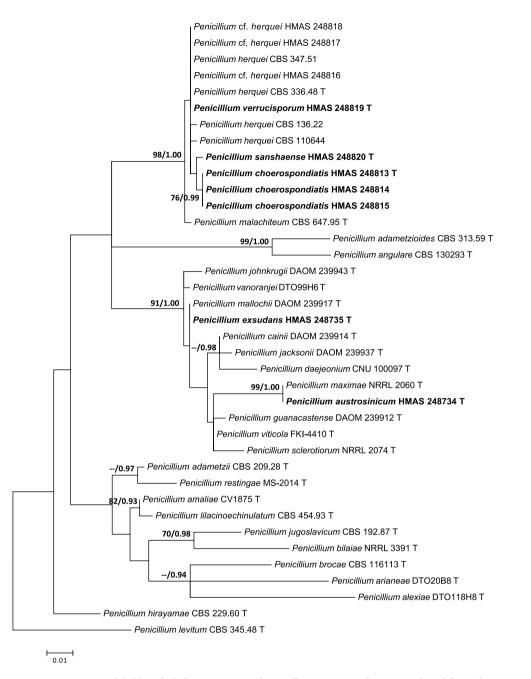
SCIENTIFIC REPORTS

Received: 25 January 2017 Accepted: 13 July 2017 Published online: 15 August 2017

OPEN Phylogeny and morphological analyses of Penicillium section Sclerotiora (Fungi) lead to the discovery of five new species

Xin-Cun Wang¹, Kai Chen^{1,2}, Zhao-Qing Zeng¹ & Wen-Ying Zhuang¹


Phylogeny of Penicillium section Sclerotiora is still limitedly investigated. In this study, five new species of Penicillium are identified from the samples collected from different places of China, and named P. austrosinicum, P. choerospondiatis, P. exsudans, P. sanshaense and P. verrucisporum. The conidiophores of P. austrosinicum and P. exsudans are monoverticillate like most members of the section, while the rest species are biverticillate similar to the only two species P. herquei and P. malachiteum previously reported in the section Sclerotiora. The phylogenetic positions of the new taxa are determined based on the sequence data of ITS, BenA, CaM and RPB2 regions, which reveals that all the species with biverticillate condiophores form a well-supported subclade in the section. The new Penicillium species clearly differ from the existing species of the genus in culture characteristics on four standard growth media, microscopic features, and sequence data. Morphological discrepancies are discussed between the new species and their allies.

Penicillium Link is one of the most common fungal genera occurring in diverse environments. They are able to decompose organic matters, and play an important role in biological circulation of biomasses in nature. They also display medicinal and industrial uses. Penicillin, the first antibiotic against gram-positive bacterial infections, has been produced by eight species in section Chrysogena^{1,2}. A plethora of mycotoxins, such as citrinin, patulin and nephrotoxic ochratoxin A, are produced by different species³. The enzyme β -glucosidase, essential for biomass-based biofuel industry, is effectively secreted by *P. echinulatum* and *P. oxalicum*^{4,5}. In food industry, P. nalgiovense and P. salamii are used as starter cultures for sausage fermentation⁶; P. camemberti for white cheese (Camembert and Brie) and P. roqueforti for blue cheese (roquefort, gorgonzola, stilton, gammelost, etc.)⁷. Apart from living as saprophytes, more than ten species are endophytes of diverse plants⁸⁻¹⁰.

Penicillium is lectotypified with one of the three originally species, P. expansum, by Pitt¹¹. The genus is affiliated to the family Aspergillaceae, and contains two subgenera, Aspergilloides and Penicillium. It was further divided into 25 sections based on a four-gene phylogeny¹². Recently, two new sections were established, while two other sections were synonymized as one¹³. In the past decades, significant advances have been achieved for the knowledge of species diversity of this group^{11, 14-16}. More than 1000 Penicillium names were introduced in the past, and 354 species were generally accepted¹⁷. Fifty-seven additional species have recently been discovered^{13, 18-1}

The section Sclerotiora belonging to the subgenus Aspergilloides that contains 17 species was established by Houbraken and Samson¹². Among them, P. nodositatum was excluded based on the results of sequence analyses; and P. lilacinoechinulatum, formerly considered as a synonym of P. bilaiae, was revived²⁸. Seven more species were recently added including P. alexiae, P. amaliae, P. arianeae, P. daejeonium, P. maximae, P. restingae and P. vanoranjei²⁸⁻³⁰. In China, four taxa (P. adametzii, P. bilaiae, P. herquei and P. sclerotiorum) of the section were recorded in the Flora Fungorum Sinicorum vol. 35 Pennicilium et Teleomorphi Cognati³¹. In this study, we describe five new species isolated from the soil and rotten fruit samples, which were collected in Guangdong, Hainan and Hunan provinces of China.

¹State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. ²University of Chinese Academy of Sciences, Beijing, 100049, China. Correspondence and requests for materials should be addressed to W.-Y.Z. (email: zhuangwy@im.ac.cn)

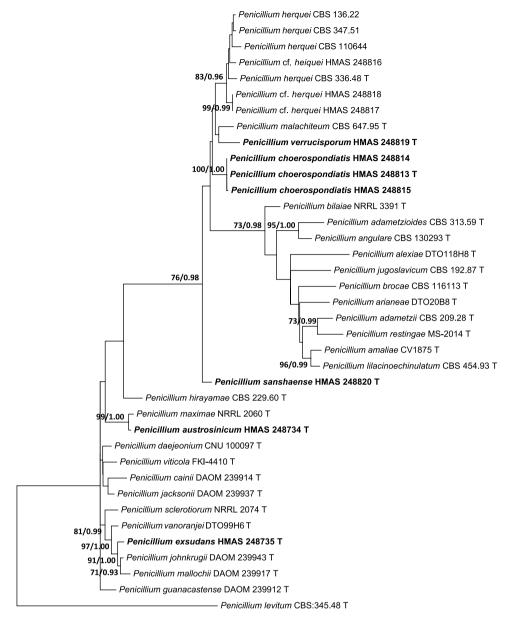


Figure 1. Maximum likelihood phylogenetic tree of *Penicillium* section *Sclerotiora* inferred from the sequences of the ITS region. Bootstrap values \geq 70% (left) and posterior probability values \geq 0.90 (right) are indicated at nodes.

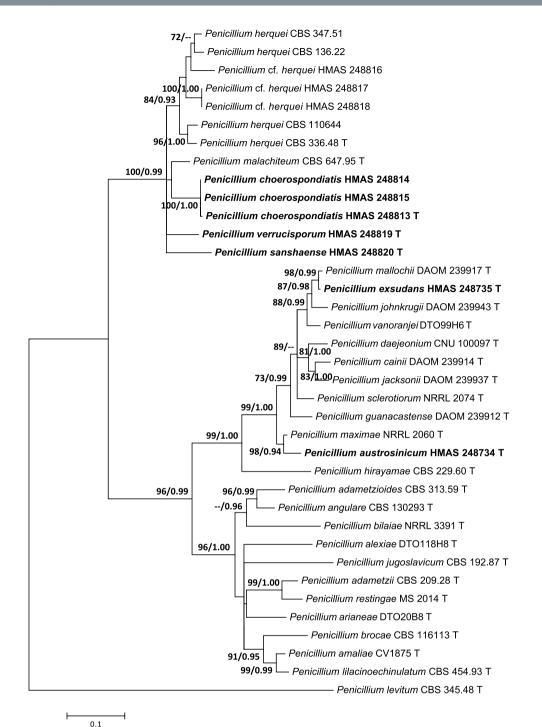
Results

The ITS data set contained 35 sequences of 521 bp. General Time Reversible (GTR) with gamma distribution (+G) was determined as the most suitable model for Maximum Likelihood (ML) analysis, and General Time Reversible with gamma distribution and invariant sites (GTR + I + G) was selected by Akaike Information Criterion as the best fit for Bayesian Inference (BI) analysis. In the ITS tree (Fig. 1), *P. choerospondiatis* and *P. sanshaense* were distinguished as sister groups that were associated with *P. herquei* and *P. verrucisporum*.

The other three single gene data sets included 35 sequences of 513 bp for *BenA* gene, 34 sequences of 592 bp for *CaM* partition, and 19 sequences of 1042 bp for the *RPB2*. The most suitable models for ML analyses were Kimura 2-parameter (K2) + G (*BenA*), Tamura-Nei (TN93) + I + G (*CaM*), and K2 + I + G (*RPB2*). The most suitable models for Bayesian Inference (BI) analyses were Tamura-Nei (TrN) + G (*BenA*), TrN + I + G (*CaM*), and equal-frequency Transition Model (TIMef) + I + G (RPB2). The individual gene analyses of the three genes supported the treatments of *P. austrosinicum*, *P. choerospondiatis*, *P. exsudans*, *P. sanshaense* and *P. verrucisporum* as valid new species (Figs 2–4).

0.1

Figure 2. Maximum likelihood phylogenetic tree of *Penicillium* section *Sclerotiora* inferred from the sequences of the *BenA* region. Bootstrap values \geq 70% (left) and posterior probability values \geq 0.90 (right) are indicated at nodes.


The combined data set consisted of 35 taxa with 2668 bp in length. The GTR + I + G model was determined as the most suitable model for ML and BI analyses. As shown in the four-gene phylogeny of *Penicillium* section *Sclerotiora* (Fig. 5), three subclades were recognized. Subclade I contained 13 species (MLBP/BIPP = 99%/1.00) including the newly described *P. austrosinicum* and *P. exsudans. Penicillium austrosinicum* was associated with *P. maximae* (MLBP/BIPP = 100%/1.00), and *P. exsudans* was a sister of *P. mallochii* (MLBP/BIPP = 74%/99%). The conidiophores of species in this subclade are all monoverticillate. Subclade II consisted of five species (MLBP/BIPP = 99%/1.00) of which three are newly established. The conidiophores of species in the subclade II are uniformly biverticillate. Subclade III accommodated the rest monoverticillate species in the section (MLBP/BIPP = 96%/1.00).

Taxonomy

Penicillium austrosinicum X.C. Wang & W.Y. Zhuang, sp. nov.

Figure 6

Fungal Names: FN570338 *Etymology*: The specific epithet refers to the locality of the type strain.

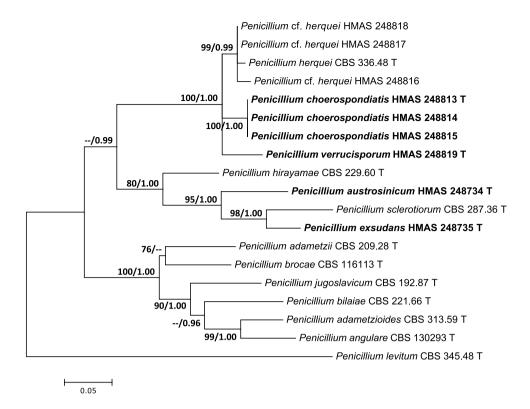


Figure 3. Maximum likelihood phylogenetic tree of *Penicillium* section *Sclerotiora* inferred from the sequences of the *CaM* region. Bootstrap values \geq 70% (left) and posterior probability values \geq 0.90 (right) are indicated at nodes.

