SCIENTIFIC REPORTS

Received: 30 March 2017 Accepted: 18 July 2017 Published online: 29 August 2017

OPEN Templating synthesis of Fe₂O₃ hollow spheres modified with Ag nanoparticles as superior anode for lithium ion batteries

Xiaoping Lin, Jianmin Zhang, Xiaobin Tong, Han Li, Xi Pan, Peigong Ning & Qiuhong Li

Ag-Fe₂O₃ hollow spheres are synthesized by using Ag@C core-shell matrix as sacrificial templates. The morphologies and structures of the as-prepared samples are characterized by scanning electron microscopy, X-ray powder diffraction energy dispersive, transmission electron microscopy and high resolution transmission electron microscopy. In contrast to Fe₂O₃ hollow spheres, Aq-Fe₂O₃ hollow spheres exhibit much higher electrochemical performances. The Aq-Fe₂O₃ composites exhibit an initial discharge capacity of 1030.9 mA h g^{-1} and retain a high capacity of 953.2 mA h g^{-1} at a current density of 100 mA g⁻¹ after 200 cycles. Furthermore, Ag-Fe₂O₃ electrode can maintain a stable capacity of 678 mAh g⁻¹ at 1A g⁻¹ after 250 cycles. Rate performance of Ag-Fe₂O₃ electrode exhibits a high capacity of $650.8 \text{ mA} \text{ h g}^{-1}$ even at 5 A g^{-1} . These excellent performances can be attributed to the decoration of Aq particles which will enhance conductivity and accelerate electrochemical reaction kinetics. Moreover, the hollow structure and the constructing particles with nanosize will benefit to accommodate huge volume change and stabilize the structure.

In recent decades, a lot of studies had been triggered in developing high-performance electrode materials with high energy density, high power density, long lifetime and low cost¹⁻⁴. Since the first report by Tarascon et al.⁵, transition metal oxides (TMOs) had been identified as promising candidates for lithium ion batteries due to their low conversion potential, high specific capacity and environmental friendliness⁶⁻¹⁰. Among the TMOs, Fe₂O₃ was considered as a promising anode for lithium ion batteries (LIBs) because of its low cost, high theoretical capacity $(1007 \text{ mA h g}^{-1})$, environmental protection and nontoxicity¹¹⁻¹³. As evidenced by countless research works, the high capacity was mainly obtained by the reversible conversion reaction between Fe₂O₃ and Li^{+ 14}. Recently, there had been a great deal of progress in the study of Fe_2O_3 based electrode material¹⁵⁻¹⁸. Lou *et al.* fabricated carbon-coated α - Fe₂O₃ hollow nanohorns on the CNT backbone, which greatly improved the electrochemical properties of Fe_2O_3 electrode¹⁶. However, the commercial applications of Fe_2O_3 in LIBs were impeded by the sluggish conversion reactions, large volume expansion and contraction during the charge and discharge cycles¹⁹. Two strategies had been developed to overcome these significant drawbacks. One was to retain a large deal of void space by synthesizing porous/nanostructured anode materials (e.g. nanotubes^{20, 21}, mesoporous materials^{22, 23}, nanopeapods²⁴), which presented to accommodate the volume change and shorten the Li⁺ transport distance. Thus, they could exhibit enhanced rate capability and improved cycle retention²⁵. Another was to coat native materials with carbon²⁶ or decorate some conductive materials to increase the electrical conductivity and alleviate aggregation²⁷⁻²⁹. Kim et al. fabricated Ag-Li₄Ti₅O₁₂ nanofibers by electrospinning, which displayed enhanced rate capability and cycling stability compared to the bare Li₄Ti₅O₁₂²⁸. To the best of our knowledge, a hollow structure of Fe₂O₃ nanospheres decorated with Ag nanoparticles had never been reported, and we expected the introduction of Ag could improve the electrochemical properties of Fe₂O₃.

In recent years, template-based method was widely used in preparing hollow nanostructured materials³⁰⁻³². In this work, we successfully synthesized Ag-Fe₂O₃ hollow nanospheres by using Ag@C core-shell matrix as sacrificial templates. The removal of carbon layer and surface diffusion during the annealing process was the main reason for the formation of hollow nanostructures. As the temperature up to 600 °C, Ag core started to melted and partial hollow core formed³³. Ag-Fe₂O₃ composites displayed a unique hollow structure which obviously

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China. Correspondence and requests for materials should be addressed to Q.L. (email: ligiuhong@xmu.edu.cn)

Figure 1. Schematic illustration of a tentative mechanism for the template-directed synthesis of the Ag decorated Fe_2O_3 nanospheres.

shortened the Li⁺ transport distance and effectively slowed down the volume expansion. The incorporation of Ag could effectively improve the conductivity of the material. Compared with Fe_2O_3 hollow nanospheres, Ag- Fe_2O_3 hollow nanospheres displayed enhanced cycling properties and excellent performance at high rates.

