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Percolation Phase Transition of 
Surface Air Temperature Networks: 
A new test bed for El Niño/La Niña 
simulations
Lijuan Hua1,2, Zhenghui Lu3,4, Naiming Yuan3, Lin Chen5, Yongqiang Yu  2 & Lu Wang5

In this work, we studied the air-sea interaction over the tropical central eastern Pacific from a new 
perspective, climate network. The surface air temperatures over the tropical Pacific were constructed 
as a network, and the nodes within this network were linked if they have a similar temporal varying 
pattern. Using three different reanalysis datasets, we verified the percolation phase transition. That 
is, when the influences of El Niño/La Niña are strong enough to isolate more than 48% of the nodes, 
the network may abruptly be divided into many small pieces, indicating a change of the network 
state. This phenomenon was reproduced successfully by a coupled general circulation model, Flexible 
Global Ocean-Atmosphere-Land System Model Spectral Version 2, but another model, Flexible Global 
Ocean-Atmosphere-Land System Model Grid-point Version 2, failed. As both models have the same 
oceanic component, but are with different atmospheric components, the improperly used atmospheric 
component should be responsible for the missing of the percolation phase transition. Considering that 
this new phenomenon is only recently noticed, current state-of-the-art models may ignore this process 
and induce unrealistic simulations. Accordingly, percolation phase transition is proposed as a new test 
bed, which deserves more attention in the future.

El Niño/La Niña, characterized by large-scale anomalous temperature variation in the tropical central eastern 
Pacific, is one of the most prominent inter-annual modes in the earth climate system1. Although originated from 
the tropical Pacific Ocean, the sea surface temperature (SST) variability associated with El Niño/La Niña could 
induce significant changes in not only the tropical circulations, but could also affect the weather and climate 
conditions over the world2–4. It is intimately related to the outbreak of natural hazard events such as flood and 
drought5–7, and thus has profound socio-economic consequences. Therefore, El Niño/La Niña is one of the topic 
that receives significant attention by both governments and the climatology community. During the past several 
years, much research has been carried out to (i) understand the mechanisms of El Niño/La Niña8–12, and (ii) 
improve the prediction skills13–15. However, our current knowledge is still far from sufficient to perform either a 
long-term prediction of El Niño/La Niña events, or a reliable estimation of the El Niño/La Niña impacts.

One reason for the current research dilemma may be the lack of high-quality observations16. But beyond that, 
a more important reason should be the complex ocean-atmosphere interactions that cannot be fully addressed by 
current research methods. Traditionally, researchers prefer to define indexes in climate sciences, such as the well 
recognized El Niño/Southern Oscillation (ENSO) indicators, the Niño3.4 index, and the Southern Oscillation 
index (SOI)1. These indexes are widely used in El Niño/La Niña research, with the advantage of reducing com-
plexity. However, this reduced complexity, on the other hand, may bring about additional disadvantages and 
hinder in-depth research. For example, based on the Niño3.4 index, we cannot study the internal correlations of 
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the SSTs among different areas within the Niño3.4 region; we do not know whether the surface air temperature of 
different areas (grids) over the Niño3.4 region respond to the SST anomalies consistently. Moreover, we are una-
ble to tell whether the impacts of El Niño/La Niña are different, when subjected to different internal correlation 
patterns of SSTs within the Niño3.4 region. These questions are all relevant to achieving a better understanding of 
El Niño/La Niña, but cannot be solved by analyzing simple indexes. Accordingly, new methods focusing on more 
detailed research regions (or even grid level) without losing too much complexity are urgently required. The use 
of climate network, is a type of new approach that may be productive.