DNA barcodes: ITS KX885061, *BenA* KX885041, *CaM* KX885051, *RPB2* KX885032. Colony diam, 7 d, 25 °C (unless stated otherwise): CYA 33–34 mm; CYA 30 °C 32–35 mm; CYA 37 °C no growth; CYA 5 °C no growth; MEA 35–37 mm; YES 37–40 mm; CZ 18–22 mm.

Diagnosis: Penicillium austrosinicum characterized by producing sclerotia on CYA at 25 °C, strictly monoverticillate conidiophores, ampulliform phialides, subglobose and rough-walled conidia.

On CYA 25 °C, 7 d: Colonies nearly circular, plain, conspicuously and radially sulcate, white mycelia appeared in centers, abundant cream to yellow sclerotia produced; margins moderately wide, entire; mycelia white; texture floccose; sporulation dense; conidia *en masse* dull green; soluble pigments absent; exudates clear and yellowish; reverse conspicuously and radially sulcate, orange in centers but buff at periphery. On MEA 25 °C, 7 d: Colonies nearly circular, plain, radially sulcate in central areas; margins wide, entire; mycelia white and orange; texture

Figure 4. Maximum likelihood phylogenetic tree of *Penicillium* section *Sclerotiora* inferred from the sequences of the *RPB2* region. Bootstrap values \geq 70% (left) and posterior probability values \geq 0.90 (right) are indicated at nodes.

.....

floccose; sporulation dense; conidia *en masse* greyish green; soluble pigments absent; exudates tiny and orange; reverse radially sulcate in central areas, orange in centers but yellow at periphery. On YES 25 °C, 7 d: Colonies nearly circular, protuberant in centers with white mycelia, radially and concentrically sulcate; margins moderately wide, entire; mycelia white; texture velutinous; sporulation dense; conidia *en masse* light green to green; soluble pigments absent; exudates absent; reverse conspicuously and radially sulcate, orange in centers but buff at periphery. On CZ 25 °C, 7 d: Colonies nearly circular or irregular, protuberant in centers with white and orange mycelia; margins narrow to moderately wide, entire or irregular; mycelia white; texture velutinous; sporulation moderately dense; conidia *en masse* greyish green; soluble pigments absent; exudates abundant, clear; reverse reddish brown in centers but orange and buff at periphery. Conidiophores strictly monoverticillate; stipes septate, smooth-walled, $35-175 \times 2-3 \mu m$, vesiculate; phialides ampulliform, 8-12, $6-9 \times 2.5-3 \mu m$; conidia subglobose, rough-walled, $2.7-3.3 \times 2.5-3.3 \mu m$.

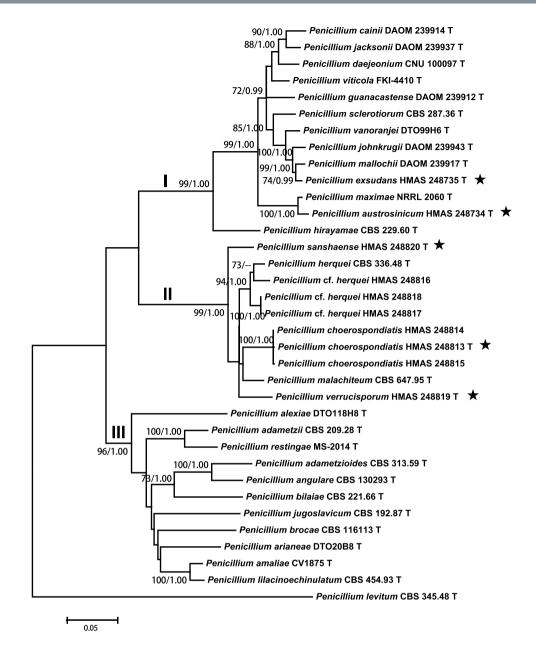
Typification: CHINA. Guangdong Province, Shaoguan City, Shixing County, Chebaling National Nature Reserve, Xianrendong Village, 24°44′3″N 114°12′24″E, rotten fruit, 1 November 2015, Zhao-Qing Zeng, Xin-Cun Wang, Kai Chen & Yu-Bo Zhang, 10541 (holotype HMAS 248734, ex-type strain CGMCC 3.18410).

Notes: Fig. 1 shows that *P. austrosinicum* is the sister of *P. maximae* (MLBP/BIPP = 100%/1.00) in subclade I. Compared with the new species, *P. maximae* differs in sparse sporulation on CYA at 25 °C, orange mycelia on MEA at 25 °C, absence of sclerotia, the occasionally seen biverticillate conidiophores, ellipsoidal and smooth conidia, and faster growth rate on YES at 25 °C. The detailed morphological differences between *Penicillium austrosinicum* and related fungi are summarized in Table 1.

Penicillium choerospondiatis X.C. Wang & W.Y. Zhuang, sp. nov.

Figure 7

Fungal Names: FN570333


Etymology: The specific epithet refers to the host plant Choerospondias axillaris.

DNA barcodes: ITS KX885063, BenA KX885043, CaM KX885053, RPB2 KX885034.

Colony diam, 7 d, 25 °C (unless stated otherwise): CYA 11–12.5 mm; CYA 37 °C no growth; CYA 5 °C no growth; MEA 26–29 mm; YES 16–19 mm; CZ nogrowth.

Diagnosis: Penicillium choerospondiatis characterized by crustose colonies on CYA, MEA and YES at 25 °C, no growth on CZ at 25 °C, short and smooth stipes, biverticillate conidiophores, ampulliform phialides, large, ellipsoid and finely roughened conidia, and occurring on fruits of *Choerospondias axillaris*.

On CYA 25 °C, 7 d: Colonies nearly circular, convex, crustose, conidia dislodged onto the cover when the plates inverted; margins narrow, entire or undulate; mycelia white; texture velutinous; sporulation very dense; conidia *en masse* greyish green; soluble pigments light brown; exudates absent; reverse nearly black but yellowish brown at margins. On MEA 25 °C, 7 d: Colonies irregular, plain, crustose, abundant conidia dislodged onto the cover when the plates inverted; margins irregular; mycelia white; texture velutinous; sporulation very

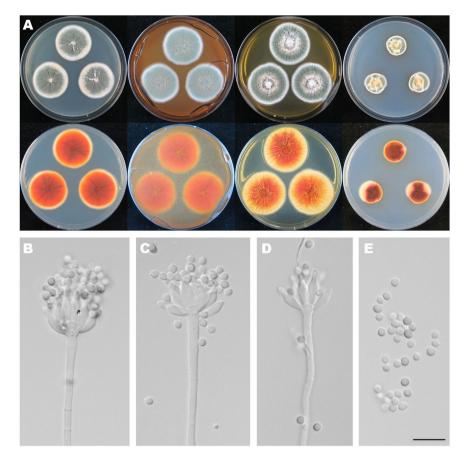


Figure 5. Maximum likelihood phylogenetic tree of *Penicillium* section *Sclerotiora* inferred from the concatenated sequences of ITS, *BenA*, *CaM* and *RPB2* regions. Bootstrap values \geq 70% (left) and posterior probability values \geq 0.90 (right) are indicated at nodes.

dense; conidia *en masse* dull green; soluble pigments absent; exudates absent; reverse light brown to brown. On YES 25 °C, 7 d: Colonies nearly circular or irregular, concave in centers, irregularly sulcate, crustose, abundant conidia dislodged onto the cover when the plates inverted; margins irregular; mycelia white; texture velutinous; sporulation very dense; conidia *en masse* dull green and yellowish brown; soluble pigments abundant, reddish brown; exudates absent; reverse rimose in centers, brown and yellowish brown, but nearly black at periphery. On CZ 25 °C, 7 d: No growth. Conidiophores biverticillate, a minor proportion monoverticillate and terverticillate; stipes septate, smooth-walled, $100-135 \times 4-6 \mu m$; metulae cylindrical, 3-5, $10.5-15 \times 3.5-4.5 \mu m$; phialides ampulliform, 5-8 per metula, $9-12 \times 3.3-4 \mu m$; conidia ellipsoidal, finely rough-walled, $4.5-6.5 \times 3.3-4.5 \mu m$.

Typification: CHINA. Hunan Province, Hengyang City, Hengyang County, Goulou town, Goulou Mountain National Forest Park, 27°06′42″N 112°36′28″E, on fruits of *Choerospondias axillaris*, 24 October 2015, Zhao-Qing Zeng, Xin-Cun Wang, Kai Chen & Yu-Bo Zhang, strain, Xin-Cun Wang, XCW_SN001 (holotype HMAS 248813, ex-type strain CGMCC 3.18411).

Other specimens examined: CHINA. Guangdong Province, Shaoguan City, Shixing County, Chebaling National Nature Reserve, 24°43′41″N 114°15′22″E, on fruits of *C. axillaris*, 31 October 2015, Zhao-Qing Zeng, Xin-Cun Wang, Kai Chen & Yu-Bo Zhang, strain, Xin-Cun Wang, XCW_SN002 (HMAS 248814); Songshukeng Village, 24°43′13″N 114°16′15″E, on fruits of *C. axillaris*, 2 November 2015, Zhao-Qing Zeng, Xin-Cun Wang, Kai Chen & Yu-Bo Zhang, strain, Xin-Cun Wang, XCW_SN049 (HMAS 248815).

Figure 6. Colonial and microscopic morphology of *Penicillium austrosinicum* (HMAS 248734). (**A**) Colony phenotypes (top row left to right, obverse CYA, MEA, YES and CZ; bottom row left to right, reverse CYA, MEA, YES and CZ); (**B**–**D**) Conidiophores; (**E**) Conidia. Bars: E 10 µm, applies to B–D.

Notes: Penicillium herquei and *P. malachiteum* were the only known taxa producing biverticillate conidiophores in section *Sclerotiora*. When the three new species with the same type of conidiophores are added, they turn out to be all together forming a well-supported subclade (Fig. 1, MLBP/BIPP = 99%/1.00).

As sister of the new species (Fig. 1), *P. malachiteum*, originally isolated from soil in Japan³², has longer and verrucose stipes (200–320 vs 100–135), more metulae per verticil (4–8 vs 3–5), smaller metulae and conidia, and faster growth rate on CYA and YES at 25 °C²⁸. *Penicillium herquei* is also similar in colonial morphology, but differs in longer and roughened stipes (200–400 vs 100–135), smaller metulae, phialides and conidia, and growing faster on CYA, MEA and YES at 25 °C^{11,28}. The morphological differences among the related taxa are summarized in Table 1.