Results and Discussions

The schematic illustration of a tentative mechanism for the template-directed synthesis of the Ag modified Fe₂O₃ nanospheres is shown in Fig. 1. Initially, we synthesize Ag@C templates by hydrothermal method (A \rightarrow B). Then, Ag@C templates are coated with FeOOH by stirring at room temperature (B \rightarrow C). In the course of stirring, CH₃COO⁻ hydrolysis to produce OH⁻, then, Fe²⁺ react with OH⁻ and O₂, and ultimately form FeOOH (CH₃COO⁻ + H₂O \rightarrow CH₃COOH + OH⁻, 4Fe²⁺ + 8OH⁻ + O₂ \rightarrow 4FeOOH + 2H₂O).Next, during the calcinations at air (C \rightarrow D), with the disappearance of carbon layer, Ag core breaks and diffuses, in the meantime, FeOOH converts to Fe₂O₃. Eventually, Ag-Fe₂O₃ hollow spheres are fabricated. The formation of Fe₂O₃ hollow structure decorated with Ag nanoparticles can be related with the removal of carbon template and surface diffusion processes. During the annealing, along with the disappearance of the carbon layer, Ag core begin to melt and shrink, leading to the presence of lots of Ag nanoparticle residues form inside the shell. The diffusion of the melted Ag nanoparticles takes place at the same time, which results in the formation of Fe₂O₃ hollow spheres decorated with much smaller Ag nanoparticles.

Figure 2(a) shows SEM images of the as-prepared Ag@C templates with good dispersibility and the diameter of Ag@C templates is about 650–700 nm. After the Fe₂O₃ growth and annealing procedure, Ag-Fe₂O₃ hollow spheres are obtained. As seen in Fig. 2(b,c and d), the as-synthesized Fe₂O₃ and Ag-Fe₂O₃ nanospheres are monodisperse and comparatively uniform in size. Figure 2(b) displays Fe₂O₃ nanospheres have a hollow structure. High magnification of Fe₂O₃ nanospheres inset in Fig. 2(b) reveals that the diameter of Fe₂O₃ hollow spheres is about 550 nm which is similar with Ag-Fe₂O₃. Low magnification of Ag-Fe₂O₃ shown in Fig. 2(c) indicates that the sample has more uniform morphology than Fe₂O₃. The EDS spectrum reveals that a small amount of Ag exists in the Fe₂O₃ nanospheres with the weight percentage of Ag about 3.9%. A small amount of carbon exists in Ag-Fe₂O₃ composites after annealing process, and the present of carbon is favorable to the electrochemical properties of the composite. The specific weight/atomic percentages for each element obtained from EDS measurement are given in Table S1 in supporting information (SI). High magnification of SEM illustrated in Fig. 2(d) demonstrates the diameter of Ag-Fe₂O₃ nanospheres is about 600 nm. It can also be obviously observed that Ag-Fe₂O₃ hollow nanospheres are composed of a number of Fe₂O₃ nanorods with approximately 60–70 nm long and 30–40 nm wide. Additionally, ultra-small Ag nanoparticles are evenly distributed on the surface of Fe₂O₃ spheres.

The morphology and structure of the materials are further studied by TEM, and HRTEM measurements. TEM images in Fig. 3(a and b) show Ag@C templates are uniform, each particles consists of Ag core about 150 nm in diameter and carbon shell with thickness about 230 nm. Figure 3(c) shows the Fe₂O₃ hollow spheres formed by the accumulation of Fe₂O₃ nanorods. HRTEM observations are carried out to investigate the crystalline structure. The lattice spacing shown in Fig. 3(d) are calculated to be 0.368 nm and 0.270 nm which agree with the spacing between (012) and (104) planes of α -Fe₂O₃. Figure 3(e and f) reveal Ag-Fe₂O₃ composites have a hollow structure and the wall thickness is about 60 nm. The diameter of the Ag-Fe₂O₃ nanospheres is about 600 nm, in agreement with SEM result in Fig. 2(d). Ag nanoparticles distributed on the surface of Fe₂O₃ show a size about 10 nm, much smaller than that of Ag core in Ag@C templates. This result may be due to the disintegration and diffusion of Ag core during the annealing process. Figure 3(g and h) present HRTEM images with lattice fringes take from Ag-Fe₂O₃ spheres. Figure 3(g) reveals the interlayer spacing of 0.236 nm and 0.270 nm are respectively consistent with the spacing of Ag (111) and α -Fe₂O₃ (104) planes. Figure 3(i–l) show the phase mapping of Ag L α 1, Fe L α 1 and O L α 1 tested by EDS analyzer equipped in TEM instrument, which reveal a uniform distribution of Ag elements (green) in Fe,O₃ hollow structure.