Similar to the concept of complex network, in climate network different regions (e.g., grids) are considered as 
nodes that communicate with each other by exchanging heat, material, or even forces. The interactions between 
nodes are represented by links, which are quantified by measuring the similarity of time series from different 
nodes17–19. Based on the links between every two nodes, one can measure the structural changes of climate net-
works, as well as their responses to external forces. For example, Yamasaki et al. studied the effects of El Niño 
on climate networks of different regions, and found similar structural changes of the networks during El Niño 
events, even for geographical zones that are far away from the tropical central eastern Pacific18. Gozolchiani et al. 
analyzed the interactions between El Niño Basin and its surroundings, and found a clear autonomous behavior 
in the El Niño Basin, typically three months after an El Niño event begins19. Ludescher et al. calculated the link 
strength between the grids inside El Niño Basins and the grids outside, and found that their cooperativity tends to 
grow in the calendar year before an El Niño event20. Accordingly, a 12-mo forecasting scheme was proposed21. Up 
to now, with the development of complex network theories, the concept of climate network has become popular 
and many research activities have been initiated18–23.

Of all the current findings in complex network, percolation theory may be the most interesting24–26. It is based 
on the links of each node in a given network, but ultimately evaluates the overall state. By measuring the per-
centage of nodes that are isolated (no links to other nodes) from the entire network, percolation theory indicates 
the existence of a threshold, which, when the fraction of node removal is high enough, the considered network 
may convert its state, or, in other words, experience a phase transition. This theory takes into account both the 
complexity and the integrity of the system being studied, which is thus appropriate for climate research. In a very 
recent work by Lu et al., who applied percolation theory to the studies of El Niño/La Niña, the upper surface air 
temperature (SAT) network was found to experience abrupt phase transitions if the influence of El Niño/La Niña 
was strong enough to exceed a given threshold27. In this case, the connection structure was changed dramatically 
and the SAT network was converted into a new regime. Accordingly, effects of El Niño/La Niña were transferred 
to the upper SAT field, which may further affect remote regions via an atmospheric bridge. However, if there was 
no phase transition, the effects of El Niño/La Niña events may be limited only to local regions27. Therefore, from 
the percolation properties, one may better understand ocean-atmosphere interactions and deduce whether an El 
Niño/La Niña event can transfer its impact to remote regions.

However, as with many previous studies on climate network18, 20, 22, the findings reported by Lu et al. were only 
based on one reanalysis product27. It is not clear whether the conclusions still apply in multi-reanalysis datasets, 
let along when checking the outputs of climate models. Does the abrupt percolation phase transition universally 
exist independent of datasets? Can it be reproduced by coupled general circulation models (CGCMs)? These 
important questions have not yet been answered. In this study, using multi-reanalysis datasets, we studied the 
reactions of upper SAT networks to El Niño/La Niña, and verified the percolation phase transition revealed by Lu 
et al. By further comparing the performance of different models in reproducing the percolation phase transition, 
we proposed a new perspective for model evaluations.

The paper is organized as follows: In the “Results” section, we study the influences of El Niño/La Niña on 
upper sea surface air temperature networks using three different reanalysis products [National Centers for 
Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis 1, 1948–
201528; European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA40), 1957–200229; 
and the Japanese 55-year Reanalysis (JRA55), 1958–201230]. Next, the performance of two different CGCMs 
(Flexible Global Ocean-Atmosphere-Land System Model Spectral Version 2, FGOALS_s231; and Flexible Global 
Ocean-Atmosphere-Land System Model Grid-point Version 2, FGOALS_g232) are checked to see whether the 
percolation phase transition can be simulated correctly. By comparing the outputs of the two models, potential 
reasons that may lead to model simulation bias are further discussed, and a new perspective for model evaluation 
is proposed in the “Discussion and Conclusions” section. In the final section, we briefly describe the data, model, 
and methods used in this work.

Results
In this study, the SATs over the tropical Pacific with the domains 120°E to 285°W and 20°N to 20°S were con-
structed as a network with a resolution of 5° × 5° (306 nodes; see Fig. 1). This SAT network has been found to be 
relatively independent, especially during the ENSO phase19, 33. Therefore, although the network has only 
finite-size, it is reasonable to study the percolation phase transition. To describe the network mathematically, we 
calculated the links between different nodes by measuring their similarity. If the link strength Wi j

t
,  is stronger than 

a threshold Q (see the “Method” subsection of “Data, Models, and Methods”), we recognize that the two nodes i 
and j are connected at time t17. Accordingly, the following two quantities were defined to measure the influences 
of El Niño/La Niña on the SAT network:

 (i) The percentage of isolated nodes (P). If a node is not connected to any other nodes, we consider it an iso-
lated node. The percentage of isolated nodes is thus defined as the fraction of isolated nodes over the total 
nodes [see Eq. (5)]24.
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 (ii) The giant component size (S). For some nodes of a network, if any two of them can be connected with at 
least one path, we consider these nodes together as a cluster. The giant component size is then defined as 
the ratio of the number of the nodes in the largest cluster to the number of the total connected nodes [see 
Eq. (6)]24.

By definition, P measures the strength of the influences by El Niño/La Niña. The higher P is, the more nodes 
are isolated from the network. S measures the overall properties of the network. A large S means that a giant 
cluster still spans the entire network, while a small S indicates that the network has been divided into many small 
pieces. An abrupt change of S from a high level to a low level indicates a change of the network state, or, in other 
words, a phase transition. In this work, by calculating P and S, we are able to study the reactions of the SAT net-
work to the influences of El Niño/La Niña.

First, we studied the reactions of the SAT network using three different reanalysis datasets. As shown in Fig. 2, 
during El Niño/La Niña events (considering that the Niño3.4 index is larger/smaller than +0.5/−0.5), the per-
centage of isolated nodes P (yellow lines) was higher than in normal periods, indicating more nodes lost their 
connections and became isolated under the influences of El Niño/La Niña. Correspondingly, the SAT network 
structure was changed with smaller S (blue lines). There were significant (negative) correlations between P and 
S, and S decreased abruptly when P was increasing. Results from all the three reanalysis datasets were in good 
agreement with each other, indicating identical reactions of the SAT network independent of reanalysis datasets. 
Since the loss of connected nodes can induce abrupt decrease of S, it is possible to observe a percolation phase 
transition in the SAT network.

To check the percolation properties of the SAT network, we further classified all the considered time points 
into two groups and studied how the giant component size S varied with different values of P. As shown in 
Fig. 3b,d,f, for the “Normal” group when the Niño3.4 index was within the range [−0.5, 0.5], the S values obtained 
from the three reanalysis datasets behaved similarly, which gathered between 0.8 and 1.0 in most cases. For the “El 

Figure 1. Surface air temperature network. In this study, 306 nodes with a resolution of 5° × 5° were selected 
and the corresponding surface air temperatures were constructed as a climate network. The figure was generated 
using Matlab (version R2012a, http://www.mathworks.com/pl_homepage).

Figure 2. Temporal variation of the percentage of isolated nodes P, giant component size S, as well as the 
Niño3.4 index. (a–c) are the results calculated from the three different reanalysis datasets: (a) NCEP, (b) ERA40, 
and (c) JRA55. The yellow lines represent the percentage of isolated nodes P (refer to the right-hand axis), 
while the blue lines show the giant component size S (refer to the left-hand axis). (d) Shows the Niño3.4 index 
downloaded from NOAA. The x-axis in (d) was shifted to the right by half a year, because the P and S values 
were calculated using data one year before the marked time point t (see “Method” subsection of “Data, Model, 
and Methods”). As is clearly seen, all the three reanalysis datasets provide identical results. When the Niño3.4 
index was larger/smaller than +0.5/−0.5, higher (lower) P (S) values were found.

http://www.mathworks.com/pl_homepage
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Niño/La Niña” group when the Niño3.4 index was larger/smaller than +0.5/−0.5 [Fig. 3a,c,e], on the other hand, 
the S calculated from the three datasets all decreased abruptly from a high level (above 0.8) to a low level (below 
0.6) at Pk = 0.48. This abrupt decrease implies that the state of the SAT network changed from a giant connected 
cluster to many small pieces, or in other words, from stable to unstable. Pk = 0.48 is a threshold that determines 
whether El Niño/La Niña can alter the upper level SAT network. Obviously, only when the influences of El Niño/
La Niña are strong enough to isolate more than 48% of the nodes can the upper SAT network experience a phase 
transition. Although the three reanalysis products have different temporal coverages, they all showed identical 
results (Fig. 3), indicating a universal existence of the percolation phase transition.

