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Overexpressed somatic alleles are 
enriched in functional elements in 
Breast Cancer
Paula Restrepo1,2, Mercedeh Movassagh3, Nawaf Alomran2,4, Christian Miller2, Muzi Li2,4, 
Chris Trenkov2, Yulian Manchev2, Sonali Bahl1, Stephanie Warnken  5, Liam Spurr1,2, Tatiyana 
Apanasovich6, Keith Crandall  5, Nathan Edwards4 & Anelia Horvath  1,2,6,7

Asymmetric allele content in the transcriptome can be indicative of functional and selective features 
of the underlying genetic variants. Yet, imbalanced alleles, especially from diploid genome regions, 
are poorly explored in cancer. Here we systematically quantify and integrate the variant allele fraction 
from corresponding RNA and DNA sequence data from patients with breast cancer acquired through 
The Cancer Genome Atlas (TCGA). We test for correlation between allele prevalence and functionality 
in known cancer-implicated genes from the Cancer Gene Census (CGC). We document significant allele-
preferential expression of functional variants in CGC genes and across the entire dataset. Notably, we 
find frequent allele-specific overexpression of variants in tumor-suppressor genes. We also report a 
list of over-expressed variants from non-CGC genes. Overall, our analysis presents an integrated set 
of features of somatic allele expression and points to the vast information content of the asymmetric 
alleles in the cancer transcriptome.

The cancer phenotype is largely driven by somatic mutations, whose carcinogenic effects are ultimately inter-
vened by the transcription process1–3. As a mediator between genotype and phenotype, the tumor transcriptome 
reflects both advantage- selective pressure, and direct effects of the mutations on the transcription process. Hence, 
the tumor transcriptome is highly informative about the somatic functionality, especially through allele-specific 
approaches that can confine expressed structures to particular mutant alleles1–4.

Several studies have explored the allele-specific transcriptional landscape of cancer1, 5–10. Preferentially 
expressed alleles are reported to play a role in epithelial ovarian cancer7, as well as in microRNA-implicated car-
cinogenesis, an example of which is miR-31 dysregulation in lung cancer8. Imbalanced allele expression can be 
caused by both large chromosomal alterations, such as copy number alterations (CNAs), and single nucleotide 
somatic mutations1.

Nucleotide somatic mutations can affect the transcriptome through alteration of regulatory, splicing, or 
expression-rate modifying sites. Such effects commonly manifest in cis-fashion and directly impact the transcript 
abundance of the mutation bearing allele1, 11, 12. Mutations can also indirectly imbalance the allele content through 
changing the protein functions to either advance or impair the tumor growth. Functional mutations that provide 
selective advantage are referred to as drivers, and they are commonly targeted by either positive or negative selec-
tion forces to retain or deplete the growth-affecting allele13–16. Accordingly, somatic allele imbalance, including 
the extremes of loss or over-expression, can indicate tumorigenic functionality.
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Expression imbalance of point mutations is particularly informative for regions with no CNAs, where 
potential effects on the transcription can be directly linked to the underlying nucleotide change14. Therefore, 
quantitative integration of allele signals between same-source DNA and RNA is instrumental for tracking 
chromosome-of-origin effects. The latter, in turn, can be used to search for new genes whose allele behavior fol-
lows the pattern of known cancer drivers and is thus indicative for potential carcinogenicity. Therefore, the few 
studies that quantitatively integrate allele abundance from matching DNA and RNA sequencing sources are very 
informative10.

Herein, we apply a software that we recently developed – RNA2DNAlign9 – to systematically quantify the allele 
expression of somatic variants in breast cancer samples from The Cancer Genome Atlas (TCGA). RNA2DNAlign 
counts variant and reference sequencing reads derived from compatible RNA and DNA datasets, and tests for 
allelic imbalance; it also calls positions with extreme allele distributions, including somatic over-Expression 
(SOM-E) or loss (SOM-L). We compute and compare the somatic variant allele fraction (VAF) of mutations 
in genes from the Cancer Gene Census (CGC)17 to those in the rest of the genes in our samples. We also report 
a list of non-CGC genes with over-expressed somatic variants. Overall, we present an integrated set of somatic 
allele-specific expression features, in the context of their potential underlying functionality.