The crystalline nature of the as-prepared Ag@C template, Fe_2O_3 nanospheres and Ag- Fe_2O_3 composites are examined by X-ray diffraction (XRD). As shown in Fig. 4, it can be seen that the diffraction peaks of Ag@C template appearing at 38.1°, 44.3°, 64.4°, 77.4° and 81.6°, which are corresponding to the cubic structure of Ag

Figure 2. SEM images of the samples (a) Ag@C templates, (b) Fe_2O_3 nanospheres, (c) low magnification Ag-Fe_2O_3 composites and EDS spectrum of Ag-Fe_2O_3 composites, (d) high magnification Ag-Fe_2O_3 composites.

(JPCDS No. 89–3722). For Ag-Fe₂O₃ composites, all the diffraction peaks are indexed to the hexagonal structure of α -Fe₂O₃ phase (JCPDS No. 79–1741). The position of the diffraction peaks indicates the type of Fe₂O₃ is hematite. For better learning the type of Fe₂O₃, we also carries out Raman test. The result in Fig. S1 shows the product we obtained is hematite^{34–38}, in agreement with XRD results in Fig. 4. Moreover, two relatively weak peaks locate at 38.1° (111) and 44.3° (200) are discernible, which belong to the Ag nanoparticles. Fe₂O₃ nanospheres are used as a comparative sample, XRD patterns is similar to that of Ag-Fe₂O₃ composites except for the peaks of Ag. Peaks from other phases are not detected indicating high purity of the samples. The carbonaceous layer in the Ag@C templates is reducible during the high-temperature annealing process, which will protect Ag from oxidation during the diffusion process. Consequently, Ag nanoparticles are obtained in the final product rather than Ag₂O³.

The electrochemical properties of Ag-Fe₂O₃ electrode for LIBs are systematically measured by using a lithium foil electrode as reference electrode in the coin-cell batteries. The cyclic voltammetry (CV) analysis of Ag-Fe₂O₃ electrode collect at a scan rate of 0.1 mV s^{-1} between 0.01 and 3.0 V is illustrated in Fig. 5(a). The CV curves of the sample are similar to the previously reported results^{13, 39, 40}. Plenty of differences between the first cycle and consecutive cycles are noticed. At the first cycle, there are two peaks appear in the cathodic sweep. The strong reduction peak observed at 0.67 V corresponds to the reduction of Fe (III) to Fe (0) and the formation of solid-electrolyte interface (SEI), while a broad peak locate at 0.87 V can be ascribed to Li ions insertion into Fe₂O₃ without structural change as follows:

$$Fe_2O_3 + xLi^+ + xe^- \rightarrow Li_xFe_2O_3$$

During the anodic scan, two extended peaks appear at 1.64 V and 1.80 V, which is attributed to the oxidation of Fe (0) to Fe (II) and further oxidation to Fe (III)³⁹⁻⁴¹. In subsequent cycles, the full lithiation potential is characterized by a higher voltage at 0.95 V. The change is mainly in virtue of the improved kinetics of Ag-Fe₂O₃ which can be resulted from inherent nanosize effects in the TMOs electrode during cycling. Worthy of nothing, the electrochemical behavior of the composites is largely sustained except the gradual changes in intensity or position of the peaks. These phenomena indicate the good cycling performance of Ag-Fe₂O₃ electrode. The CV curves of Fe₂O₃ nanospheres is shown in Fig. S2, which display similar electrochemical process with Ag-Fe₂O₃.

Figure 5(b) exhibits the discharge and charge voltage profiles of Ag-Fe₂O₃ electrode at a current density of 100 mA g⁻¹ within a voltage window range of 0.01–3 V, which are in good agreement with the peaks of the CV curves in Fig. 5(a). A first overall discharge (lithiation) capacity is experimentally as large as 1030.9 mA h g⁻¹, which is higher than the theoretical capacity (1007 mA h g⁻¹). Two plateaus are observed during the first discharge. The peak located at 0.91 V corresponds to Li⁺ metal insertion into Ag-Fe₂O₃ electrode, and the followed long stage at 0.79 V indicates that the reduction of Fe (III) to Fe (0) and the formation of SEI. When the discharge electrode is recharged to 3.0 V, a smooth voltage plateau is observed at 1.3 V, then the voltage profile has a sudden rise from 2.1 V to 3.0 V, which finally reaches a charge capacity as high as 726.9 mA h g⁻¹. The first initial coulombic efficiency is about 70.5%. This high initial irreversible loss may be due to the formation of SEI and structural change of electrode. Nevertheless, this initial coulombic efficiency of 70.5% is quite outstanding compared with some reports (no more than 50%)^{42, 43}. In subsequent second and third discharge voltage

Figure 3. (**a**,**b**) TEM of Ag@C templates. (**c**) TEM of Fe₂O₃ nanospheres. (**d**) HRTEM of Fe₂O₃ nanospheres. (**e** and **f**) TEM of Ag-Fe₂O₃ composites. (**g** and **h**) HRTEM of Ag-Fe₂O₃ composites. (**i**-**l**) Phase mapping of Ag L α 1, Fe L α 1 and O L α 1.