Although the three strains of *P. choerospondiatis* were from different sites, they are morphologically identical. As to their sequence divergences, very few variations were detected. Their ITS and *RPB2* regions are basically the same, six bp differences are found in the *BenA* gene, and three bp divergences exist in the *CaM* region among collections, which are treated as infraspecific variations.

Penicillium exsudans X.C. Wang & W.Y. Zhuang, sp. nov.

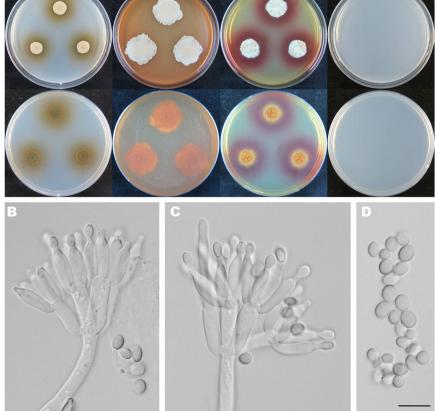
Figure 8

Fungal Names: FN570336

Etymology: The specific epithet refers to the abundant exudates produced on CYA and CZ at 25 °C.

DNA barcodes: ITS KX885062, BenA KX885042, CaM KX885052, RPB2 KX885033.

Colony diam, 7 d, 25 °C (unless stated otherwise): CYA 34–36 mm; CYA 37 °C no growth; CYA 5 °C no growth; MEA 31–33 mm; YES 39–42 mm; CZ 22–25 mm.


Diagnosis: Penicillium exsudans characterized by strictly monoverticillate conidiophores, ampulliform phialides, subglobose to ellipsoidal and finely roughened conidia.

On CYA 25 °C, 7 d: Colonies nearly circular, plain, conspicuously and radially sulcate in central areas; margins entire; mycelia white; texture floccose; sporulation dense; conidia *en masse* green to greyish green; soluble pigments absent; exudates abundant, yellow near centers and clear at periphery; reverse conspicuously and radially sulcate in central areas, orange and bright yellow in centers but white at periphery. On MEA 25 °C, 7 d: Colonies nearly circular, plain, radially sulcate in central areas; margins moderately wide, entire; mycelia white; texture velutinous; sporulation dense; conidia *en masse* greyish green; soluble pigments absent; exudates absent; reverse radially sulcate in central areas, brownish red in centers but buff at periphery. On YES 25 °C, 7 d: Colonies nearly circular, plain, conspicuously and radially sulcate; margins wide, up to 2 mm, entire; mycelia white; texture

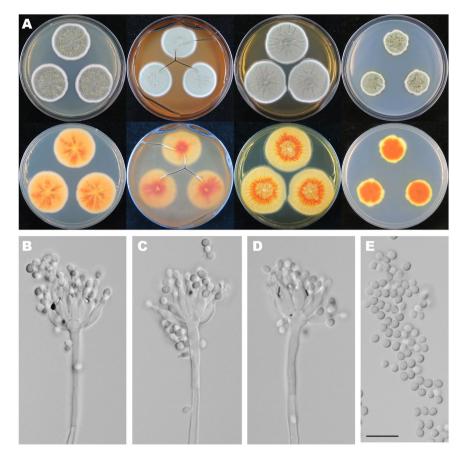

	Conidiophore pattern	No. of metulae per verticil	Metula size (µm)	No. of phialides per metula	Phialide size (µm)	Conidial shape	Conidial walls	Conidial size (µm)	Diam on CYA at 25 °C after 7d (mm)	Diam on MEA at 25 °C after 7d (mm)	Diam on YES at 25 °C after 7d (mm)
P. choerospondiatis	biverticillate	3-5	10.5– 15 × 3.5–4.5	5-8	9– 12×3.3–4	ellipsoidal	finely roughened	4.5- 6.5 × 3.3-4.5	11-12.5	26-29	16-19
P. herquei	biverticillate	4-6	10-12 × 3-5	6-10	7- 10 × 2.5-3	ellipsoidal to apiculate	smooth to roughened	3.5- 5 × 3-3.5	20-32	30-40	30-40
P. malachiteum	biverticillate	4-8	8-12×2.5-4	4-10	8- 12×2-2.5	ellipsoidal	smooth to finely roughened	3-5×1.5- 3.5	20-25	28-32	28-32
P. sanshaense	biverticillate	6-8	9–12×4–6.5	6-8	9-12×3-4	ellipsoidal	smooth	$3-3-3.5 \times 2-2.5$	21-23	28-30	32-34
P. verrucisporum	biverticillate	5-8	9– 10.5 × 3.5– 5.5	5-8	7.5- 8×2.5-3.5	ellipsoidal	roughened	$3-3.5 \times 2.5-$ 3	25-27	36-37	43-44
P. austrosinicum	monoverticilate			8-12	6-9×2.5- 3	subglobose	roughened	2.7- 3.3 × 2.5-3.3	33-34	35-37	37-40
P. maximae	monoverticilate			8-16	6.5- 10×2.5-3	ellipsoidal	smooth	$3-3.5 \times 2.5-$ 3	34-37	34-37	40-43
P. exsudans	monoverticilate			6-12	7.5- 10×3.3- 4.5	subglobose to ellipsoidal	finely roughened	2.7- 3.3 × 2.3-3	34-36	31-33	39-42
P. johnkrugii	monoverticilate			n.a.	7-11×2-3	globose to subglobose	finely roughened	2-3	30-38	26-36	28-38
P. mallochii	monoverticilate			n.a.	7-10×2-3	globose to subglobose	finely roughened	2.5- 3.5 × 2-2.5	29-39	24-35	n.a.

 Table 1. Morphological comparison of the related *Penicillium* species. n.a.: data not available.

Figure 7. Colonial and microscopic morphology of *Penicillium choerospondiatis* (HMAS 248813). (A) Colony phenotypes (top row left to right, obverse CYA, MEA, YES and CZ; bottom row left to right, reverse CYA, MEA, YES and CZ); (**B-C**) Conidiophores; (**D**) Conidia. Bars: D 10 µm, applies to B–C.

Figure 8. Colonial and microscopic morphology of *Penicillium exsudans* (HMAS 248735). (A) Colony phenotypes (top row left to right, obverse CYA, MEA, YES and CZ; bottom row left to right, reverse CYA, MEA, YES and CZ); (**B**–**D**) Conidiophores; (**E**) Conidia. Bars: E 10 µm, applies to B–D.

velutinous; sporulation dense; conidia *en masse* greyish green; soluble pigments absent; exudates absent; reverse orange in centers but buff at periphery. On CZ 25 °C, 7 d: Colonies nearly circular or irregular, protuberant in centers; margins narrow to moderately wide, irregular; mycelia white; texture velutinous; sporulation dense; conidia *en masse* bluish green to greyish green; soluble pigments absent; exudates abundant, yellow or clear; reverse orange in centers but yellow to buff at periphery. Conidiophores strictly monoverticillate; stipes septate, smooth-walled, $60-130 \times 2.5-4 \mu m$, vesiculate or not; phialides ampulliform, 6-12, $7.5-10 \times 3.3-4.5 \mu m$; conidia subglobose to ellipsoidal, finely rough-walled, $2.7-3.3 \times 2.3-3 \mu m$.

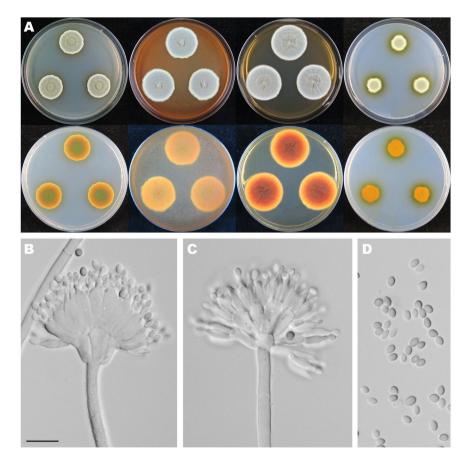
Typification: CHINA. Guangdong Province, Shaoguan City, Shixing County, Chebaling National Nature Reserve, Xianrendong Village, 24°44′3″N 114°12′24″E, rotten fruit, 1 November 2015, Zhao-Qing Zeng, Xin-Cun Wang, Kai Chen & Yu-Bo Zhang, strain, Xin-Cun Wang, XCW_SN071 (holotype HMAS 248735, ex-type strain CGMCC 3.18412).

Notes: In Fig. 1, *P. exsudans* clustered with *P. mallochii* and *P. johnkrugii* (MLBP/BIPP = 99%/1.00) in subclade I. Compared with the new species, *P. mallochii* has yellow mycelia and crustose colonies on MEA at 25 °C, and longer stipes (53–380 vs 60–130)³³. *Penicillium johnkrugii* differs in producing sclerotia on CYA, MEA and YES at 25 °C, not producing conidia on CYA at 25 °C, longer stipes (85–230 vs 60–130), and slower growth on YES at 25 °C³⁴.

Penicillium sanshaense X.C. Wang & W.Y. Zhuang, sp. nov.

Figure 9

Fungal Names: FN570337


Etymology: The specific epithet refers to the locality of the type strain.

DNA barcodes: ITS KX885070, BenA KX885050, CaM KX885060, RPB2 n.a.

Colony diam, 7 d, 25 °C (unless stated otherwise): CYA 21–23 mm; CYA 37 °C no growth; CYA 5 °C no growth; MEA 28–30 mm; YES 32–34 mm; CZ 14–16 mm.

Diagnosis: Penicillium sanshaense characterized by long stipes, biverticillate conidiophores, ampulliform phialides, ellipsoidal and smooth conidia.

On CYA 25 °C, 7 d: Colonies nearly circular, protuberant in centers, concentrically sulcate; margins undulate; mycelia yellow; texture floccose; sporulation dense; conidia *en masse* greyish green; soluble pigments light greenish yellow; exudates clear or absent; reverse rimose and brown in centers but yellow to yellowish brown at periphery. On MEA 25 °C, 7 d: Colonies nearly circular, plain, funiculate at centers, concentrically sulcate; margins undulate, hairy; mycelia yellow; texture floccose; sporulation dense; conidia *en masse* greyish green; soluble

Figure 9. Colonial and microscopic morphology of *Penicillium sanshaense* (HMAS 248820). (**A**) Colony phenotypes (top row left to right, obverse CYA, MEA, YES and CZ; bottom row left to right, reverse CYA, MEA, YES and CZ); (**B–C**) Conidiophores; (**D**) Conidia. Bars: B 10 µm, applies to C–D.