Results
Strategy. Our strategy was to first systematically quantify the variant allele fraction of the tumor RNA 
(VAF{tRNA}), and then to assess for correlation between RNA allele asymmetry and functional features (Fig. 1). 
Somatic variants (SOM) with a bi-allelic signal in the tumor DNA and a mono-allelic signal in the tumor 
RNA were classified as SOM-L (VAF{tRNA} ~ 0) or SOM-E (VAF{tRNA} ~ 1; Fig. 2). We assess both absolute 
VAF{tRNA}, and relative to VAF{tDNA}, for which we introduce the expression VR:D = VAF{tRNA}:VAF{tDNA}. 
We note that through accounting for the VAF{tDNA}, VR:D reflects the overall genome composition of the sample, 
including the contribution from large rearrangements, and admixture with non-tumor genomes (i.e. the sample 
purity). First, we analyzed the allele distribution for mutations in known oncogenes and tumor suppressors from 
CGC. We evaluated VAF{tRNA} and VR:D for correlation with functional features including conservation, pre-
dicted pathogenicity, and location in critical sequence motifs. Next, we assessed these features, in the context of 
their allelic expression, in the non-CGC dataset, and highlighted variants whose somatic allele patterns follow 
functionality-associated allele behavior of known cancer drivers.

Overall dataset characteristics. A total of 1238 (1139 unique) mutations in 921 genes, from which 68 
were listed in CGC, satisfied the requirements for our analysis (Supplementary Table 1 and Supplementary 
Figure 1). Between 7 and 51 somatic point mutations in expressed coding regions were assessed per individ-
ual sample. Most of the mutations (94%) were singletons (present in only one sample), whereas 44 mutations 
were seen in 2, 12 in 3, 4 in 4, 2 in 5, and one mutation each was found in 6 and 7 different samples. Notably, 
all non-singleton mutations shared similar allele expression status across the different samples. A total of 437 
somatic mutations (38.3%) were not expressed at all in the transcriptome (SOM-L), and 73 mutations (4.9%) 
were over-expressed (SOM-E). The analysis of the variant allele fraction showed an overall positive correlation 
between VAF{tDNA} and VAF{tRNA} (Spearman correlation r = 0.38, Fig. 3A–C). The functional distribution 
of the predicted consequences on the protein, and the intersection with their allele-expression status is presented 
on Fig. 3D. The missense, non-coding and stop-codon variants showed clearly different patterns of VR:D with a 
higher VR:D in the missense mutations, as compared to the non-coding and stop-codon variants (p = 0.0004, 
Kruskal-Wallis test18, Fig. 3E). Notably, we observed distribution towards higher VR:D of the variants predicted to 
be pathogenic through FATHMM (Functional Analysis Through Hidden Markov Models), Fig. 3F19, 20.

CGC genes somatic allele expression: overall features. The 68 known cancer driver genes collectively 
contained 103 (88 unique) somatic mutations qualifying for the analysis (Supplementary Table 2)17. Mutations 
in PIK3CA, MITF, ACVR2A, CLIP1, and TCEA1 were called in more than one sample. In this gene-set, we called 
10 SOM-E variants: seven missense substitutions, two synonymous variants, and, notably, the stop-codon R63X 

Figure 1. Major steps of the analysis of allele distribution for somatic variants in our dataset. VR:D was analyzed 
for correlation with different functional mutations groups in oncogenes, tumor suppressors, and the rest of 
the genes. SOM-E and SOM-L variants were compared with the rest of the somatic mutations for predicted 
pathogenicity and location in functional motifs such as transcription and splice factor binding sites, and highly 
preserved sequences.
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in CDH1. Of note, four of the SOM-E missense substitutions were called in TP53 (See Supplementary Table 2). A 
higher number - 25 - SOM-L variants were completely absent from the transcriptome in the CGC dataset.