Since the percolation phase transition were verified by multiple reanalysis datasets, it is natural to ask whether 
the current CGCMs can simulate this kind of phase transition. In this study, we analyzed model simulations by 
two CGCMs: Flexible Global Ocean-Atmosphere-Land System Model Spectral Version 2 (FGOALS_s2)31 and 
Flexible Global Ocean-Atmosphere-Land System Model Grid-point Version 2 (FGOALS_g2)32. Both models 
participated in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and show excellent performance 
in ENSO-related behaviors among the CMIP5 models34. They have the same oceanic component, but different 
atmospheric components (see the “Model” subsection of “Data, Model, and Methods”). Therefore, the simula-
tions are representative, especially for researching air-sea interactions. For FGOALS_s2, historical simulations 
from 1950 to 2003 were analyzed, while for FGOALS_g2, the time period is slightly longer, from 1950 to 2005. 

Figure 3. Connections of S and P in two groups. The two groups (left and right) are classified according to 
the Niño3.4 index. The three panels (from top to bottom) are the results of different reanalysis datasets: NCEP, 
ERA40, and JRA55, respectively. For normal cases, most of the S values are above 0.8. For the anomalous cases 
(El Niño/La Niña), the S values decreased abruptly from higher than 0.8 to lower than 0.4 at P = 0.48 (the 
vertical dashed line), indicating a percolation phase transition. The color represents the probability of having 
a pair of P and S at a given point of each subfigure. The numbers marked in the color bar are transformed by 
log10.
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After constructing the network as shown in Fig. 1, we calculated the percentage of isolated nodes P and the giant 
component size S (Fig. 4). Generally speaking, the negative correlations between P and S were reproduced suc-
cessfully by the two models, but the increase of P and decrease of S seem to be better simulated by FGOALS_s2. 
By comparison with the simulated Niño3.4 index, one can see remarkable reactions of P (or S) in the FGOALS_s2 
simulations, and almost all the cases were well captured. For FGOALS_g2, on the other hand, the simulations 
were too stable. There were only few cases when significant increases (decreases) of P (S) corresponded to large 
anomalies of Niño3.4 in FGOALS_g2 (see the gray regions in Fig. 4). Accordingly, FGOALS_s2 seems to exhibit 
better performance in simulating the influences of El Niño/La Niña on the upper SAT network.

Similar to Fig. 3, we further studied how the giant component size S varied with P in two groups. As shown 
in Fig. 5, the S values were above 0.8 for most cases in the “Normal” group, which was identical to the results 
obtained from reanalysis datasets (Fig. 3). However, when considering the “El Niño/La Niña” group, remarkable 
differences between the two models were revealed. The results obtained from FGOALS_s2 reproduced the abrupt 
percolation phase transition successfully at the correct threshold of Pk = 0.48, while the S values calculated from 
FGOALS_g2 still appeared above 0.8. Consequently, one cannot distinguish the two groups using the S behaviors, 
and the percolation phase transition was missed by FGOALS_g2.

