregulated HIF-2αexpression. Gene expression microarray analysis and 
Q-PCR identified HIF-2α as a levobupivacaine-inducible gene and levobupivacaine induced EMT-regulatory 
genes (Fig. 4A and B). Immunoblotting further revealed that levobupivacaine potentiated hypoxia-induced 
expressions of HIF-2α and N-cadherin (Fig.  4C). Furthermore, knockdown of HIF-2α attenuated 
levobupivacaine-induced cancer cell migration (Fig. 4D). In summary, the data suggest that HIF-2α may contrib-
ute to levobupivacaine-induced cancer dissemination.

Discussion
This study began with an elucidation of the influence of levobupivacaine, lidocaine, ropivacaine and bupivacaine 
on A549 and H1975 cell barrier property and found that while levobupivacaine significantly increased A549 
migration and invasion, but not in H1975 cells. The same was observed after ropivacaine, lidocaine, and bupiv-
acaine treatments in A549 cells. Furthermore, in addition to in vitro EMT, migratory consequence was observed 
in vivo after levobupivacaine treatment. On the genetic level, HIF-2α overexpression was noted after levobupiv-
acaine exposure. Regarding these observations, we propose a causal relationship between levobupivcacaine and 
EMT which is mediated by HIF-2α induction.

Dynamic monitoring via ECIS technology was used for rapid assessment of cell invasive capacity. By applying 
this new approach, important features of cellular response such as attachment, spreading, migration, proliferation 
and differentiation can be observed in real-time with high sensitivity22. Thus, this method has been popularized 
for studying cellular behaviors in response to different drugs23. To the best of our knowledge, this study is a 
pioneer research on local anaesthetics-related tumor invasion in local anaethetics field. Reduced impedance of 
monolayers treated with anaesthetics can be attributed to invasion, extravasation, or motility. Lidocaine, bupi-
vacaine, ropivacaine and levobupivacaine-treated cells experienced more significant impedance reduction than 
control cells which suggests increased invasiveness due to greater A549 viability. However, after levobupivacaine 

Figure 4. Levobupivacaine induced HIF-2α expression. (A) Q-PCR analysis of HIF-2α transcripts extracted 
from A549 cells treated with levobupivacaine for indicated periods. (4 and 24 hrs) (B) Q-PCR analysis to 
determine mRNA levels of HIF-1α, HIF-2α, Slug, Snail and Twist in A549 cells treated with or without 
levobupivacaine for 24 hrs. (C) Immunoblotting analysis for HIF2-α and N-cadherin expression in A549 cells 
under hypoxia and/or levobupivacaine treatment. (D) Transwell migration analysis for A549 cells infected 
with lentiviral RNA against HIF-2α (shHIF-2α) or Scramble (SC) followed by treatment with or without 
levobupivacaine. Levo indicates levobupivacaine and HIF indicates hypoxia-induced factor. EPAS1 (Endothelial 
PAS domain-containing protein 1 is also known as hypoxia-inducible factor-2alpha (HIF-2α).
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treatment, notable morphological change in cells from cuboidal to spindle-liked was observed. The migration and 
invasion potentials of levobupivacaine-treated A549 were further confirmed via migration and invasion transwell 
tests. Taken together, these results emphasize the role of levobupivacaine in inducing invasion capacity of the 
A549 cell line.

Despite continuous concerns that surgery may compromise the patient’s immune defense and thus facili-
tate tumor metastasis, surgical tumor removal remains the most suggested treatment for lung cancer patients. 
In a review article, Heaney et al. explained that lower cancer recurrence rates associated with local or regional 
anaesthesia can be attributed to the better preserving of patient immunity in comparison to general anesthesia24. 
Additionally, postoperative epidural anaesthesia with local anaesthetics has been shown to reduce perioperative 
and postoperative stress and pain intensity. Other direct outcomes of local anaesthetics on tumor cells include 
inhibited tumor invasion and suppression of metastatic ability25, 26. A previous study has demonstrated the sig-
nificant upregulation of the sodium channel during breast cancer progression which potentiates a series of cell 
behaviors integral to metastasis3. Chang et al. also showed that lidocaine and bupivacaine induced apoptosis in 
breast tumor cells and exerted antitumor effect27. However, the findings of this study are in disagreement with 
previous studies that associated local anaesthetics with antitumor effect5, 6. This could in part be due to the use 
of bupivacaine and lidocaine in previous studies instead of levobupivacaine. In this study, levobupivacaine was 
found to significantly increase cell migration and invasion in A549 cells.