Several noticeable observations were made in the CGC subset. First, different VR:D distribution was observed 
in the CGC variants as compared to the rest of the dataset (p = 0.02, Kruskal-Wallis test18, Fig. 4A); the differ-
ence due to larger proportion of CGC variants with higher allele expression. Second, the CGC missense muta-
tions showed higher allele expression as compared to the missense mutations in the entire dataset (p = 0.03, 
Kruskal-Wallis test18, Fig. 4B). Notably, a tendency for higher VR:D was also seen for the stop-codon mutations, 
albeit not reaching statistical significance (Fig. 4C). In contrast, the non-coding variants did not show signifi-
cant differences between the CGC and non-CGC genes (Fig. 4D). Third, we documented positive correlation 
between VR:D and predicted pathogenicity assessed by the CADD score (Combined Annotation Dependent 
Depletion)21, (Spearman r = 0.25), FATHMM score (Functional Analysis Through Hidden Markov Models)19, 20  
(Spearman r = 0.17), and conservation of the position of the somatic mutation as assessed through GERP 
(Genomic Evolutionary Rate Profiling, Spearman r = 0.29)22–26. Of note, 21% of the variants in the CGC dataset 
modeled through FATHMM as pathogenic have been reported in cancer-based studies17. Collectively, all the 
above analyses supported preferential expression of functional alleles in the CGC dataset.

Figure 2. IGV visualization of somatic mutations that are over-expressed (SOM-E, middle) or under-expressed 
(SOM-L, right) compared to expected allele distribution for a germline heterozygote variant (left); the 
heterozygosity is reflected through color-coding of the summary flag on the top of each panel. The gray lines 
represent reads, and the colored letters show differences from the reference.
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We then assessed CGC SOM-E and SOM-L mutations in the context of their harboring gene’s function and 
mechanism of action. The first noticeable observation was a tendency for over-representation of genes acting 
in recessive molecular mode among the SOM-E variants, as opposed to more-frequent dominant mode of 
action in the genes bearing SOM-L variants (p = 0.15). Recessive mode is traditionally more often associated 
with tumor-suppressive function, while dominant action is reported frequently for oncogenes27. In our study, 
SOM-E status appears not to result from a genomic DNA loss, as evident by the tumor DNA’s biallelic signal 
(0 < VAF{tDNA} < 1). Both the inhibition of the reference and the enhancement of the mutant allele’s expression 
could result in mutant RNA dominance, and these effects could be independent or related to the functionality 
of the particular mutation. In the case of the mutations acknowledged as pathogenic in suppressor genes, the 
observed overexpression is consistent with mutation-driven allele inactivation, possibly favored by positive selec-
tion forces. Such interpretation is in line also with the over-expressed stop-codon R63X in CDH128.

For the SOM-L mutations, whether their expressional loss is linked to potential oncogenic action of the host 
gene, is to be determined on per-gene basis. It is important to recognize that many somatic variants are randomly 
lost in the tumor transcriptome, and the number of transcribed ones can depend on factors such as Estrogen 
Receptor (ER) expression levels1. While it is possible for a SOM-L variant to reside on a lost allele by coincidence, 
this is unlikely to explain all SOM-L patterns for variants with known pathogenicity.

Allele expression of somatic mutations in the non-CGC genes. The integrated features of somatic 
allele expression in the non-CGC genes is presented in Supplementary Table 3. We documented concurrent to 
the CGC dataset positive correlation between increased allele expression and predicted pathogenicity and con-
servation scores (Spearman CADD r = 0.11, FATHMM r = 0.12, and GERP r = 0.17 (Supplementary Table 3).

The non-CGC somatic mutations with strong overexpression of the mutation-bearing allele (VAF{tRNA} = 1) 
are presented in Table 1. We next assessed the SOM-E variants for location within transcription and splicing 
factor binding sites, including analysis for generation of a new binding site outside of known protein - recogniz-
able sequences29. Indeed, 18 out of the 42 non-CGC SOM-E variants positioned outside an existing TFBS were 
predicted to generate a new motif recognizable by either transcription or a splicing factor29, 30.