.....

pigments absent; exudates absent; reverse orange in central areas but yellowish white at periphery. On YES 25 °C, 7 d: Colonies nearly circular, concave in centers, concentrically and radially sulcate; margins moderately wide, entire; mycelia yellow; texture velutinous; sporulation dense; conidia *en masse* greyish green; soluble pigments absent; exudates absent; reverse radially sulcate, reddish brown in centers but yellow to orange at periphery. On CZ 25 °C, 7 d: Colonies nearly circular or irregular, convex, greenish yellow at centers; margins hairy; mycelia yellow; texture floccose; sporulation dense; sporulation dense; conidia *en masse* greyish green; soluble pigments light brown; exudates absent; reverse light yellowish brown in centers, brown in central areas, but yellow at periphery. Conidiophores biverticillate, a minor proportion terverticillate; stipes septate, smooth- to rough-walled, 200– $500 \times 3-4 \mu$ m; metulae 6–8, slightly swollen at the apices, 9–12 × 4–6.5 µm; phialides ampulliform, tapering into very thin neck, 6–8 per metula, 9–12 × 3–4 µm; conidia ellipsoidal, smooth-walled, 3–3.5 × 2–2.5 µm.

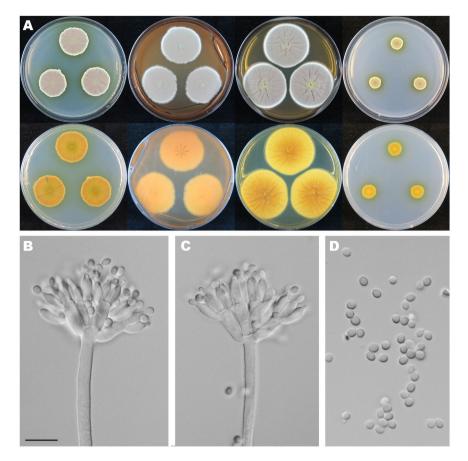
Typification: CHĪNA. Hainan Province, Sansha City, Xisĥa Islands, Yongxing Island, 16°50'41"N 112°20'50"E, soil, 29 March 2015, Ye-Wei Xia, strain, Kai Chen ZC97 (holotype HMAS 248820, ex-type strain CGMCC 3.18413).

Notes: Phylogenetically, *P. sanshaense* represents an independent lineage in subclade II (Fig. 1). *Penicillium* cf. *herquei* (HMAS 248817, HMAS 248818) is similar in smooth conidia, but differs in less metulae per verticil (2–5 vs 6–8), longer metulae obviously swollen at the apices, shorter phialides, and faster growth on CYA, MEA and YES at 25 °C.

Penicillium verrucisporum X.C. Wang & W.Y. Zhuang, sp. nov.

Figure 10

Fungal Names: FN570339


Etymology: The specific epithet refers to the warted walls of conidia.

DNA barcodes: ITS KX885069, BenA KX885049, CaM KX885059, RPB2 KX885040.

Colony diam, 7 d, 25 °C (unless stated otherwise): CYA 25–27 mm; CYA 37 °C no growth; CYA 5 °C no growth; MEA 36–37 mm; YES 43–44 mm; CZ 11–12.5 mm.

Diagnosis: Penicillium verrucisporum characterized by comparatively short stipes, biverticillate conidiophores, ampulliform phialides, ellipsoidal and roughened conidia.

On CYA 25 °C, 7 d: Colonies nearly circular, plain, conspicuously and radially sulcate; margins narrow, undulate; mycelia yellow; texture velutinous; sporulation dense; conidia *en masse* greyish green to dull purplish brown; soluble pigments greenish yellow; exudates absent; reverse radially sulcate, greenish brown in centers but yellowish brown at periphery. On MEA 25 °C, 7 d: Colonies oblong, plain, funiculate in centers, radially sulcate in

Figure 10. Colonial and microscopic morphology of *Penicillium verrucisporum* (HMAS 248819). (**A**) Colony phenotypes (top row left to right, obverse CYA, MEA, YES and CZ; bottom row left to right, reverse CYA, MEA, YES and CZ); (**B-C**) Conidiophores; (**D**) Conidia. Bars: B 10 µm, applies to C–D.

.....

central areas or not; margins narrow to moderately wide, entire; mycelia white; texture velutinous; sporulation dense; conidia *en masse* dull greyish green; soluble pigments absent; exudates absent; reverse radially sulcate in central areas, yellowish to orangish brown in centers but buff at periphery. On YES 25 °C, 7 d: Colonies nearly circular, radially and concentrically sulcate; margins moderately wide, entire; mycelia yellow; texture velutinous; sporulation dense; conidia *en masse* greyish green; soluble pigments absent; exudates absent; reverse radially and concentrically sulcate; margins moderately wide, entire; mycelia yellow; texture velutinous; sporulation dense; conidia *en masse* greyish green; soluble pigments absent; exudates absent; reverse radially and concentrically sulcate, orangish brown in centers but buff at periphery. On CZ 25 °C, 7 d: Colonies nearly circular, convex; margins narrow, irregular; mycelia yellow; texture velutinous; sporulation dense; conidia *en masse* greyish green; soluble pigments absent; reverse buff in centers but yellowish brown at periphery. Conidiophores biverticillate; stipes septate, finely rough-walled, $125-200 \times 3.5-4 \mu m$; metulae 5–8, slightly swollen at the apices or not, $9-10.5 \times 3.5-5.5 \mu m$; phialides ampulliform, 5–8 per metula, $7.5-8 \times 2.5-3.5 \mu m$; conidia ellipsoidal, rough-walled, $3-3.5 \times 2.5-3 \mu m$.

Typification: CHINA. Hunan Province, Chenzhou City, Yizhang county, Mangshan National Nature Reserve, Jiangjunzhai, 24°59′7″N 112°52′24″E, soil, October 27 2015, Kai Chen, MS 18-1 (holotype HMAS 248819, ex-type strain CGMCC 3.18415).

Notes: In the phylogenetic tree (Fig. 1), *P. verrucisporum* appears as an independent terminal branch in subclade II. Among species of the subclade, *P. choerospondiatis* is similar in comparatively short stipes, but differs in no growth on CZ at 25 °C, less metulae per verticil, larger metulae and phialides, larger and finely roughened conidia, and slower growth on CYA, MEA and YES at 25 °C. The morphological differences among the related taxa are detailed in Table 1.

Discussion

Members of *Penicillium* section *Sclerotiora* are characterized by the pigmented mycelia in shades of yellow and/or orange in culture, reverse view of colony yellow, orange or red, and sclerotia and cleistothecia if present bright-colored¹². The conidiophores of the species in this section were mostly monoverticillate, and conidiophore branching pattern has not been considered of phylogenetic importance. In this work, we add three new species bearing biverticillate conidiophores to the section. Based on the four-gene phylogeny, three subclades in the section are recognized (Fig. 5). Species with monoverticillate conidiophores are in subclades I and III, while all those possessing biverticillate conidiophores are in subclade II. They join the species *P. herquei* and *P. malachiteum* recognized previously with a similar conidiophore branching pattern, which reveals that conidiophore branching pattern is phylogenetically informative. The result highlights that the morphological feature of conidiophore branching pattern is in accordant with the phylogenetic analysis and may be used as a reliable character in taxonomy of the section *Sclerotiora*.