Figure 4. The XRD patterns of Ag@C templates, Fe₂O₃ nanospheres and Ag-Fe₂O₃ composites.

profiles, the plateaus rise to 1.05 V. The 60th discharge curve shows a slope at 0.98 V and the capacity increases to 947.8 mA h g^{-1} . Immediately after 60 cycles, a slight drop in specific capacity is recorded. The capacity decreases to 721.3 mA h g^{-1} at 125th cycle, which may be attributed to the crushing of the electrode. The plateau at 0.95 V of 125th cycle become shorter than previous cycles, which indicates a decreased capacity. Beyond 125th cycle,

the capacity gradually increases to 953.2 mA h g⁻¹ in the 200th cycle. The discharge curves' decay slow down with aging below 0.95 V from 125th to 200th cycles, which may be ascribed to the increased capacity. Such a low voltage hysteresis owing to faster ion migration rate and a reformative energy efficiency is absolutely necessary for the commercialized development of TMOs-based electrodes^{44, 45}.

Figure 5(c) shows the cycling performance of the Ag-Fe₂O₃ anode which is tested at a current density of 0.1 A g^{-1} . For comparison, we also performs cycling experiment for the corresponding Fe₂O₃ anode. Worthy of nothing, the cycling process of Ag-Fe₂O₃ composites seems to undergo three different steps. Stage (A): from the 2nd cycle to 60th cycle, the anode of Ag-Fe₂O₃ exhibits a gradual enhancement of the lithium storage capacity. This increase in capacity may be due to the activation of the electrode and the formation of SEI during cycling. It takes several cycles to form stable SEI films on the discharge intermediates. These SEI films establish an intimate contact with connector which will improve the accessibility during the cycling. Stage (B): in the range of 60–125 cycle, the decomposition of electrode takes a predominant role^{46,47}. Therefore, a slight drop in specific capacity is recorded. Stage (C): beyond the 125th cycle, one can see the curve shows an obvious gradual increase of the capacity. An anomalous monotonic increase in the discharge capacity is observed from the 125th (721.3 mA h g⁻¹) to 200th (953.2 mA h g⁻¹) cycle. Indeed this phenomenon (increasing of capacity) has also been reported previously⁴⁸. The high-rate lithium-induced reactivation often occur in the hollow structure metal oxide electrode. A

Figure 6. Nyquist plots of Fe_2O_3 and $Ag-Fe_2O_3$ composites electrode.

recent research commanded by Hu *et al.* provides more direct evidence on the origin of additional capacity⁴⁹. The increasing capacity during cycling is attributed to the reversible formation and decomposition of an organic polymeric gel-like film from kinetic activation in the electrode, which can coat the active materials and provide extra lithium interfacial storage sites to enhance the mechanical cohesion. The outside SEI layer may be broken, peeled off and reformed, resulting in the thick and unstable SEI layer during the cycling with a declining capacity. When the structure refinement, a thin and stable SEI film gradually forms without splinter, then, the re-activated electrode will exhibit an excellent cycling stability in a long cycle. In general, the decomposition of electrode caused by volume change during cycling leading to capacity loss, while the reversible formation and decomposition of an organic polymeric gel-like film will result in increased capacity. For the purpose of exploring the role of Ag nanoparticles in improving the cycling properties of materials, the cycling performance of Fe₂O₃ nanospheres is also measured at a current density of 0.1 Ag^{-1} . Fe₂O₃ anode delivers initial 1401 mA h g⁻¹ discharge capacity and $697 \text{ mA} \text{ hg}^{-1}$ charge capacity with a coulombic efficiency of 49.8%, which is lower relative to the Ag-Fe₂O₃ composites. It shows about 80% coulombic efficiency at the first 5 cycles. After that the capacities of Fe₂O₃ maintain a stable value about 170 mA h g^{-1} during the following cycles (more than 150 cycles). Fe₂O₃ usually suffers from the problem of poor electronic conduction, which will cause serious polarization, resulting in instability during the cycling. In addition, particle pulverization caused by the great volume changes and the strong agglomeration during the charge and discharge process will all lead to a steep capacity fading^{13, 40, 50}. As shown in Fig. S3(a and b), the sphere Fe₂O₃ structure is barely maintained after cycling, which also suggested large capacity fading. The result clearly indicates that the decoration of Ag nanoparticles significantly improves the electrochemical performance of the electrode. The ultra-small Ag nanoparticles evenly disperses on the surface of Fe₂O₃ nanospheres will protect the anode from pulverization during cycling, thereby enhancing the cycle stability of the electrode. In additional, the unusual cycle performance of the Ag-Fe₂O₃ composites electrode will also provide a case for future studies.