Figure 3. (A–C) Distribution of VAFtRNA (blue) and VR:D (red) in the subgroups of missense (A), non-coding 
(B) and stop-codon variants. The X axis shows the number of variants in each functional category. Positive 
correlation is seen in all three mutation groups. (D) Distribution of SOM-E and SOM-L expression status in 
regards to predicted effect on the protein function in the entire set, CGC-, and non-CGC variants. (E) VR:D for 
non-coding, missense and stop-codon variants across the entire dataset. Clearly different VR:D distribution is 
seen among the different functional subtypes, with the missense mutations showing higher VR:D, indicative 
for higher allele expression of potentially functional transcripts. (F) VR:D for pathogenic and neutral variants 
as predicted by FATHMM. The difference in the distribution is due to the larger proportion of the pathogenic 
mutations with higher VR:D.
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Next, we reviewed, on a per-gene basis, the current knowledge on the SOM-E genes and their possible impli-
cations in cancer. Despite not being listed in the CGC, some of these genes – such as MSH3 and NUAK1 and 
NFE2 – have been repeatedly linked to cancer31–33. Notably, more of the SOM-E genes linked to tumor sup-
pressor features (as opposed to oncogenic, p = 3.8e-4, Metacore), which we concurrently observed in the CGC 
dataset34, 35. Another striking observation is that 6 of the genes with SOM-E variants –MSH3, RAD51, TCOF1, 
TP53BP1, CCNB2, and TOP3B – are directly implicated in DNA damage response and repair36–39 which was also 
the top-enriched pathway in the SOM-E dataset (p = 0.05, Metacore). In contrast, the most represented pathway 
in the SOM-L group was the immune response (p = 0.05, Metacore). In regards to GO annotations, two differ-
ences were detected between the SOM-E and SOM-L groups (Supplementary Figure 2). First, SOM-E variants 
were more frequently located in genes encoding receptors and signal transducers, while a higher proportion of 
the SOM-L variants resided in structure-supportive genes. In regards to biological processes, the SOM-E group 
was enriched in genes involved in response to stimuli.

Discussion
Ultimately, the accurate assessment of the expressed allele fraction is only possible in the context of the corre-
sponding DNA alleles’ content. Herein, we integrate matching RNA and DNA allele fraction from bi-allelic DNA 
regions to identify transcriptome-favored alleles. We focus more specifically on somatic point mutations in breast 
cancer, which we assess for tumorigenic functionality that can underlie selective transcriptome preference.

The first striking observation from our study is that transcriptome-preferred alleles are enriched in func-
tional features, which are often predicted to alter the original protein function. This correlation was stronger in 
the group of genes traditionally acknowledged as tumor suppressors. Tumor suppressors are often lost during 
progression, and their loss is considered a contribution to tumor growth40. In our data we see a strong expres-
sion preference towards somatically mutated tumor suppressor transcripts, including such bearing a premature 
stop-codon. Increased allele expression can be either directly caused by mutation-promoted cis transcription 

Figure 4. VR:D in the CGC vs non-CGC genes (A), in missense variants (B), in stop-codon variants (B), and in 
non-coding variants.
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Gene Chr:pos (hg38) Function TFBS SFBS