It is worth mentioning that when analyzing the simulations we used the simulated Niño3.4 index (not the 
observed Niño3.4 index shown in Fig. 3) to represent the El Niño/La Niña events or normal periods. In other 
words, the failure in simulating the percolation phase in FGOALS_g2 is not related to the ability of the model to 
simulate the Niño3.4 index. In fact, many studies have pointed out that FGOALS_g2 shows excellent performance 
in simulating ENSO behaviors, and it is widely employed as a representative CGCM to conduct ENSO-related 
research35–39. However, regarding the ability to model air-sea interactions, especially the influences of SST anom-
alies on the upper surface air temperatures, FGOALS_s2 seems to exhibit better performance. To better illustrate 
this issue, we further studied node vulnerability Fi in the SAT network27. Fi is a quantity that measures how vul-
nerable a node is when the network is influenced. In the “Method” subsection of “Data, Models, and Methods”, 
it is defined as the ratio of the times that a given node was isolated to the entire time period [Eq. (7)]. If the node 
has a higher chance of being isolated, we consider it a node with high vulnerability. Using reanalysis datasets, we 
found that nodes in the network were highly vulnerable over the tropical central eastern Pacific (Fig. 6), which is 
the key region of El Niño/La Niña. This is reasonable as El Niño/La Niña events have the strongest influences on 
the upper surface air temperatures of the same region. As a result, the connections in this region are easy broken 
and the nodes have high chances of being isolated. From FGOALS_s2, similar results were obtained [Fig. 6c,d], 
and the vulnerable nodes were located in the same region that strong sea surface temperature anomalies were 
simulated. However, if we refer to FGOALS_g2, over the region where strong SST anomalies were simulated, only 
the eastern part of the network was significantly influenced with high vulnerability. In the central part, the node 
vulnerabilities were low. Apparently, this simulation is unrealistic, which may induce a more stable network. As 
shown in Fig. 4c, we indeed found small P values in FGOALS_g2, and for most cases the P values were below 0.4. 
Accordingly, it is natural to miss the percolation phase transition in FGOALS_g2, as the P values can barely reach 
Pk = 0.48.

Discussion and Conclusion
In this work, we used three different reanalysis datasets and studied the influences of El Niño/La Niña on the 
upper SAT network. Identical results from the three reanalysis datasets were found, which verified the percolation 
phase transition of the network. That is, under the influence of El Niño/La Niña, especially when the percentage 

Figure 4. Simulated P, S, and Niño3.4 index in FGOALS_s2 and FGOALS_g2. (a,b) are the results from 
FGOALS_s2, while (c,d) are the results from FGOALS_g2. The gray areas highlight the cases when P, S, and 
the Niño3.4 index had good connections. FGOALS_s2 seems to exhibit better performance as the expected 
P/S reactions were simulated successfully in most cases. However, the P values from FGOALS_g2 seem to be 
underestimated. As a result, the network was unrealistically stable with high S.
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of isolated nodes P is higher than Pk = 0.48, the upper SAT network will experience an abrupt phase transition. 
On the other hand, if P is lower than Pk, the upper SAT network will retain its main features and the effects of the 
SST anomalies in the tropical central eastern Pacific may be limited locally.

By analyzing the outputs of two CGCMs, we found that the percolation phase transition was successfully 
reproduced in FGOALS_s2, but not in FGOALS_g2. The reason for the failure in FGOALS_g2 is physically 
unclear, but from the node vulnerability (Fig. 6), one can speculate that FGOALS_g2 failed to fully capture the 
air-sea interactions in the tropical central Pacific, which further resulted in low P values (Fig. 4) and ultimately 
in missing the percolation phase transition. Since both models (FGOALS_s2 and FGOALS_g2) were designed 
with the identical oceanic component but coupled with different atmospheric components31, 32, we suggest that 
the contrasting performances of the two models should be attributed to the distinctive atmospheric components. 
Therefore, a detailed comparison between the atmospheric components in both CGCMs is highly required for 
further model improvement.

Our work studied the air-sea interactions over the tropical central eastern Pacific from a new perspective. By 
retaining the complexity in terms of a climate network, we were able to obtain more detailed information, which 
is important for better understanding of the underlying mechanisms of El Niño/La Niña. The percolation phase 
transition was found to be useful in determining whether the influences of El Niño/La Niña have been transferred 
upwards successfully. Meanwhile, as a verified phenomenon, it is also a good test bed for model simulations. By 
calculating the percentage of isolated nodes P, the giant component size S, as well as the simulated Niño3.4 index, 
we were able to check whether the observed percolation phase transition in the upper SAT networks can be repro-
duced, and further evaluated the models’ capacity to simulate air-sea interactions. Our work presented different 
simulations of two CGCMs, which served as typical examples that showed how to perform the model evaluation. 
From the good performance of FGOALS_s2, we have confidence, that the percolation phase transition can be 
technically well simulated. However, as a new phenomenon that has not been noticed before, even well-known 
models may ignore this process and fail in the simulation (see Supplementary Material, in which the results of 
simulations using two other models are presented). Therefore, it is important to make a detailed evaluation of the 
current state-of-the-art CGCMs and, if necessary, improve them from this new perspective. In followup work, we 
plan to perform this systematic evaluation using a large number of CGCMs.