P. adametzioides CBS 313.59T JN686433 JN799642 JN686387 JN406578 P. alexiae DTO118HB T KC79400 KC773778 KC773803 n.a. P. amaliae CV 1875 T JX091443 JX091563 JX141557 n.a. P. angulare CBS 130293 T AF125937 KC773779 KC773811 n.a. P. angulare CBS 130293 T KX85061 KX885041 KX885032 KX885032 P. antareae DTO20B8 T KC773813 KC773787 KC773811 n.a. P. austrosinicum HMAS 248734T KX885061 KX885061 KX885031 KX885032 P. brocae CBS 116113T AF484398 KX737278 KC773814 IN406610 P. brocae CBS 116113T KX885063 KX885051 KX885034 IN406610 P. brocae CBS 116113T KX885064 KX885051 KX885035 KX885034 P. brocae CBS 116113T KX885064 KX885054 KX885035 KX885035 P. draioni CNU 00097T	Species	Collection	ITS	BenA	CaM	RPB2	
P. alexiae DTO118H8T KC790400 KC773778 KC773803 n.a. P. amaliae CV 1875 T JX091443 JX091563 JX141557 n.a. P. angulare CBS 130293T AF125937 KC773779 KC773804 JN406554 P. arianeae DTO20B8 T KC773833 KC7737784 KC773811 n.a. P. austrosinicum HMAS 248734T KX885061 KX885011 KX885032 P. biaiae CBS 221.66 T JN714937 JN625966 JN626009 JN4066109 P. cainii DAOM 239914T JN866435 IN8683664 KX885031 KX885034 KX885034 KX885034 KX885034 KX885034 KX885034 KX885034 KX885034 KX885035 KX885034 KX885034 KX885034 KX885034 KX885034 KX885035 KX885034 KX885035 KX885035 KX885035 KX885033 KX885034 KX885034 KX885035 KX885035 KX885035 KX885035 KX885035 KX885035 KX885035 KX885035 KX885033 K KX885035	P. adametzii	CBS 209.28 T*	JN714929	JN625957	KC773796	JN121455	
P. amaliae CV 1875 T JX091433 JX091563 JX141557 n.a. P. angulare CBS 130293 T AF125937 KC773779 KC773810 JN406554 P. arianeae DTO20B8 T KC773833 KC773784 KC773811 n.a. P. arianeae DTO20B8 T KC773833 KC773784 KC73811 n.a. P. arianeae CBS 221.66 T JN714937 JN625966 IN626009 JN406610 P. brocae CBS 116113 T AF484398 KC773787 KC773814 JN406639 P. choerospondiatis HMAS 248813 KX885063 KX885044 KX885053 KX885054 P. daejeonium CNU 100097T JX436489 JX436491 n.a. P. sudancastense DAOM 239912T IN626010 IN625970 JN626010 n.a. P. ersuidans HMAS 248815 KX885066 KX885047 KX885058 KX885039 P. daejeonium CBS 336.48 T JN626101 JN625970 JN626010 n.a. P. ersuidans HMAS 248815 KX885066 </td <td>P. adametzioides</td> <td>CBS 313.59 T</td> <td>JN686433</td> <td>JN799642</td> <td>JN686387</td> <td>JN406578</td>	P. adametzioides	CBS 313.59 T	JN686433	JN799642	JN686387	JN406578	
P. angulare CBS 130293 T AF125937 KC773779 KC773804 JN406554 P. arianeae DTO20B8 T KC773833 KC773784 KC773811 n.a. P. austrosinicum HMAS 248734T KX885061* KX885061 KX885051 KX885032 P. bilaiae CBS 221.66 T JN714937 JN625966 JN626009 JN406610 P. brocae CBS 116113 T AF484398 KC773777 KC773814 JN406639 P. cianiti DAOM 239914T JN686435 JN686366 JN886389 n.a. P. choerospondiatis HMAS 248815 KX885063 KX885043 KX885054 KX885054 P. daejeonium CNU 100097T JX436491 JX436491 n.a. P. P. daejeonium CNU 100097T JX436493 JX436491 IX436491 n.a. P. suadacastense DAOM 239912T JN626010 JN625010 n.a. P. drageonium CBS 336.48 T JN626101 JN625011 n.a. P. drageoniu CBS 316.22 JN261001 JN62	P. alexiae	DTO118H8 T	KC790400	KC773778	KC773803	n.a.	
Parianeae DTO20B8 T KC773833 KC773784 KC773811 n.a. Paustrosinicum HMAS 248734T KX885061* KX885051 KX885032 P. bilaiae CBS 221.66 T JN714937 JN625966 JN626009 JN406610 P. brocae CBS 116113T AF484398 KC773787 KC773814 JN406639 P. choerospondiatis HMAS 248813T KX885063 KX885043 KX885035 KX885037 P. choerospondiatis HMAS 248815 KX885064 KX885044 KX885055 KX885037 P. daejeonium CNU 10097T JX436489 JX436493 JX436491 n.a. P. exsudans HMAS 248735T KX885062 KX885042 KX885032 KX885037 P. aequei CBS 346.8T JN626101 JN626012 n.a. n.a. P. herquei CBS 347.51 JN626103 JN625971 JN626012 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885058 KX885039 P. cf. herquei HMAS 248816 K	P. amaliae	CV 1875 T	JX091443	JX091563	JX141557	n.a.	
P. austrosinicum HMAS 248734T KX88501* KX885041 KX885051 KX885052 P. bilaiae CBS 221.66T JN714937 JN625966 JN626009 JN406610 P. brocae CBS 116113T AF484398 KC773787 KC773814 JN406639 P. cianii DAOM 239914T JN686435 JN686366 JN686389 n.a. P. choerospondiatis HMAS 248813T KX885064 KX885044 KX885054 KX885054 P. doejeonium CNU 100097T JX436499 JX436491 n.a. P. P. daejeonium CNU 100097T JX436489 JX436491 n.a. P. P. auganacastense DAOM 239912T JN626010 JN625967 JN626010 n.a. P. herquei CBS 36.48T JN626101 JN625970 JN626011 n.a. P. berquei CBS 136.48T JN626102 JN625971 JN626012 n.a. P. cf. herquei HMAS 248816 KX885066 KX885045 KX885055 KX885055 P. dicharque CBS 106.441	P. angulare	CBS 130293 T	AF125937	KC773779	KC773804	JN406554	
P. bilaiae CBS 221.66 T JN714937 JN625966 JN626009 JN406610 P. brocae CBS 116113 T AF484398 KC773787 KC773814 JN406639 P. cainii DAOM 239914T JN686435 JN686366 JN686389 n.a. P. cainii DAOM 239914T JN686435 JN686366 JN686308 n.a. P. cainii DAOM 239914T JN686435 JX885043 KX885034 KX885034 P. choerospondiatis HMAS 248813 KX885064 KX885044 KX885055 KX885036 P. daejeonium CNU 100097T JX436493 JX436491 n.a. P. easudans HMAS 248735T KX885062 KX885052 KX885033 P. guanacastense DAOM 239912T JN626019 JN625967 JN626010 n.a. P. erquei CBS 136.22 JN626101 JN625970 JN626012 n.a. P. dr. fuerquei HMAS 248816 KX885066 KX885056 KX885057 KX885058 P. cf. herquei HMAS 248817 KX885066 KX8	P. arianeae	DTO20B8 T	KC773833	KC773784	KC773811	n.a.	
P. brocae CBS 116113T AF484398 KC773787 KC773814 JN406639 P. cainii DAOM 239914T JN686435 JN686366 JN686389 n.a. P. cainii DAOM 239914T JN686435 JN686366 JN686389 n.a. P. choerospondiatis HMAS 248813T KX885064 KX885043 KX885054 KX885054 P. deieonium CNU 100097T JX436493 JX436491 n.a. P. exsudans HMAS 248735T KX885062 KX885042 KX885052 KX885033 P. guanacastense DAOM 239912T JN626019 JN625967 JN626010 n.a. P. erquei CBS 136.22 JN626101 JN625970 JN626012 n.a. CBS 145.21 JN626102 JN625971 JN626014 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885056 KX885037 HMAS 248817 KX885067 KX885057 KX885037 JN466138 JN121494 P. cf. herquei HMAS 248817 KX885066 KX885046	P. austrosinicum	HMAS 248734 T	KX885061*	KX885041	KX885051	KX885032	
P. cainii DAOM 239914T JN686435 JN686366 JN686389 n.a. P. choerospondiatis HMAS 248813T KX885063 KX885043 KX885053 KX885053 P. choerospondiatis HMAS 248814 KX885065 KX885044 KX885055 KX885055 P. daejeonium CNU 100097T JX436489 JX436493 JX436491 n.a. P. exsudans HMAS 248735T KX885062 KX885042 KX885052 KX885033 P. guanacastense DAOM 239912T JN626019 JN625967 JN626010 n.a. P. herquei CBS 336.48T JN626101 JN625970 JN626012 n.a. C. BS 316.22 JN626101 JN626012 n.a. n.a. P. erquei CBS 136.22 JN626102 JN626012 n.a. C. CS 110644 JN626103 JN625971 JN626015 n.a. P. cf. herquei HMAS 248816 KX885066 KX885045 KX885058 KX885058 P. dr. hardyamae CBS 229.60T JN626015 JN626013 JN12145	P. bilaiae	CBS 221.66 T	JN714937	JN625966	JN626009	JN406610	
P. choerospondiatis HMAS 248813T KX885043 KX885043 KX885053 KX885053 P. choerospondiatis HMAS 248814 KX885064 KX885044 KX885055 KX885036 P. daejeonium CNU 100097T JX436489 JX436493 JX436491 n.a. P. daejeonium CNU 100097T JX436489 JX436493 JX436491 n.a. P. exsudans HMAS 248735T KX885062 KX885042 KX885052 KX885033 P. guanacastense DAOM 239912T JN626010 JN625967 JN626010 n.a. P. herquei CBS 336.48T JN626101 JN625970 JN626012 n.a. CBS 136.22 JN626103 JN626014 n.a. n.a. CBS 136.22 JN626103 JN626015 n.a. P. cf. herquei HMAS 248816 KX885066 KX885045 KX885035 P. cf. herquei HMAS 248817 KX885067 KX885045 KX885057 KX885057 P. cf. herquei HMAS 248817 KX885067 KX885045 KX885055	P. brocae	CBS 116113 T	AF484398	KC773787	KC773814	JN406639	
HMAS 248814 KX885064 KX885044 KX885055 KX885035 HMAS 248815 KX885065 KX885045 KX885035 KX885036 P. daejeonium CNU 100097T JX436499 JX436493 JX436491 n.a. P. exsudans HMAS 248735T KX885062 KX885042 KX885052 KX885033 P. guanacastense DAOM 239912T JN626098 JN625970 JN626010 n.a. P. herquei CBS 336.48 T JN626101 JN625970 JN626012 n.a. CBS 136.22 JN626102 JN625971 JN626014 n.a. CBS 347.51 JN626103 JN625972 JN626015 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885076 KX885075 HMAS 248817 KX885067 KX885045 KX885075 KX885075 KX885076 P. cf. herquei HMAS 248816 KX885066 KX885046 KX885076 KX885076 P. cf. herquei HMAS 248817 KX885067 KX885067 KX885076 KX885076 <	P. cainii	DAOM 239914 T	JN686435	JN686366	JN686389	n.a.	
HMAS 248815 KX885065 KX885045 KX885055 KX885036 P. daejeonium CNU 100097T JX436499 JX436491 n.a. P. exsudans HMAS 248735T KX885062 KX885042 KX885037 P. guanacastense DAOM 239912T JN626098 JN625967 JN626010 n.a. P. herquei CBS 336.48 T JN626101 JN625969 JN626012 n.a. P. herquei CBS 336.48 T JN626102 JN625969 JN626014 n.a. CBS 136.22 JN626102 JN625972 JN626015 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885056 KX885070 P. cf. herquei HMAS 248817 KX885066 KX885048 KX885057 KX885079 P. cf. herquei HMAS 248817 KX885065 KX885045 KX885057 KX885079 P. cf. herquei DAOM 23993T JN626015 JN626015 n.a. P. dinkrugii DAOM 23993T JN686437 JN686378 JN686031 n.a.	P. choerospondiatis	HMAS 248813 T	KX885063	KX885043	KX885053	KX885034	
P. daejeonium CNU 100097T JX436489 JX436493 JX436491 n.a. P. exsudans HMAS 248735T KX885062 KX885042 KX885052 KX885033 P. guanacastense DAOM 239912T JN626098 JN625967 JN626010 n.a. P. herquei CBS 336.48 T JN626101 JN625969 JN626012 n.a. P. herquei CBS 136.22 JN626102 JN625971 JN626014 n.a. CBS 136.22 JN626103 JN625972 JN626015 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885056 KX88507 P. cf. herquei HMAS 248816 KX885068 KX885048 KX885058 KX885089 P. hirayamae CBS 229.60T JN626095 JN626031 JN121459 P. jacksonii DAOM 239937T JN686437 JN686378 JN686401 n.a. P. jugoslavicum CBS 192.87T KC773836 KC773790 KC773816 n.a. P. malachiteum CBS 647.95T KC773838 KC773790 </td <td></td> <td>HMAS 248814</td> <td>KX885064</td> <td>KX885044</td> <td>KX885054</td> <td>KX885035</td>		HMAS 248814	KX885064	KX885044	KX885054	KX885035	
P. exsudans HMAS 248735T KX885062 KX885042 KX885052 KX885033 P. guanacastense DAOM 239912T JN626098 JN625967 JN626010 n.a. P. herquei CBS 336.48 T JN626101 JN625967 JN626013 JN121494 CBS 136.22 JN626100 JN625969 JN626012 n.a. CBS 347.51 JN626102 JN625971 JN626014 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885056 KX885037 P. cf. herquei HMAS 248816 KX885066 KX885047 KX885057 KX885038 HMAS 248817 KX885066 KX885046 KX885057 KX885038 P. cf. herquei HMAS 248817 KX885068 KX885047 KX885058 KX885039 P. dr. haryamae CBS 229.60 T JN626095 JN625955 JN626003 JN121459 P. jacksonii DAOM 239937T JN686437 JN686378 JN686401 n.a. P. jagoslavicum CBS 192.87 T KC773836 KC773790 <td< td=""><td></td><td>HMAS 248815</td><td>KX885065</td><td>KX885045</td><td>KX885055</td><td>KX885036</td></td<>		HMAS 248815	KX885065	KX885045	KX885055	KX885036	
P. guanacastense DAOM 239912T JN626098 JN625967 JN626010 n.a. P. herquei CBS 336.48 T JN626101 JN625970 JN626012 JN121494 CBS 136.22 JN626100 JN625970 JN626012 n.a. CBS 136.22 JN626102 JN625971 JN626014 n.a. CBS 347.51 JN626103 JN625972 JN626015 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885056 KX885037 P. cf. herquei HMAS 248817 KX885067 KX885047 KX885057 KX885039 P. hirayamae CBS 229.60T JN626095 JN626033 JN121459 P. jacksonii DAOM 239937T JN686437 JN686368 JN686391 n.a. P. jagoslavicum CBS 192.87T KC773836 KC773790 KC773816 n.a. P. inalchiteum CBS 454.93T AY157489 KC773790 KC773816 n.a. P. mailochii DAOM 239917T JN626104 JN626016 n.a. n.a.	P. daejeonium	CNU 100097 T	JX436489	JX436493	JX436491	n.a.	
P. herquei CBS 336.48 T JN626101 JN625970 JN626013 JN121494 P. herquei CBS 136.22 JN626100 JN625969 JN626012 n.a. CBS 347.51 JN626102 JN625971 JN626014 n.a. CBS 110644 JN626103 JN625972 JN626015 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885056 KX885037 HAAS 248817 KX885067 KX885046 KX885057 KX885038 HMAS 248818 KX885067 KX885047 KX885058 KX885039 P. hirayamae CBS 229.60 T JN626095 JN626033 JN121459 P. jacksonii DAOM 239937 T JN686437 JN686368 JN686391 n.a. P. jagoslavicum CBS 192.87 T KC773836 KC773790 KC773816 n.a. P. iagoslavicum CBS 647.95 T KC773838 KC773790 KC773816 n.a. P. malachiteum CBS 647.95 T KC773838 KC773790 KC773820 n.a. P.	P. exsudans	HMAS 248735 T	KX885062	KX885042	KX885052	KX885033	