TMEM51 chr1:15215414C > A missense none none

NBPF3 chr1:21481730T > C non-coding none none to SRp40

EPHA10 chr1:37720517C > T missense none none

KIF26B chr1:245609349C > G missense none to V$LRH1_
Q5_01 none

ILDR1 chr3:122001432G > A non-coding V$PPARG_02 none to Sam68, SLM-2

MUC20 chr3:195725818C > T non-coding V$CREB1_Q6 hnRNP DL, 
SRp55tonone

ZNF518B chr4:10445288C > G missense V$PBX1_02 none

BBS7 chr4:121828063C > G non-coding none hnRNP, HuB, 
MBNL1toTIA-1

OTUD4 chr4:145146395G > A missense none SRP4 0to hnRNPA1

SH3RF1 chr4:169136534G > A non-coding none MBNL1 to SRp40

SORBS2 chr4:185589715C > T missense none YB-1 to SAM68

MYO10 chr5:16877688C > G missense V$YY1_01 none

MSH3 chr5:80768937T > A missense V$STAT3_01 none

PCDHB5 chr5:141136316C > T non-coding none none

GRPEL2 chr5:149351223G > A missense V$YY1_02 none

TCOF1 chr5:150376236C > T missense none SRp20/Nova-1/Nova-2 
to none

MDN1 chr6:89700782A > T non-coding V$SMAD4_Q6_01 none

TNRC18 chr7:5316065C > A non-coding none none

WDR60 chr7:158871385A > G missense none none to SC35,SF2/
ASF,hnRNPA1

FZD3 chr8:28527405G > A non-coding none none

DAPK1 chr9:87706999C > T missense V$NFAT_Q6 none

COL27A1 chr9:114309301C > G missense
none to 
V$MYOGENIN_
Q6_01

none

PLCE1 chr10:94270600A > C missense none to V$NFAT1_
Q4

SF2/ASF,hnRNPA1 to 
none

PDCD11 chr10:103441838A > C missense none YB-1 to SRp-40

MUC6 chr11:1016406G > A missense none to V$NFAT1_
Q4 none

ACER3 chr11:76861031G > T missense none SRp30c to none

RAB38 chr11:88175236A > T missense V$PPARG_02 none

PHLDB1 chr11:118627958C > T missense V$IK3_01 none to HuB,TIA-
1,SRp40

WNK1 chr12:753666C > G missense V$GFI1_01 none

NFE2 chr12:54292991G > A missense none to V$BEN_01 none to YB-1,SRp40

NUAK1 chr12:106067839A > T missense V$OCT1_06 none

RASAL1 chr12:113114816C > G missense V$YY1_01 none

SLITRK6 chr13:85795773C > A missense V$SMAD4_Q6_01 SF2/ASF,SRp38,YB-1 to 
Sam68

ATP11A chr13:112858175C > A missense V$PAX5_01 none

NYNRIN chr14:24411385C > G non-coding none to V$BEN_01 MBNL1

CLMN chr14:95203587C > T missense none none to hnRNPI

AHNAK2 chr14:104948892T > C missense none none

RAD51 chr15:40706209C > A non-coding V$CEBPB_02 none

CCNB2 chr15:59125011G > A non-coding none none

SULT1A2 chr16:28592021A > G non-coding none SRp30c to none

NFATC3 chr16:68190983G > A missense none to V$GATA_
Q6 none to SLM-2, Sam68

MED31 chr17:6651601A > G non-coding none SRp30c to none

CHRNB1 chr17:7447082C > T non-coding none none to ETR-3

ACBD4 chr17:45136583C > T missense none SRp55t to SC35

ABCA7 chr19:1041510G > A missense none none to YB-1, SRp20

LMNB2 chr19:2431813G > A non-coding none SRp55 to SC35

ZNF676 chr19:22180184G > T non-coding none to V$NFAT1_
Q4 deleted MBNL1

ZIM2 chr19:56774836G > T stop none to V$DRI1_01 none to Sam68, SLM-2

Continued
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activation, or/and retention of the mutant allele in the transcriptome via positive selection. Both scenarios infer 
functionality and growth-supportive potential. Conforming with that, highly expressed somatic variants, includ-
ing SOM-E, were more frequently located in highly conserved and predicted to be functional genomic sequences. 
Taken together, these data are consistent with gain-of-function mechanism favored by the tumor transcriptome. 
An active role of over-expressed variants is also supported by the selection for maintaining the expression of a 
complete, translation-ready transcripts, suggesting a possible role of the altered/shortened proteins in the tumor 
progression. Indeed, once recognized as tumor suppressors, many of the genes in our SOM-E set, including TP53 
are now acknowledged to play more complex roles that include oncogenic action41–44. Both inactivation and alter-
ing the protein function can be crucial for the tumor development. Regardless the mechanism of action, the above 
observations mark allelic overexpression as a highly informative metric that can be used to outline functionally 
enriched somatic datasets.

The proportion of SOM-L alleles in our data is generally consistent with other reports1. Under-expressed 
alleles, including SOM-L, also correlated with functional annotations and regulatory motifs, though did not 
reach the significance of SOM-E. In contrast to SOM-E, SOM-L variants confer features that imply intolerance 
of the transcriptional machinery to the harbored variant. In the absence of CNAs, several mechanisms could 
potentially lower allele expression levels of mutation bearing transcripts. A well acknowledged scenario is the 
surveillance-driven targeting of transcripts with deleterious variants, the most prominent example of which is 
NMD1, 45. A degradation mechanism can also take place where the mutation results in an unstable RNA struc-
ture46. Finally, a mutation can destroy a binding site for a transcription or splicing factor, thus directly abolishing 
the expression of the underlying alleles14. Additional factors, such as high ER expression levels, are also reported 
to correlate with a decreased number of expressed somatic mutations1. Besides the above mutation-focused 
mechanisms, SOM-L may result from random under-expression in the tumor transcriptome, and the general 
infidelity of cancer transcriptional machinery47, 48. The later confers higher contribution of randomness towards 
SOM-L loci, which is likely to dilute functional annotations in this group.