Besides, this study was conducted in vivo to investigate the effect of levobupivacaine on cancer cell dissemina-
tion after their introduction. IVIS analysis showed that levobupivacaine treatment promoted cancer cell dissem-
ination into the lungs of xenografted mice (7/10 in the levobupivacaine treatment group compared to 1/10 in the 
control group). Histological sections further revealed more significant nodule metastasis in the levobupivacaine 
treatment group than the control group. One-lung ventilation is required in most lung cancer surgeries and is 
typically associated with hypoxemia and even hypoxia. Nevertheless, further studies are necessary in order to 
conclude the actual clinical effects of levobupivacaine in surgical conditions as well as the relationship among the 
drug, EMT, and clinical manifestation.

The role of HIF-2α in cancer metastasis has prompted the development of drugs that target the HIF pathway 
for lung cancer treatment28, 29. In addition, studies have linked the overexpression of HIF-2α to increased tumor 
size, invasion, progression and angiogenesis in non-small cell lung carcinoma30–32. Moreover, another study 
showed that the silencing of HIF-2α inhibited tumor growth in an A549 tumor model33. Recently, Bertout et al. 
suggested that HIF-2α likely contributes to tumor cell survival during radiation therapy34. In the present study, 
HIF-2α and EMT markers increased after levobupivacaine treatment. To coincide, the knockdown of HIF-2α in 
A549 decreased cell invasion and migratory ability. These results imply that levobupivacaine may contribute to 
EMT and modulate cell mobility by regulating HIF-2α. Under hypoxia, significantly higher HIF-2α expression 
was observed after levobupivacaine treatment than under normal condition. As previously suggested by Shimoda 
et al., the complex regulation of tumor growth and invasion are not simply controlled by the presence or absence 
of HIF-2α35. Lirk et al. presented that local anaesthetics associated with DNA demethylation in breast cancer 
cells36. Benzonana et al. presented that volatile anaesthetics to an HIF-α mediated mechanism of action facilitat-
ing renal cell cancer metastasis in vitro37. These studies imply that the relation between anaesthetics and tumor 
metastasisis more complex than our recognition at present. Thus, the results of this study are a reminder that the 
understanding of the mechanisms underlying the effect of levobupivacaine on HIF-2α function is far from com-
plete and requires additional evaluation.

There are limitations to this study. First, despite the clinical appropriateness of the drug dose used, in vitro 
studies are limited to model tumor response. For example, while a single dose of levobupivacaine was shown 
to promote metastasis of lung cancer cells in vitro, dosing parameters may differ in vivo. Ultimately, only a 
well-planned and executed in vivo research can accurately model the tumor environment and the delivery of 
anaesthetics. Second, the immunosuppression level, surgical techniques and anaesthetic regimens are all rela-
tively complex and thus require more comprehensive consideration clinically. Third, because only two cancer 
cell lines were studied and cell lines do not completely mimic primary cells, more investigations are necessary 
to establish specifically the effects of different anesthetics on different cancer cell lines. Fourth, while this study 
directly exposed A549 to levobupivacaine, in clinical condition, levobupivacaine is typically introduced by the 
epidural route. Finally, in our mice model that A549 luc cells were levo-treated before injection.

In conclusion, our findings suggest that levobupivacaine may be responsible for the significant increase in 
EMT, which is mediated by the up-regulation of HIF-2α in the A549 lung cancer cell line. Our data suggests 
that HIF-2α may play a crucial role in the regulation of EMT, tumor migration, invasion and metastasis. Further 
studies are required to provide more solid evidence that can establish a relationship between levobupivacaine and 
the clinical outcome in lung cancer surgery in order to accentuate the importance of local anaesthetics in tumor 
recurrence and dissemination.