CBS 136.22 JN626100 JN625969 JN626012 n.a. CBS 347.51 JN626102 JN625971 JN626014 n.a. CBS 110644 JN626103 JN625972 JN626015 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885057 KX885037 HMAS 248817 KX885067 KX885047 KX885057 KX885038 HMAS 248818 KX885068 KX885048 KX885058 KX885039 P. hirayamae CBS 229.60 T JN626095 JN626033 JN121459 P. jacksonii DAOM 239937 T JN686437 JN686378 JN686391 n.a. P. johnkrugii DAOM 239943 T JN686437 JN686378 JN686401 n.a. P. jacksonii DAOM 239943 T JN686437 JN686378 JN686401 n.a. P. jacksonii DAOM 239943 T JN686437 JN686378 JN686401 n.a. P. jacksonii DAOM 239917 T JN686378 JN626016 n.a. P. mailachiteum CBS 647.95 T <td< td=""><td>P. guanacastense</td><td>DAOM 239912 T</td><td>JN626098</td><td>JN625967</td><td>JN626010</td><td>n.a.</td></td<>	P. guanacastense	DAOM 239912 T	JN626098	JN625967	JN626010	n.a.	
CBS 347.51 JN626102 JN625971 JN626014 n.a. CBS 110644 JN626103 JN625972 JN626015 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885057 KX885037 P. cf. herquei HMAS 248817 KX885067 KX885047 KX885057 KX885038 HMAS 248818 KX885068 KX885048 KX885058 KX885039 P. hirayamae CBS 229.60T JN626095 JN626383 JN686391 n.a. P. jacksonii DAOM 239937T JN686437 JN686378 JN686401 n.a. P. jacksonii DAOM 239937T IN686447 JN686378 JN686401 n.a. P. jagoslavicum CBS 192.87T KC773836 KC773790 KC773816 n.a. P. ialacinoechinulatum CBS 454.93T AY157489 KC773790 KC773816 n.a. P. malachiteum CBS 647.95T KC773838 KC773793 JN626016 n.a. P. maximae NRRL 2060T EU427298 KC773795 KC773821	P. herquei	CBS 336.48 T	JN626101	JN625970	JN626013	JN121494	
CBS 110644 JN626103 JN625972 JN626015 n.a. P. cf. herquei HMAS 248816 KX885066 KX885046 KX885057 KX885037 HMAS 248817 KX885067 KX885047 KX885057 KX885038 HMAS 248818 KX885068 KX885048 KX885058 KX885039 P. hirayamae CBS 229.60 T JN626095 JN625955 JN626003 JN121459 P. jacksonii DAOM 239937 T JN686437 JN686368 JN686391 n.a. P. jacksonii DAOM 239937 T JN686447 JN686378 JN686401 n.a. P. jugoslavicum CBS 192.87 T KC773836 KC773790 KC773816 n.a. P. ilacinoechinulatum CBS 454.93 T AY157489 KC773790 KC773816 n.a. P. malachiteum CBS 647.95 T KC773838 KC773790 KC773816 n.a. P. malachiteum CBS 647.95 T KC773838 KC773793 JN626016 n.a. P. malachiteum NRL 2060T EU427298 KC773795 KC		CBS 136.22	JN626100	JN625969	JN626012	n.a.	
P. cf. herquei HMAS 248816 KX885066 KX885046 KX885057 KX885037 HMAS 248817 KX885067 KX885047 KX885057 KX885038 HMAS 248817 KX885067 KX885047 KX885057 KX885038 HMAS 248818 KX885068 KX885048 KX885058 KX885039 P. hirayamae CBS 229.60 T JN626095 JN625955 JN626003 JN121459 P. jacksonii DAOM 239937 T JN686437 JN686368 JN686391 n.a. P. jacksonii DAOM 239937 T JN686447 JN686378 JN686401 n.a. P. jacksoniu CBS 192.87 T KC773836 KC773790 KC773816 n.a. P. jugoslavicum CBS 454.93 T AY157489 KC773790 KC773816 n.a. P. malachiteum CBS 647.95 T KC773838 KC773794 KC773820 n.a. P. maximae NRRL 2060 T EV427298 KC773755 KC73821 n.a. P. sanshaense HMAS 248820 T KX885070 KX885050 KX885050<		CBS 347.51	JN626102	JN625971	JN626014	n.a.	
HMAS 248817 KX885067 KX885047 KX885057 KX885038 HMAS 248818 KX885068 KX885048 KX885058 KX885039 P. hirayamae CBS 229.60 T JN626095 JN625955 JN626003 JN121459 P. jacksonii DAOM 239937 T JN686437 JN686368 JN686391 n.a. P. jacksonii DAOM 239937 T JN686437 JN686378 JN686401 n.a. P. jacksonii DAOM 239943T JN686447 JN686378 JN686401 n.a. P. jagoslavicum CBS 192.87 T KC773836 KC773790 KC773816 n.a. P. ilacinoechinulatum CBS 454.93 T AY157489 KC773790 KC773810 n.a. P. mallochii DAOM 239917 T JN626104 JN625973 JN626016 n.a. P. mallochii DAOM 239917 T JN626104 JN625973 JN626016 n.a. P. restingae MS-2014 T KF803355 KF803349 KF803352 n.a. P. seanshaense HMAS 248820 T KX885070 KX		CBS 110644	JN626103	JN625972	JN626015	n.a.	
HMAS 248818 KX885068 KX885048 KX885058 KX885059 P. hirayamae CBS 229.60 T JN626095 JN625955 JN626003 JN121459 P. jacksonii DAOM 239937T JN686437 JN686368 JN686391 n.a. P. jacksonii DAOM 239937T JN686437 JN686368 JN686391 n.a. P. jacksonii DAOM 239943T JN686447 JN686378 JN686401 n.a. P. jagoslavicum CBS 192.87 T KC773836 KC773790 KC773816 n.a. P. ilacinoechinulatum CBS 454.93 T AY157489 KC773790 KC773816 n.a. P. mallochiteum CBS 647.95 T KC773838 KC773794 KC773820 n.a. P. mallochiti DAOM 239917T JN626104 JN625016 n.a. P. mallochiti DAOM 239917T JN626104 JN626016 n.a. P. mallochiti DAOM 239917T JN626104 JN626016 n.a. P. mallochiti DAOM 239917T JN626104 JN626016 n.a.	P. cf. herquei	HMAS 248816	KX885066	KX885046	KX885056	KX885037	
P. hirayamae CBS 229.60 T JN626095 JN625955 JN626003 JN121459 P. jacksonii DAOM 239937T JN686437 JN686368 JN686391 n.a. P. jacksonii DAOM 239937T JN686437 JN686368 JN686391 n.a. P. jacksonii DAOM 239943T JN686447 JN686378 JN686401 n.a. P. jagoslavicum CBS 192.87 T KC773836 KC773790 KC773816 JN406618 P. ilacinoechinulatum CBS 454.93 T AY157489 KC773700 KC773816 n.a. P. malachiteum CBS 647.95 T KC773838 KC773793 JN626016 n.a. P. mallochii DAOM 239917 T JN626104 JN625973 JN626016 n.a. P. maximae NRRL 2060 T EU427298 KC773795 KC773820 n.a. P. restingae MS-2014 T KF803355 KF803349 KF803352 n.a. P. sanshaense HMAS 248820 T KX885070 KX885050 KX885060 n.a. P. vanoranjei DTO9		HMAS 248817	KX885067	KX885047	KX885057	KX885038	
P. jacksonii DAOM 239937T JN686437 JN686368 JN686391 n.a. P. jacksonii DAOM 239937T JN686437 JN686368 JN686391 n.a. P. johnkrugii DAOM 239943T JN686447 JN686378 JN686401 n.a. P. jugoslavicum CBS 192.87T KC773836 KC773799 KC773815 JN406618 P. liacinoechinulatum CBS 454.93T AY157489 KC773790 KC773816 n.a. P. malachiteum CBS 647.95T KC773838 KC773794 KC773820 n.a. P. mallochii DAOM 239917T JN626104 JN625973 JN626016 n.a. P. mallochii DAOM 239917T JN626104 JN625973 JN626016 n.a. P. maximae NRRL 2060T EU427298 KC773795 KC773821 n.a. P. restingae MS-2014 T KF803355 KF803349 KF80352 n.a. P. sanshaense HMAS 248820T KX885070 KX885050 KX885060 n.a. P. vanoranjei DTO99H6 T		HMAS 248818	KX885068	KX885048	KX885058	KX885039	
P. johnkrugii DAOM 239943T JN686447 JN686378 JN686401 n.a. P. jogoslavicum CBS 192.87T KC773836 KC773789 KC773815 JN406618 P. liacinoechinulatum CBS 192.87T KC773836 KC773790 KC773816 n.a. P. lilacinoechinulatum CBS 454.93 T AY157489 KC773790 KC773816 n.a. P. malachiteum CBS 647.95 T KC773838 KC773794 KC773820 n.a. P. mallochii DAOM 239917 T JN626104 JN625973 JN626016 n.a. P. maximae NRRL 2060 T EU427298 KC773795 KC773821 n.a. P. restingae MS-2014 T KF803355 KF803349 KF803352 n.a. P. sanshaense HMAS 248820 T KX885070 KX885050 KX885060 n.a. P. sclerotiorum CBS 287.36 T JN626132 JN626001 JN626044 JN406585 P. vanoranjei DTO99H6 T KC695696 KC695686 KC695691 n.a. P. verrucisporum	P. hirayamae	CBS 229.60 T	JN626095	JN625955	JN626003	JN121459	
P. jugoslavicum CBS 192.87T KC773836 KC773789 KC773815 JN406618 P. lilacinoechinulatum CBS 454.93T AY157489 KC773790 KC773816 n.a. P. malachiteum CBS 647.95T KC773838 KC773794 KC773820 n.a. P. malachiteum CBS 647.95T KC773838 KC773794 KC773820 n.a. P. mallochii DAOM 239917T JN626104 JN625973 JN626016 n.a. P. maximae NRRL 2060T EU427298 KC773795 KC773821 n.a. P. restingae MS-2014 T KF803355 KF803349 KF803352 n.a. P. sanshaense HMAS 248820 T KX885070 KX885050 KX885060 n.a. P. sclerotiorum CBS 287.36T JN626011 JN626044 JN406585 P. vanoranjei DTO99H6 T KC695696 KC695686 KC695691 n.a. P. verrucisporum HMAS 248819T KX885069 KX885049 KX885059 KX885040 P. viticola FKI-4410 T <td< td=""><td>P. jacksonii</td><td>DAOM 239937 T</td><td>JN686437</td><td>JN686368</td><td>JN686391</td><td>n.a.</td></td<>	P. jacksonii	DAOM 239937 T	JN686437	JN686368	JN686391	n.a.	
P. lilacinoechinulatum CBS 454.93 T AY157489 KC773790 KC773816 n.a. P. nalachiteum CBS 647.95 T KC773838 KC773794 KC773816 n.a. P. malachiteum CBS 647.95 T KC773838 KC773794 KC773816 n.a. P. malachiteum DAOM 239917 T JN626104 JN625973 JN626016 n.a. P. maximae NRRL 2060 T EU427298 KC773795 KC773821 n.a. P. restingae MS-2014 T KF803355 KF803349 KF803352 n.a. P. sanshaense HMAS 248820 T KX885070 KX885050 KX885060 n.a. P. sclerotiorum CBS 287.36 T JN626132 JN626001 JN626044 JN406585 P. vanoranjei DTO99H6 T KC695696 KC695686 KC695691 n.a. P. verrucisporum HMAS 248819T KX885049 KX885059 KX885040 P. viticola FKI-4410 T AB606414 AB540174 n.a. n.a.	P. johnkrugii	DAOM 239943 T	JN686447	JN686378	JN686401	n.a.	
P. malachiteum CBS 647.95 T KC773838 KC773794 KC773820 n.a. P. mallochii DAOM 239917 T JN626104 JN625973 JN626016 n.a. P. mallochii DAOM 239917 T JN626104 JN625973 JN626016 n.a. P. mallochii DAOM 239917 T EU427298 KC773795 KC773821 n.a. P. maximae NRRL 2060 T EU427298 KC773795 KC773821 n.a. P. restingae MS-2014 T KF803355 KF803349 KF803352 n.a. P. sanshaense HMAS 248820 T KX885070 KX885050 KX885060 n.a. P. sclerotiorum CBS 287.36 T JN626132 JN626011 JN626044 JN406585 P. vanoranjei DTO99H6 T KC695696 KC695686 KC695691 n.a. P. verrucisporum HMAS 248819T KX885069 KX885049 KX885059 KX885049 P. viticola FKI-4410 T AB606414 AB540174 n.a. n.a.	P. jugoslavicum	CBS 192.87 T	KC773836	KC773789	KC773815	JN406618	
P. mallochii DAOM 239917T JN626104 JN625973 JN626016 n.a. P. maximae NRRL 2060T EU427298 KC773795 KC773821 n.a. P. maximae MS-2014 T KF803355 KF803349 KF803352 n.a. P. restingae MS-2014 T KF803355 KF803349 KF803352 n.a. P. sanshaense HMAS 248820T KX885070 KX885050 KX885060 n.a. P. sclerotiorum CBS 287.36 T JN626132 JN626011 JN626044 JN405855 P. vanoranjei DTO99H6 T KC695696 KC695686 KC695691 n.a. P. verrucisporum HMAS 248819T KX885069 KX885049 KX885059 KX885049 P. viticola FKI-4410 T AB606414 AB540174 n.a. n.a.	P. lilacinoechinulatum	CBS 454.93 T	AY157489	KC773790	KC773816	n.a.	
P. maximae Protection Protect	P. malachiteum	CBS 647.95 T	KC773838	KC773794	KC773820	n.a.	
P. restingae MS-2014 T KF803355 KF803349 KF803352 n.a. P. sanshaense HMAS 248820T KX885070 KX885050 KX885060 n.a. P. sanshaense HMAS 248820T KX885070 KX885050 KX885060 n.a. P. sclerotiorum CBS 287.36T JN626132 JN626001 JN626044 JN406585 P. vanoranjei DTO99H6 T KC695696 KC695686 KC695691 n.a. P. verrucisporum HMAS 248819T KX885069 KX885049 KX885049 KX885040 P. viticola FKI-4410 T AB606414 AB540174 n.a. n.a.	P. mallochii	DAOM 239917 T	JN626104	JN625973	JN626016	n.a.	
P. sanshaense HMAS 248820T KX885070 KX885050 KX885060 n.a. P. sclerotiorum CBS 287.36T JN626132 JN626001 JN626044 JN406585 P. vanoranjei DTO99H6 T KC695696 KC695686 KC695691 n.a. P. verrucisporum HMAS 248819T KX885069 KX885049 KX885059 KX885040 P. viticola FKI-4410 T AB606414 AB540174 n.a. n.a.	P. maximae	NRRL 2060 T	EU427298	KC773795	KC773821	n.a.	
P. sclerotiorum CBS 287.36 T JN626132 JN626001 JN626044 JN406585 P. vanoranjei DTO99H6 T KC695696 KC695686 KC695691 n.a. P. verrucisporum HMAS 248819 T KX885069 KX885049 KX885059 KX885059 P. viticola FKI-4410 T AB606414 AB540174 n.a. n.a.	P. restingae	MS-2014 T	KF803355	KF803349	KF803352	n.a.	
P. vanoranjei DTO99H6 T KC695696 KC695686 KC695691 n.a. P. verrucisporum HMAS 248819T KX885069 KX885049 KX885059 KX885049 P. viticola FKI-4410 T AB606414 AB540174 n.a. n.a.	P. sanshaense	HMAS 248820 T	KX885070	KX885050	KX885060	n.a.	
P. verrucisporum HMAS 248819 T KX885069 KX885049 KX885059 KX885040 P. viticola FKI-4410 T AB606414 AB540174 n.a. n.a.	P. sclerotiorum	CBS 287.36 T	JN626132	JN626001	JN626044	JN406585	
P. viticola FKI-4410 T AB606414 AB540174 n.a. n.a.	P. vanoranjei	DTO99H6 T	KC695696	KC695686	KC695691	n.a.	
	P. verrucisporum	HMAS 248819 T	KX885069	KX885049	KX885059	KX885040	
P. levitum CBS 345.48 T GU981607 GU981654 KF296394 KF296432	P. viticola	FKI-4410 T	AB606414	AB540174	n.a.	n.a.	
	P. levitum	CBS 345.48 T	GU981607	GU981654	KF296394	KF296432	