To further characterize the cycle performance of $Ag-Fe_2O_3$ anode, tests are performed at a current density of 0.1 A g⁻¹ for 20 cycles, then increasing to 1 A g⁻¹. As shown in Fig. 5(e), Ag-Fe₂O₃ anode exhibits capacity of 678 mA h g⁻¹ after 250 cycles at 1 A g⁻¹. Additionally, it is clear that the cycle at high current density is consistent with the trend at low current density except a slight difference in stage (B). This severe capacity decline trend may be ascribe to much serious electrode smash and irreversible reaction when the anode cycles at high current density. Metal oxides having a hollow structure can withstand a certain volume expansion at a low rate and during the first cycle. However, when cycling at a high-rate and longer cycles, the anode still subjected to severe mechanical degradation owe to the drastic volume changes inherently along with the conversion reaction.

A higher rate performance of LIBs electrode is particularly crucial, especially for high power density applications such as electric vehicles. Figure 5(d) shows the rate performance of the Ag-Fe₂O₃ hollow nanospheres at different current densities. Benefiting from the modification of Ag nanoparticles and hollow structures, the composites anode exhibits an excellent rate capability. When cycling at the current densities of 0.1, 0.2, 0.5,1, 2 and 5 A g⁻¹, the electrode shows discharge capacities of 938.2, 1009.5, 925.7, 860.3, 794.0, and 650.8 mA h g⁻¹, respectively. In addition, a high capacity of 1113 mA h g⁻¹ can be achieved quickly when the current density change from 5 A g⁻¹ to 0.1 A g⁻¹. Such a remarkable result obtained from Ag-Fe₂O₃ electrode is better than most Fe₂O₃-based electrodes previously reported, involving Fe₂O₃/CNT, Fe₂O₃/GF and Fe₂O₃-carbon composites⁵¹⁻⁵⁴. For comparison, the rate performance of Fe₂O₃ nanospheres is showed in Fig. S2(b). The specific capacity decline seriously with increasing current densities, suggesting that Ag nanoparticle incorporation and hollow structure have a significant effect on improving rate performance.

The electrochemical impedance spectra (EIS) of Fe_2O_3 and Ag- Fe_2O_3 electrode is conducted to demonstrate that the decoration of Ag nanoparticles can obviously improve the charge transfer kinetics, which are given in Fig. 6. The Nyquist plot consists of a semicircle at middle frequency and a sloped line at low frequency. The semicircle at middle frequency is associated with charge transfer resistance (*R*ct). Ohmic resistance (*R*s) is related to the contact resistance between the active material and current collector. The sloped line at low frequency range is influenced by ion diffusion (*Zw*). The Constant Phase Element (CPE) is the physical quantity used to describe the

Figure 7. Nyquist plots of Ag-Fe₂O₃ composites electrode during stage (B) and stage (C) cycles.

deviation of the parameters of capacitor C, which depending on the nature of the system being investigated. The Nyquist plots for Ag-Fe₂O₃ composites possesses much smaller diameters of the semicircles than that of the pure Fe₂O₃. Based on equivalent circuit, the Rct values of Ag-Fe₂O₃ and Fe₂O₃ are 230 Ω and 1500 Ω , respectively. The difference in Rct indicates that the decoration of Ag nanoparticles can significantly enhance the conductivity of the material and thus promotes the charge transfer kinetics.

Figure 7 exhibits the impedance analysis of Ag-Fe₂O₃ composites electrode in stage (B) and stage (C) cycles. The charge transport resistance characterized by the semicircle at medium frequencies of stage (B) (400 Ω) is higher than that in stage (C) (300 Ω), which is consistent with the cycle performance. Therefore, the capacity rise can be ascribed to the reversible formation of polymeric/gel-like layer and/or interfacial lithium storage. The EIS result is agree with the cycling process of Ag-Fe₂O₃ composites electrode is shown in Fig. 5(c).

We also carry out SEM characterization of Fe_2O_3 and $Ag-Fe_2O_3$ composites electrode after 200 cycles (Fig. S3). Spherical Fe_2O_3 is barely found after cycling, and they become aggregated as shown in Fig. S3(a and b). On the contrary, the spherical structure of $Ag-Fe_2O_3$ composites is almost maintained after cycling as shown in Fig. S3(c), and even a number of hollow spheres exist as shown in Fig. S3(d). Therefore, uniform distribution of Ag nanoparticles on the surface of Fe_2O_3 nanospheres will benefit to the cycle stability of $Ag-Fe_2O_3$ nanocomposite electrode.