Data, Model, and Methods
Data. In this study, the daily surface air temperatures from three reanalysis products were used. Data from 
NCEP/NCAR reanalysis 1 project (1948–2015)28 were downloaded from the National Oceanic & Atmospheric 
Administration (NOAA, provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at 

Figure 5. Simulated connections of S and P in two groups. Similar to Fig. 3, but showing the simulated results 
from FGOALS_s2 (upper panel) and FGOALS_g2 (lower panel). FGOALS_s2 exhibits better performance and 
reproduces the percolation phase transition successfully at P = 0.48 (the vertical dashed line).
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http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html). Data from ERA40 (1957–2002) 
were downloaded from the European Centre for Medium-Range Weather Forecasts29 (ECMWF, http://apps.
ecmwf.int/datasets/data/era40-daily/levtype=sfc/). Data from JRA55 (1958–2012) were downloaded from the 
Japan Meteorological Agency30 (JMA, http://jra.kishou.go.jp/JRA-55/index_en.html#jra-55). In addition to the 
SATs, the Niño3.4 index was used as an indicator of El Niño/La Niña events. The index was downloaded from 
NOAA (http://www.esrl.noaa.gov/psd/data/climateindices/). Monthly SST anomalies were also used in this 
study40 [see Fig. 6b]. The data were also downloaded from NOAA (https://www.esrl.noaa.gov/psd/data/gridded/
data.noaa.ersst.v4.html).

Model. In this study, we analyzed simulations from two models: Flexible Global Ocean-Atmosphere-Land 
System Model Spectral Version 2 (FGOALS_s2)31 and Flexible Global Ocean-Atmosphere-Land System Model 
Grid-point Version 2 (FGOALS_g2)32. FGOALS_s2 is a state-of-the-art coupled general circulation model 
developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical 
Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). It contains atmospheric, oceanic, land and ice 
components. The atmospheric component is Spectral Atmospheric Circulation Model of IAP LASG, Version 2 
(SAMIL2.0)41, with a horizontal resolution of 2.8° × 1.6°. The oceanic component is LASG/IAP Climate System 
Ocean Model Version 2 (LICOM2)42, with a horizontal resolution of about 1° × 1°. The land component is the 

Figure 6. Spatial distributions of node vulnerabilities Fi and the sea surface temperature (SST) anomalies. Right-
hand column shows the SST anomalies, which were calculated by combining both the positive anomalies and 
negative anomalies (taking the absolute values). Left-hand column shows the node vulnerabilities of the SAT 
network. The nodes with higher frequency (chance) of being isolated are marked by dark color. The upper panel 
represents the results from reanalysis datasets (NCAR). The middle panel shows the results of FGOALS_s2, 
while the bottom panel gives the simulations from FGOALS_g2. Using reanalysis datasets, one can see good 
agreements in the regions with strong node vulnerabilities [panel (a)] and with large SST anomalies [panel (b)]. 
FGOALS_s2 succeeded in reproducing this consistency, but FGOALS_g2 failed. The figure is generated using 
Ferret (version6.9, http://ferret.pmel.noaa.gov/Ferret/documentation/release-notes/version-6-9-release-notes).