Table 2. Fungal species and sequences used in phylogenetic analyses. T: ex-type strains. n.a.: data not available.

 *The accessions in bold are newly obtained in this study.

.....

Most species in *Penicillium* section *Sclerotiora* bearing monoverticillate conidiophores have vesiculate conidiophore apices, except for *P. adametzii*, *P. angulare* and *P. viticola*^{11, 35}. Although these three species do not form vesiculate conidiophores, they are scattered among or intertwined with those producing vesiculate conidiophores in the phylogenetic tree (Fig. 5). The former two species are located in subclade III and the latter is in subclade I. For the new species in subclade I, the conidiophores of *P. austrosinicum* and *P. exsudans* are vesiculate. The feature vesiculate conidiophore might not be phylogenetically informative for the group.

Sclerotia have been produced by seven members of the section *Sclerotia*²⁸. The color of sclerotia varies among species. For example, *P. austrosinicum* gives rise to cream to yellow sclerotia, and *P. hirayamae*, *P. sclerotiorum* and *P. vanoranjei* form orange ones on CYA at 25 °C^{11,34}. In fact, sclerotia appear sporadically in *Penicillium* species across sections³⁴, such as *P. corvianum* in section *Canescentia* producing brown sclerotia²⁶, *P. macrosclerotiorum* in section *Gracilenta* giving rise to the white ones³⁶, and *P. salamii* in section *Brevicompacta* having orange ones²¹. The production of sclerotia, as a morphological feature, does not reflect the phylogenetic relationships among species of the genus.

Species in section *Sclerotia* have been isolated from diverse substrates including soil, plants, and insects^{28, 33, 37}. Apart from the species dominant in soil, the species collected from plant materials comprise a substantial proportion. Three of our five new species are from plant debris: *P. choerospondiatis* infecting the fruits of *Choerospondias axillaris*, and *P. austrosinicum* and *P. exsudans* from the rotten fruits of unidentified plants. Furthermore, *P. herquei* is on a leaf of *Agauria pyrifolia*, *P. hirayamae* is on cereals¹¹, *P. viticola* infects grape³⁵, and *P. cainii* has

been isolated from nuts of *Juglans nigra* and *Carya ovata*³⁴. Some species are fungicolous: *P. angulare* is from a wood-decaying polypore³⁸. Some species are living as plant endophytes⁸⁻¹⁰. Along with the identifications of new species, a broader range of substrates will be expected. *Penicillium herquei* can be planted by the nonsocial leaf-rolling weevil *Euops chinesis*³⁹⁻⁴¹, which indicates that the fungus evolved the ability to adapt divergent niches.

The genus *Penicillium* has been established for more than 200 years. New species of this genus have been increasingly found from different regions of the world, especially during the past two decades. The results of this study broaden our knowledge of the species diversity of this group. It is undoubted that more *Penicillium* species will be found in the unexplored areas of China as well as in other regions of the world based on the integrated or comprehensive studies of morphology, cultural characteristics and sequence data.

Materials and Methods

Fungal materials. Cultures were isolated and purified from the soil and rotten fruit samples collected in Guangdong, Hainan and Hunan provinces of China. Dried cultures have been deposited in the Herbarium Mycologicum Academiae Sinicae (HMAS), and the living ex-type strains are preserved in the China General Microbiological Culture Collection Center (CGMCC).