Conclusion

In summary, a hollow structure of Ag-Fe₂O₃ composites was synthesized by using Ag@C core-shell matrix as sacrificial templates and subsequent calcining process. In virtue of its hollow structure and the decoration of Ag nanoparticles over Fe₂O₃ nanospheres, the composites exhibited an improved cycling performance (~ 953.2 mA h g⁻¹ at 100 mA g⁻¹ after 200 cycles and 678 mA h g⁻¹ at 1 A g⁻¹ after 250 cycles). The Ag-Fe₂O₃ electrode also exhibited an extraordinary high-rate performance (~ 650.8 mA h g⁻¹ at 5 A g⁻¹). Hence, this work showed that exploring of Fe₂O₃ composites might open venues for the practical applications of TMOs anodes in the next-generation of high-performance Li-ion batteries.

Methods

Preparation of Ag@C and Carbon spheres templates. All the reagents in the experiment were analytical grade and used without further purification.

Ag@C templates were synthesized by a modified hydrothermal method⁵⁵. 30 mL of 10 mM AgNO₃ aqueous solution was added into 20 mL of 1 M glucose solution. After continual stirring for 30 min, the mixture was transferred to a 100 mL Teflon-lined autoclave and maintained at 180 °C for 6 h. After the autoclave naturally cooled down to the room temperature, the products were washed by water and ethanol respectively till the upper liquid become clear after centrifugation. Finally, the resulting products were oven-dried at 80 °C for 10 h. Furthermore, we also prepared carbon spheres in the same manner without addition of AgNO₃.

Preparation of Ag-Fe₂O₃ composites. 0.08 g of as-prepared Ag^{@C} templates were dispersed in 50 mL deionized water. After ultrasonication for 30 min, $0.278 \text{ g of FeSO}_4$, $7H_2O$ and 0.3 g of sodium acetate (NaAc) were added into the solution. Subsequently, the solution was stirred vigorously for 24 h at room temperature. Then, the resultant composites were purified by repeated centrifugation and dispersion cycle, and finally dried at 80 °C for 10 h. The final products of Ag-Fe₂O₃ composites were placed into the muffle furnace and calcined at 600 °C for 2 h in air. For comparison, we also synthesized Fe₂O₃ nanospheres using the as-prepared carbon templates with a similar procedure.

Materials characterization. Morphology and chemical compositions of the samples were characterized using scanning electron microscope (SEM, Zeiss SUPRA 55) equipped with an energy dispersive X-ray Spectroscopy (EDS, Oxford), transmission electron microscopy (TEM, JEOL JEM 2100) and high resolution transmission electron microscopy (HRTEM, JEOL JEM 2100), X-ray diffraction (XRD, Rigaku Ultima IV) were recorded on a Panalytical X-pert diffracto meter with Cu K α irradiation. **Electrochemical measurements.** The electrochemical measurements were characterized using CR2025-type coin cells. Pure lithium foils were used as the counter and reference electrodes. The active materials were mixed with carboxyl methyl cellulose and carbon black in a weight ratio of 80:10:10. The mixture was pressed onto copper foil and dried under vacuum at 100 °C for 10 h. The active material loading of the electrodes was about $0.8-1 \text{ mg} \cdot \text{cm}^{-2}$. The coin-cell was assembled in an argon-filled glove box with oxygen contents less than 0.5 ppm. The electrolyte was 1 M LiPF₆ in a mixture of EC, EMC, DMC (1:1:1, in v:v:v). A Celgard 2400 microporous polypropylene membrane was used as a separator. The cyclic voltammogram (CV) was performed by using a CHI 660E electrochemical workstation (Shanghai Chenhua Instrument Co., China) in the potential range of $0.01-3.0 \text{ V} \text{ vs. Li/Li}^+$ at a scan rate of 0.1 mV s^{-1} . The electrochemical impedance spectroscopy (EIS) technique was measured at open circuit potential in a frequency range from 10^{-2} Hz to 10^{5} Hz.

Data availability. All datasets generated or analysed during this study are included in this published article and its Supplementary Information files.