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html
http://apps.ecmwf.int/datasets/data/era40-daily/levtype=sfc/
http://apps.ecmwf.int/datasets/data/era40-daily/levtype=sfc/
http://jra.kishou.go.jp/JRA-55/index_en.html#jra-55
http://www.esrl.noaa.gov/psd/data/climateindices/
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v4.html
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v4.html
http://ferret.pmel.noaa.gov/Ferret/documentation/release-notes/version-6-9-release-notes
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Community Land Model CLM343, and the ice component is the Community Sea Ice Model CSIM544. All four 
components are coupled by version 6 of the NCAR coupler44. FGOALS_g2 is another CGCM also developed by 
LASG/IAP. The oceanic and land components, as well as the coupler are the same as the components used by 
FGOALS_s2, while the atmospheric component of FGOALS_g2 is Grid-point Atmospheric Model of IAP LASG 
Version 2 (GAMIL2.0)45, with a horizontal resolution of 2.8° × 2.8°, and the ice component is the LOS Alamos 
Sea Ice Model CICE446.

Methods. Surface air temperature Network. In this study, we employed the nonlinear synchronization meas-
ure to construct a surface air temperature network18, 19. For each node in Fig. 1, we first calculated anomalies by 
subtracting the long-term mean annual cycle (leap days are removed), Tk(d), where k is the node index and d the 
calendar date. For every 30th day t, we then computed the time-delayed cross-correlation coefficients for each 
pair of nodes i and j over 365 days before t, with time lags τ between −200 days and 200 days. The result is 
denoted by τC ( )i j

t
, . After determining the maximum, mean, and standard deviation of the absolute values of the 

cross-correlation coefficients τC ( )i j
t
,  for each time point t, we finally defined the link strength as refs 18 and 19

τ τ

τ
=

−
.

( ) ( )
( )

W
max C mean C

std C

( ) ( )

( ) (1)
i j
t i j

t
i j
t

i j
t,

, ,

,

If the link strength is larger than a threshold Q (for a confidence level of 99%, Q = 0.57. See the following meth-
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function, we can describe the connections quantitatively as ref. 18

θ= − =







>

<
A W Q

W Q

W Q
( )

1,
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,
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t

i j
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,

,

and the degrees of node i at time t is thus represented as ref. 27,

∑= .
=

=
K A

(3)
i
t

j

j

i j
t

1

306

,

If at a given time point t, node i has no connections to any other nodes, =K 0i
t , we designate it an isolated node. 

The isolated nodes can be counted by a new quantity, Ri
t27,

=






=

>
R

K
K

1, 0
0, 0

,
(4)

i
t i

t

i
t

where i is the node index from 1 to 306.

Threshold Q. Using Eq. (1), one can always calculate a link strength Wi j
t
,  between node i and node j, at time point t. 

To ascertain whether the link has true physical meaning, or is just a spurious result due to random effects, however, 
one has to determine a threshold Q18, 24. In this study, we first shuffled the original time series at each node randomly, 
and calculated the link strength Ws i j

t
; ,  of each pair of nodes as we did for the original network. By comparing the 

probability density function (PDF) of link strength Wi j
t
,  from the real network and the PDF of Ws i j

t
; ,  from the shuffled 

network, we can determine the threshold Q above which a true connection between the two nodes i and j can be 
confirmed. Different from Lu et al.27, we normalized the link strength before comparing the PDFs. At the significant 
level of 0.01, we find Q = 0.32.

Percentage of isolated nodes. In the SAT network, we consider the isolated nodes as the result of influences from 
El Niño/La Niña. Accordingly, we define the intensity of influences at time point t as refs 24 and 27,

= ∑ =
=

P
R

306
, (5)

t i
i

i
t

1
306

where Pt represents the fraction of the isolated nodes at time point t (see Figs 2 and 4, yellow curves).

Giant component size. To calculate the giant component size, one needs to find the largest cluster, where i) any 
two nodes can be connected with at least one path, and ii) the number of nodes is the highest. The giant compo-
nent size at time point t is then defined as refs 24 and 27,

=
− ∑ =

=S N
R306

,
(6)

t LC

i
i

i
t

1
306

where NLC is the number of nodes in the largest cluster (see Figs 2 and 4, blue curves).

Node Vulnerability. To quantify the vulnerability of a given node under influences, we calculate27
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=
∑ ∈F

R
L T( )

,
(7)i

t T i
t

where L(T) is the length of a given time period (the total time points) and Fi is the fraction of the time points 
when node i is isolated over the total time points (see Fig. 6).
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