Methods
Reagents. Bupivacaine, lidocaine and ropivacaine were obtained from Sigma-Aldrich (St. Louis, MO, USA). 
Levobupivacaine was purchased from Abbott Laboratories Services Corp, Taiwan Branch (Taiwan). All other 
reagents used were of reagent grade.

Cell line and culturing condition. For cell culture studies, human lung cancer cell line (A549&H1975) 
purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) was used. The cells were 
grown in RPMI-1640 medium supplemented with 10% fetal bovine as recommended by ATCC. The cells were 
grown in the monolayer at 37 °C in a humidified atmosphere with 5% CO2.
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Hypoxic treatment. The cells were placed in a polypropylene chamber connected to a supply of O2 and N2 
gases. Oxygen gas concentration inside the chamber was continuously monitored using a sensor. The hypoxic 
cells were maintained in a controlled hypoxia chamber containing 1% O2, 5% CO2, and 95% N2 at 37 °C for 24 hrs.

Impedance measurement via Electric Cell-Substrate Impedance Sensing (ECIS). Electric 
cell-substrate impedance sensing (ECIS) 8-well electrode arrays were coated with 0.2% gelatin for 1 hr at room 
temperature. In order to stabilize the electrode array, a current source was supplied via a 1 V, 4000 Hz signal by 
the ECIS system (Applied BioPhysics, Inc) to 200 μL/well of culture medium. Cells were seeded at a density of 
1.5 × 105 cells/well and grown in 5% CO2 humidified environment at 37 °C after an equilibrium time of 2 hrs. 
Levobupivacaine, lidocaine, bupivacaine and ropivacaine were added at 1 mM, 8 μM, 1 mM and 1 mM respec-
tively to 8-well electrode arrays (Applied BioPhysics, Inc) referred to previous studies38–40. The electrical imped-
ance across the monolayer was measured after 24 hrs with ECIS at 1 V, 4,000 Hz. Resistance across monolayer was 
processed by ECIS software to obtain the impedance value.

In vitro migration and invasion tests. Cell migration was studied using 24-well cell culture inserts (BD 
Biosciences). Transwell membranes 8 µm in pore size were pre-coated with gelatin at 100 μg/mL. Cells were then 
suspended in medium containing 10% Nu-serum and seeded into transwell chambers with or without levobu-
pivacaine at a density of 5 × 104 cells/well. After 5 hrs of incubation at 37 °C, invasive cells that migrated through 
the FluoroBlok membrane were stained with propidium iodine, visualized using a fluorescent microscope and 
counted with Image J software. For the cell invasion study, transwell membranes were pre-coated with Matrigel 
(5 mg/mL) and 2.5 × 104 cells were added per well. After 24 hrs of incubation at 37 °C, cells were stained and 
counted.

Immunocytochemistry. A549 cells were seeded in 6-well plates at a density of 1 × 105 cells/well in com-
plete growth medium and treated with either a 1 mM levobupivacaine solution or the vehicle control for 24 hrs. 
The expression levels of E-cadherin, vimentin and N-cadherin were visualized using an Olympus photo system 
(Olympus DP20 microscope camera, Japan).

In vivo bioluminescence imaging. For animal studies, 20 male BALB/c nude mice were obtained from the 
National Laboratory Animal Center (Taipei, Taiwan) and kept in a conventional animal facility. All animal exper-
iments were approved and conducted in accordance with the guidelines of the National Tsing Hua University 
Institutional Animal Care and Use Committee. Upon arrival, the animals were divided into two groups, the 
A549luc + Levo group and the A549luc control group. The luciferase expressing A549 cell line (A549luc) was 
purchased from Caliper Lifesciences Corp. After conventional expansion, A549luc cells (1.5 × 106) were intra-
venously injected through the tail vein. A luciferin solution (2 mL, 150 mg/mL) (Firefly Luciferin, Caliper 
Lifesciences Corp, USA) was then injected intraperitoneally. Dissemination of fluorescent cells was probed using 
an in vivo imaging system (IVIS) (Caliper Lifesciences Corp, USA) every seven days for a period of three months. 
At each time point, animals were anesthetized using 2% isoflurane and imaged using a cooled CCD camera. 
Bioluminescent signals (photons/s) of xenografted mice were quantified using the Living Image 3.0 software 
(Caliper Lifesciences Corp, USA). After three months of monitoring, the animals were euthanized and patholog-
ical examinations were carried out.