References

- 1. Xie, X. Q. *et al.* MoS₂ nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries. *Adv. Energy Mater.* **6**, 1502161–1502169 (2016).
- Yuan, C. Z., Li, J. Y., Hou, L. R., Zhang, L. H. & Zhang, X. G. Template-free fabrication of mesoporous hollow ZnMn₂O₄ submicrospheres with enhanced lithium storage capability towards high-performance Li-ion batteries. *Part. Syst. Char.* 31, 657–663 (2014).
- Gao, G. X., Yu, L., Wu, H. B. & Lou, X. W. Hierarchical tubular structures constructed by carbon-coated α-Fe₂O₃ nanorods for highly reversible lithium storage. *Small* 10, 1741–1745 (2014).
- Zhang, N., Zhao, Q., Han, X. P., Yang, J. G. & Chen, J. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithiumion batteries. Nanoscale 6, 2827–2832 (2014).
- Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. *Nature* 407, 496–499 (2000).
- 6. Gu, X. et al. Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. J. Mater. Chem. A 3, 1037–1041 (2015).
- Wen, W., Wu, J. M. & Cao, M. H. Facile synthesis of a mesoporous Co₃O₄ network for Li-storage via thermal decomposition of an amorphous metal complex. *Nanoscale* 6, 12476–12481 (2014).
- 8. Li, L., Raji, A. R. & Tour, J. M. Graphene-wrapped MnO₂-graphene nanoribbons as anode materials for high-performance lithium ion batteries. *Adv. Mater.* **25**, 6298–6302 (2013).
- Lou, X. W., Deng, D., Lee, J. Y., Feng, J. & Archer, L. A. Self-supported formation of needlelike Co₃O₄ nanotubes and their application as lithium-ion battery electrodes. *Adv. Mater.* 20, 258–262 (2008).
- 10. Huang, X. L. et al. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 23, 4345–4353 (2013).
- Zhang, L., Wu, H. B., Madhavi, S., Hng, H. H. & Lou, X. W. Formation of Fe₂O₃ microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 134, 17388–17391 (2012).
- Wang, B., Chen, J. S., Wu, H. B., Wang, Z. Y. & Lou, X. W. Quasiemulsion-templated formation of α-Fe₂O₃ hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 133, 17146–17148 (2011).
- Chen, M. H. et al. Porous α-Fe₂O₃ nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 9, 364–372 (2014).
- Chen, J., Xu, L. N., Li, W. Y. & Gou, X. L. α-Fe₂O₃ nanotubes in gas sensor and lithium-ion battery applications. *Adv. Mater.* 17, 582–586 (2005).
- Hao, S. J. et al. Phase transition of hollow-porous α-Fe₂O₃ microsphere based anodes for lithium ion batteries during high rate cycling. J. Mater. Chem. A 4, 16569–16575 (2016).
- Wang, Z. Y., Luan, D. Y., Madhavi, S., Hu, Y. & Lou, X. W. Assembling carbon-coated α-Fe₂O₃ hollow nanohorns on the CNT backbone for superior lithium storage capability. *Energy Environ. Sci.* 5, 5252–5256 (2012).
- Ye, F. *et al.* Engineering a hierarchical hollow hematite nanostructure for lithium storage. *J. Mater. Chem. A* 4, 14687–14692 (2016).
 Zhang, L., Wu, H. B. & Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. *Adv. Energy Mater.* 4, 1300958–1300969 (2014).
- Lei, D. N. et al. α-Fe₂O₃ nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries. Nanoscale 4, 3422–3426 (2012).
- Zhou, X. S., Yu, L. & Lou, X. W. Nanowire-templated formation of SnO₂/carbon nanotubes with enhanced lithium storage properties. *Nanoscale* 8, 8384–8389 (2016).
- Chen, Y. M., Yu, L. & Lou, X. W. Hierarchical tubular structures composed of Co₃O₄ hollow nanoparticles and carbon nanotubes for lithium storage. *Angew. Chem. Int. Ed.* 55, 5990–5993 (2016).
- Chen, J. F., Ru, Q., Mo, Y. D., Hu, S. J. & Hou, X. H. Design and synthesis of hollow NiCo₂O₄ nanoboxes as anodes for lithium-ion and sodium-ion batteries. *Phys. Chem. Chem. Phys.* 18, 18949–18957 (2016).
- Wang, S. H. et al. Nanoparticle cookies derived from metal-organic frameworks: controlled synthesis and application in anode materials for lithium-ion batteries. Small 12, 2365–2375 (2016).
- 24. Jiang, H. et al. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 8, 6038–6046 (2014).
- Wang, Y. G., Li, H. Q., He, P., Hosono, E. & Zhou, H. S. Nano active materials for lithium-ion batteries. Nanoscale 2, 1294–1305 (2010).
- Han, F. *et al.* Nanoengineered polypyrrole-coated Fe₂O₃@C multifunctional composites with an improved cycle stability as lithiumion anodes. *Adv. Funct. Mater.* 23, 1692–1700 (2013).
- 27. Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885-888 (2006).
- Kim, J. et al. Controlled Ag-driven superior rate-capability of Li₄Ti₅O₁₂ anodes for lithium rechargeable batteries. Nano Res. 6, 365–372 (2013).
- Nam, S. H. *et al.* Ag or Au Nanoparticle-embedded one-dimensional composite TiO₂ nanofibers prepared via electrospinning for use in lithium-ion batteries. ACS Appl. Mater. & Inter. 2, 2046–2052 (2010).
- 30. Steinhart, M. et al. Polymer nanotubes by wetting of ordered porous templares. Science 296, 1997 (2002).
- Lou, X. W., Li, C. M. & Archer, L. A. Designed synthesis of coaxial SnO₂@carbon hollow nanospheres for highly reversible lithium storage. *Adv. Mater.* 21, 2536–2539 (2009).
- Pei, F. et al. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Adv. Energy Mater. 6, 1502539–1502547 (2016).
- Chen, X. et al. Templating synthesis of SnO₂ nanotubes loaded with Ag₂O nanoparticles and their enhanced gas sensing properties. Adv. Funct. Mater. 21, 2049–2056 (2011).