Morphological observations. Morphological characterization of each sample was conducted following the standardized methods established by Visagie *et al.*¹⁷. Four standard growth media were used including the Czapek yeast autolysate agar (CYA, yeast extract Oxoid), malt extract agar (MEA, Amresco), yeast extract agar (YES) and Czapek's agar (CZ). The methods for culture inoculation, incubation, microscopic examinations and digital recordings were described in our previous study⁴².

DNA extraction, PCR amplification and sequencing. Fungal cultures were grown on the potato dextrose agar (PDA) medium for 7 d and then harvested for DNA extraction using the Plant Genomic DNA Kit (DP305, TIANGEN Biotech, Beijing, China). The fragments of the internal transcribed spacer region (ITS), beta-tubulin (*BenA*), calmodulin (*CaM*) and the second largest subunit of RNA polymerase II (*RPB2*) genes were amplified by PCR using the primers reported by Visagie *et al.*¹⁷. The products were purified and subject to sequencing on an ABI 3730 DNA Sequencer (Applied Biosystems).

Phylogenetic analyses. The sequences obtained in this study have been deposited in GenBank. The accessions and those retrieved from GenBank¹⁷ are listed in Table 2. The sequences of each gene (i.e., ITS, *BenA*, *CaM* or *RPB2*) were aligned using the program MAFFT (ver. 7.221)⁴³, and subsequently processed with BioEdit (ver. 7.1.10)⁴⁴. The individual or concatenated gene data sets were used to generate the respective Maximum-Likelihood (ML) trees using the software MEGA (ver. 6.0.6)⁴⁵ withthe most suitable nucleotide substitution model and 1,000 replicates of bootstrap tests. Bayesian Inference (BI) analysis was performed with MrBayes (ver. 3.2.5)⁴⁶ using a Markov Chain Monte Carlo (MCMC) algorithm. Appropriate nucleotide substitution models and parameters were determined by using the program Modeltest (ver. 3.7)⁴⁷. Four MCMC chains (one cold and three heated) were run for one million generations with the trees sampled every 100 generations. The first 25% trees were excluded as the burn-in phase of the analyses, and the posterior probability (PP) values were estimated with the 75% remaining trees. The consensus trees were viewed in FigTree (ver. 1.3.1; http://tree.bio.ed.ac.uk/software/figtree/). The species *Penicillium levitum* in section *Lanata-Divaricata* was used as an outgroup.

References

- 1. Houbraken, J., Frisvad, J. C. & Samson, R. A. Fleming's penicillin producing strain is not *Penicillium chrysogenum* but *P. rubens. IMA Fungus* 2, 87–95 (2011).
- Houbraken, J. et al. New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia 29, 78–100 (2012).
 Frisvad, J. C., Smedsgaard, J., Larsen, T. O. & Samson, R. A. Mycotoxins, drugs and other extrolites produced by species in
- Pericillium subgenus. Pericillium Stud. Mycol. 49, 201–241 (2004).
 A Scheider W. D. et al. Pericillium schinulatum secretore analysis reveals the fungi potential for degradation of lignocellulosis.
- Schneider, W. D. et al. Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass. Biotechnol. Biofuels 9, 66 (2016).
- 5. Yao, G. *et al.* Production of a high-efficiency cellulase complex via beta-glucosidase engineering in *Penicillium oxalicum. Biotechnol. Biofuels* **9**, 78 (2016).
- Magista, D. et al. Penicillium salamii strain ITEM 15302: A new promising fungal starter for salami production. Int. J. Food Microbiol. 231, 33–41 (2016).
- Kalai, S., Anzala, L., Bensoussan, M. & Dantigny, P. Modelling the effect of temperature, pH, water activity, and organic acids on the germination time of *Penicillium camemberti* and *Penicillium roqueforti* conidia. *Int. J. Food Microbiol.* doi:10.1016/j. ijfoodmicro.2016.03.024 (2016).
- Vega, F. E., Posada, F., Peterson, S. W., Gianfagna, T. J. & Chaves, F. *Penicillium* species endophytic in coffee plants and ochratoxin A production. *Mycologia* 98, 31–42 (2006).
- 9. Kim, C. S., Park, M. S. & Yu, S. H. Two species of endophytic Penicillium from Pinus rigida in Korea. Mycobiology 36, 222-227 (2008).
- You, Y. H., Park, J. M., Park, J. H. & Kim, J. G. Diversity of endophytic fungi associated with the roots of four aquatic plants inhabiting two wetlands in Korea. *Mycobiology* 43, 231–238 (2015).
- 11. Pitt, J. I. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces (Academic Press, 1979).
- 12. Houbraken, J. & Samson, R. A. Phylogeny of *Penicillium* and the segregation of Trichocomaceae into three families. *Stud. Mycol.* **70**, 1–51 (2011).
- 13. Houbraken, J., Wang, L., Lee, H. B. & Frisvad, J. C. New sections in *Penicillium* containing novel species producing patulin, pyripyropens or other bioactive compounds. *Persoonia* **36**, 299–314 (2016).
- 14. Thom, C. The Penicillia (Williams & Wilkins, 1930).
- 15. Raper, K. B. & Thom, C. A manual of the Penicillia (Williams & Wilkins, 1949).
- 16. Stolk, A. C. & Samson, R. A. The Ascomycete genus Eupenicillium and related Penicillium anamorphs. Stud. Mycol. 23, 1–149 (1983).
- 17. Visagie, C. M. et al. Identification and nomenclature of the genus. *Penicillium. Stud. Mycol.* 78, 343–371 (2014).
- 18. Crous, P. W. et al. Fungal Planet description sheets: 281-319. Persoonia 33, 212-289 (2014).
- 19. You, Y. H. et al. Penicillium koreense sp. nov., isolated from various soils in Korea. J. Microbiol. Biotechnol. 24, 1606-1608 (2014).

- 20. Park, M. S. et al. Penicillium jejuense sp. nov., isolated from the marine environments of Jeju Island, Korea. Mycologia 107, 209-216 (2015).
- Perrone, G. *et al. Penicillium salamii*, a new species occurring during seasoning of dry-cured meat. *Int. J. Food Microbiol.* **193**, 91–98 (2015).
 Taniwaki, M. H. *et al. Penicillium excelsum* sp. nov from the Brazil Nut Tree Ecosystem in the Amazon Basin. *PLoS One* **10**, e0143189
- (2015).
 23. Visagie, C. M., Houbraken, J., Seifert, K. A., Samson, R. A. & Jacobs, K. Four new *Penicillium* species isolated from the fynbos biome in South Africa, including a multigene phylogeny of section *Lanata-Divaricata*. *Mycol. Prog.* 14, 96 (2015).
- Rong, C. B. et al. Penicillium chroogomphum, a new species in Penicillium section Ramosa isolated from fruiting bodies of Chroogomphus rutilus in China. Mycoscience 57, 79-84 (2016).
- Visagie, C. M. et al. A taxonomic review of Penicillium species producing conidiophores with solitary phialides, classified in section Torulomyces. Persoonia 36, 134–155 (2016).
- 26. Visagie, C. M. et al. Fifteen new species of Penicillium. Persoonia 36, 247-280 (2016).
- Visagie, C. M., Seifert, K. A., Houbraken, J., Samson, R. A. & Jacobs, K. A phylogenetic revision of *Penicillium* sect. *Exilicaulis*, including nine new species from fynbos in South Africa. *IMA Fungus* 7, 75–117 (2016).
- Visagie, C. M. et al. Five new Penicillium species in section Sclerotiora: a tribute to the Dutch Royal family. Personnia 31, 42–62 (2013).
 Sang, H. et al. Penicillium daejeonium sp. nov., a new species isolated from a grape and schisandra fruit in Korea. J. Microbiol. 51,
- 30. Crous, P. W. et al. Fungal Planet description sheets: 214–280. Persoonia 32, 184–306 (2014).
- 31. Kong, H. Z. Flora Fungorum Sinicorum. vol. 35. Penicillium et teleomorphi cognati (Science Press, 2007).
- Yaguchi, T., Miyadoh, S. & Udagawa, S. Chromocleista, a new cleistothecial genus with a Geosmithia anamorph. Trans. Mycol. Soc. Japan 34, 101–108 (1993).
- 33. Rivera, K. G. *et al. Penicillium mallochii* and *P. guanacastense*, two new species isolated from Costa Rican caterpillars. *Mycotaxon* **119**, 315–328 (2012).
- 34. Rivera, K. G. & Seifert, K. A. A taxonomic and phylogenetic revision of the *Penicillium sclerotiorum* complex. *Stud. Mycol.* **70**, 139–158 (2011).
- 35. Nonaka, K. et al. Penicillium viticola, a new species isolated from a grape in Japan. Mycoscience 52, 338-343 (2011).
- Wang, L., Zhang, X. M. & Zhuang, W. Y. Penicillium macrosclerotiorum, a new species producing large sclerotia discovered in south China. Mycol. Res. 111, 1242–1248 (2007).
- Peterson, S. W., Perez, J., Vega, F. E. & Infante, F. Penicillium brocae, a new species associated with the coffee berry borer in Chiapas, Mexico. Mycologia 95, 141–147 (2003).
- Peterson, S. W., Bayer, E. M. & Wicklow, D. T. Penicillium thiersii, Penicillium angulare and Penicillium decaturense, new species isolated from wood-decay fungi in North America and their phylogenetic placement from multilocus DNA sequence analysis. Mycologia 96, 1280–1293 (2004).
- Li, X., Guo, W. & Ding, J. Mycangial fungus benefits the development of a leaf-rolling weevil. *Euops chinesis. J. Insect Physiol.* 58, 867–873 (2012).
- 40. Wang, L. et al. Farming of a defensive fungal mutualist by an attelabid weevil. ISME J. 9, 1793-1801 (2015).
- Li, X., Guo, W., Wen, Y., Solanki, M. K. & Ding, J. Transmission of symbiotic fungus with a nonsocial leaf-rolling weevil. J. Asia-Pac. Entomol. 19, 619–624 (2016).
- 42. Wang, X. C., Chen, K., Qin, W. T. & Zhuang, W. Y. Talaromyces heiheensis and T. mangshanicus, two new species from China. Mycol. Prog. 16, 73–81 (2017).
- Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
- Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95–98 (1999).
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
- Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
- 47. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817-818 (1998).

Acknowledgements

The authors would like to thank the anonymous reviewers and the editor for their valuable suggestions and linguistic corrections. We also thank Prof. Tai-Hui Li (Guangdong Institute of Microbiology) for providing the soil samples from the Xisha Islands, and Prof. Jian-Yun Zhuang (Institute of Microbiology, CAS) for constructive discussions. This project was supported by the National Natural Science Foundation of China (nos. 31570018, 31270073) to WYZ.

Author Contributions

Conceived and designed the experiments: W.Y.Z. Performed the experiments: X.C.W. Analyzed the data: X.C.W. and W.Y.Z. Contributed reagents/materials/analysis tools: K.C. and Z.Q.Z. Wrote the paper: X.C.W. and W.Y.Z.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017