Another striking observation from our analysis is the expression pattern of stop-codon mutations. Several 
recent studies have published decreased expression of stop-codon bearing variants in cancer, and have linked it to 
NMD1, 49. Notably, in our data we see stop-codon bearing alleles over-represented as compared to the reference. 
Whether these expressed RNAs are translated into shorter proteins is subject of further studies, but this possibility 
is consistent by the presence of premature stop containing, translation-ready transcripts1. While NMD is knowl-
edgeably impaired in cancer, our data suggests gene-selective NMD actions50–52.

Distinguishing pathogenic mutations from the more prevalent neutral variants constitutes one of the great-
est challenges of cancer biology, leading to substantial effort towards developing confident analytic strategies. 
Modern methods integrate traditional frequency based approaches with expression abundance, functional effects, 
interaction networks and pathway context13, 53–60. Here, we integrate somatic allele fraction with most of the 
above strategies and the knowledge on tumor driving mechanisms, and evaluate the potential of asymmetric 
allele expression to predict cancer implicated variants. We document distinct allele signatures of cancer drivers at 
several levels. First, mutations in known cancer genes from our dataset presented more frequently with extreme 
allele patterns. An example is TP53, mutation in which were frequently either over-expressed or lost. Second, 
mutations in known cancer-implicated genes presented with higher allele expression. This was also reflected in 
the higher percentage of SOM-E variants among the known cancer genes. Third, SOM-E mutation sites were 
enriched in conservation and functional motifs. Cumulatively, these findings highlight the SOM-E status as a 
potential indicator for cancer-driving functionality. Based on the above, we list the non-CGC genes whose expres-
sion status follows the drivers-enriched SOM-E status (see Table 1); albeit not included in the CGC list, some of 
these genes have been linked to cancer before and are worth further investigation. In summary, our research illus-
trates an important correlation between asymmetric alleles and cancer-implicated functionality, and functionality 
in general, and underscores the vast information content of our strategy to systematically outline asymmetrically 
expressed alleles. This strategy is applicable to all types of cancer and is now enabled by the growing accessibility 
of matched DNA and RNA sequence data new tools for their integration and analysis9, 61, 62.

Gene Chr:pos (hg38) Function TFBS SFBS

MRPL30 chr2:99181122C > A non-coding none to V$NFAT1_
Q4

SLM-2 to 
hnRNP,DAZAP1, HuD

PASK chr2:241126376C > G missense none ETR-3 to SF2/ASF

TOP3B chr22:21964200A > T non-coding none hnRNPH1,hnRNPH2 
to none

GGA1 chr22:37620258G > A synonymous none ETR-3, SRp30c to 
hnRNPH1/2

RIBC2 chr22:45426055G > A non-coding none hnRNP K to SF2/ASF

GRPR chrX:16123978C > G missense none none

TBC1D25 chrX:48560553C > G missense none none

IGBP1 chrX:70133976C > T missense none MNBL1 to SRp40, SRp55

HTATSF1 chrX:136510164G > C missense none none to SRp20, YB-1

Table 1. SOM-E mutations in non-GCG genes: location within transcription and splicing factor recognizable 
motifs.
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Methods
TCGA samples selection. We first identified all breast cancer samples for which the following five sets 
were available: normal exome, normal transcriptome, tumor exome, tumor transcriptome, and CNA data (seg-
mentation file based on Affymetrix SNPv6 array profiling)12, 60, 63, 64. All these samples had at purity assessed with 
at least three of the following five purity estimators: ESTIMATE, ABSOLUTE, LUMP, IHC and the Consensus 
Purity Estimation (CPE)65–68. From these, we excluded samples with extensive (more than 3 standard deviations) 
number of somatic mutations, possibly due to clustered genomic rearrangements69, 70. The remaining 72 samples 
(Supplementary Table 4) were retained for further analysis. We reviewed the pathology reports and retrieved the 
available clinical information; data for 41 (57%) of the studied samples was available (See Supplementary Table 4). 
The highest proportion of the samples were ductal adenocarcinomas, either ER, or ER/PR positive. We did not 
observe any significantly distinguishing somatic expression patterns, which is likely due to the small sample size. 
The purity, as assessed by the above-mentioned algorithms, is shown in Supplementary Table 5.