- Chen, W., Pan, X. L. & Bao, X. H. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. J. Am. Chem. Soc. 129, 7421–7426 (2007).
- Choi, J. H. et al. Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Letters 7, 861–867 (2007).
- Chernyshova, I. V., Hochella, M. F. & Madden, A. S. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys. Chem. Chem. Phys. 9, 1736–1750 (2007).
- Hassan, M. F., Rahman, M. M., Guo, Z. P., Chen, Z. X. & Liu, H. K. Solvent-assisted molten salt process: A new route to synthesise α-Fe₂O₃/C nanocomposite and its electrochemical performance in lithium-ion batteries. *Electrochim. Acta* 55, 5006–5013 (2010).
- Jubb, A. M. & Allen, H. C. Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. & Inter. 2, 2804–2812 (2010).
- Cao, K. Z. et al. 3D hierarchical porous α-Fe₂O₃ nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 5, 1401421–1401430 (2015).
- 40. Jiang, Y. Z. *et al.* Amorphous Fe₂O₃ as a high-capacity, high-rate and long-life anode material for lithium ion batteries. *Nano Energy* 4, 23–30 (2014).
- Kan, J. & Wang, Y. Large and fast reversible Li-ion storages in Fe₂O₃-graphene sheet-on-sheet sandwich-like nanocomposites. Sci. Rep. 3, 3502–3512 (2013).
- Zhou, G. M. et al. A nanosized Fe₂O₃ decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries. J. Mater. Chem. 22, 17942–17946 (2012).
- 43. Zhu, J. X. et al. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089 (2011).
- 44. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. *Energy Environ. Sci.* **4**, 3243–3262 (2011).
- Taberna, P. L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe₃O₄-based Cu nano-architectured electrodes for lithium-ion battery applications. *Nat. Mater.* 5, 567–573 (2006).
- 46. Xu, X. D., Cao, R. G., Jeong, S. Y. & Cho, J. Spindle-like mesoporous α-Fe₂O₃ anode material prepared from MOF template for highrate lithium batteries. *Nano Letters* 12, 4988–4991 (2012).
- 47. Reddy, M. V. et al. α-Fe₂O₃ Nanoflakes as an anode material for Li-Ion batteries. Adv. Funct. Mater. 17, 2792–2799 (2007).
- Yu, W. J., Hou, P. X., Li, F. & Liu, C. Improved electrochemical performance of Fe₂O₃ nanoparticles confined in carbon nanotubes. J. Mater. Chem. 22, 13756–13763 (2012).
- 49. Hu, Y. Y. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12, 1130–1136 (2013).
- Zhu, X. J., Zhu, Y. W., Murali, S., Stoller, M. D. & Ruoff, R. S. Nanostructured reduced graphene oxide/Fe₂O₃ composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333–3338 (2011).
- Jin, S. L. et al. Facile synthesis of hierarchically structured Fe₃O₄/carbon micro-flowers and their application to lithium-ion battery anodes. J. Power Sources 196, 3887–3893 (2011).
- Zou, Y. Q., Kan, J. & Wang, Y. Fe₂O₃-graphene rice-on-sheet nanocomposite for high and fast lithium ion storage. J. Phys. Chem. C 115, 20747–20753 (2011).
- Zhang, M. et al. A green and fast strategy for the scalable synthesis of Fe₂O₃/graphene with significantly enhanced Li-ion storage properties. J. Mater. Chem. 22, 3868–3874 (2012).
- Wang, J. et al. Controlled synthesis of α-FeOOH nanorods and their transformation to mesoporous α-Fe₂O₃, Fe₃O₄@C nanorods as anodes for lithium ion batteries. RSC Adv. 3, 15316–15326 (2013).
- Zhao, P. L. *et al.* Design of Ag@C@SnO₂@TiO₂ yolk-shell nanospheres with enhanced photoelectric properties for dye sensitized solar cells. *J. Power Sources* 318, 49–56 (2016).

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grant no. 61574118), and the Key Project of Science and Technology Plan of Fujian Province (grant No. 2015H0038).

Author Contributions

X.L. and Q.L. contributed to conception and design of the experiment, analysis of the data and writing the manuscript. X.T. and H.L. carried out synthesis and characterization of the materials. X.P., J.Z. and P.N. carried out the measurement of electrochemical performance. All the authors contributed to discussion on the results and preparation of manuscript. All authors have given approval to the final version of the manuscript.

Additional Information

Supplementary information accompanies this paper at doi:10.1038/s41598-017-08773-6

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017