Histology. After euthanization, the lungs of the animals were removed, fixed immediately with 4% paraform-
aldehyde overnight at 4 °C and embedded in paraffin using an automatic tissue processor. For tissue slides, 20 μm 
thick tissue sections were cut using a microtome and stained with hematoxylin-eosin. The sections were inspected 
using an Olympus photo system. Lung metastases were counted as previously described and only those larger 
than 200 μm were considered.

Quantitative real time-PCR. Total RNA was extracted using TRIZOL (Invitrogen) in accordance with 
the manufacturer’s protocol. Extracted RNA (2 μg) was reverse transcribed with random hexamer primers 
(Boehringer-Mannheim) using the Superscript II kit (Invitrogen). Relative gene expression was quantified using 
the 2△△CT method on a LightCycler 480 real-time PCR System (Roche Applied Science, Indianapolis, IN, USA) 
together with the Universal Probe Library (Roche Applied Science).

Microarray analysis. After RNA preparation, microarray analysis was conducted by Genetech Biotech Bo., 
Ltd. (Taipei, Taiwan).

Immunoblotting (Western blot analysis). A549 cells were seeded in 10 cm dishes at a density of 1 × 106 
cells/plate and cultured with complete RPMI (Roswell Park Memorial Institute) medium for 24 hrs. Next, the 
cells were exposed to normoxic (20% O2) or hypoxic (1% O2) conditions for 24 hrs. Cells were then washed 
with PBS and treated with a modified RIPA lysis buffer that contained 20 mM Tris–HC1 pH 7.5, 150 mM NaCl, 
1 mM EDTA, 1 mM EGTA, 1% (v/v) Triton X-100, 0.5% (v/v) Nonidet P40, 2.5 mM sodium pyrophosphate, 
1 mM sodium orthovanadate, 50 mM sodium fluoride and 1x protease inhibitor cocktail. The crude lysate was 
left at −80 °C for 30 min and then transferred to a 4 °C environment to complete cell lysis. The sample was then 
centrifuged at 12,000 rpm for 20 min at 4 °C. The supernatant was transferred to a fresh tube and an aliquat was 
taken to determine the protein concentration using a DC (Detergent Compatible) protein assay kit (Bio-Rad). 
Proteins were separated using a traditional 10% gel via SDS-PAGE and then transferred to a nitrocellulose mem-
brane (Millipore, USA). The membrane was subsequently blocked with blocking buffer (5% non-fat milk in 
TBS/Tween-20, TTBS) for 30 mins and incubated with antibodies overnight at 4 °C. Primary antibodies against 
HIF-2α (polyclonal, Abcam, USA) and N-cadherin (polyclonal, GeneTex, USA) were diluted 1000x prior to use. 
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After treatment, the membrane was washed with TTBS and incubated with 5000x diluted horseradish peroxi-
dase (HRP) conjugated goat anti-rabbit secondary antibody (GeneTex, USA) for 1 hr at room temperature. An 
enhanced chemiluminecsence (ECL) reagent (Millipore, USA) was used to develop the reactive bands which were 
quantified by densitometry using a Chemi Genius2 Bio Imaging System (Syngene, Cambridge, UK).

Data analysis and statistics. All experiments were conducted in triplicate and statistical analysis was per-
formed using the Student’s t-test, where observed values for each sample were studied in respect to the values 
obtained under normoxic/untreated conditions. A p-value of p < 0.05 was considered statistically significant.
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