Allele count computation. All the used datasets were generated through paired-end sequencing on 
an Illumina HiSeq platform. The aligned to the human genome reference (hg38) sequencing reads (Binary 
Alignment Maps,bams) were downloaded from the Genomic Data Commons Data Portal (https://portal.gdc.
cancer.gov/) and processed downstream through an in-house pipeline. Briefly, for both DNA and RNA data-
sets variants were called using the mpileup module of SAMtools70. The variants were further annotated through 
SeattleSeq. 147 (http://snp.gs.washington.edu/SeattleSeqAnnotation147/). The alignments together with the var-
iant calls (.vcf) were processed through RNA2DNAlign. RNA2DNAlign produced variant and reference sequenc-
ing reads counts for all the variant positions in all four datasets (normal exome, normal transcriptome, tumor 
exome and tumor transcriptome). The read count assessments were visually examined using Integrative Genome 
Viewer72. We excluded from further analyses variants which (1) were covered with less than 10 sequencing read 
in the tumor DNA or the RNA sequencing data; (2) reside in known imprinted regions, and (3) reside in area 
affected by copy number change in the corresponding sample, as defined based on the CNA segmentation file, (4) 
were present in the normal DNA or RNA, suggestive for germline origin.

Assessment for allele distribution. Allele expression rates within a sample were determined through 
estimation of the relative abundance of variant over total sequence read counts, expressed as Variant Allele 
Fraction (VAF). For each somatic mutation, we computed the VAF = n(var)/(n(ref) + n(var)), for both tumor 
RNA (VAF{tRNA}) and tumor DNA (VAF{tDNA}), where n(ref) and n(var) are the counts of the variant and 
reference sequencing reads covering the position. To account for allele asymmetries related to DNA, we ana-
lyzed VAF{tRNA} in the context of the corresponding VAF{tDNA}. Over-expression of somatic mutations 
(SOM-E status) was determined as prevalence of variant sequencing reads in the transcriptome (VAF{tRNA} ~ 
1), while SOM-L was defined by complete loss of the mutant allele in the transcriptome (VAF{tRNA} ~ 0). All the 
VAF{tRNA} values were used in a correlation analyses to search for association with functional features. Overall 
VAFs across the studied datasets were illustrated using Circos plots (See Supplementary Figure 1)73.

Functional and enrichment analyses. Functional annotations, conservation scores and mod-
eled pathogenicity were extracted using the SeattleSeq annotation 147 (http://snp.gs.washington.edu/
SeattleSeqAnnotation147/index.jsp). Pathogenicity was modeled using PolyPhen, CADD and FATHMM models, 
and Conservation was assessed based on Phast, GREP and Grantham Scores20–26. Gene Ontology categories, path-
way enrichment and network analysis were assessed using Metacore (Claritive Analytics). Transcription factor 
binding cites were analyzed using TRANSFAC 7.029 and splicing motifs were assessed using SpliceAid230.

Statistics. SOM, SOM-E and SOM-L variants were called based on a binomial test for variant and refer-
ence sequencing read distribution, as previously described9. The distributions of SOM-E and SOM-L across 
tumor-suppressors, oncogenes, and the rest of the genes in the datasets, as well as the distribution of functional 
elements across SOM, SOM-E and SOM-L, were assessed using the Fisher exact test, Pearson chi-square test, 
Kruskal-Wallis rank sum test, linear regression analysis, and the Spearman rank correlation coefficient18, 74, 75. 
Yates’s correction for continuity was applied for tests with less than 5 measurements in any category76. The means 
of the VAF across different mutation types were compared using Student’s t-test77. P-values below 0.05 were 
considered significant. For multiple trials, the significance value was corrected using Benjamini-Hochberg False 
Discovery Rate (FDR) technique.
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