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Testing Association between Mixed 
Type Outcomes and Covariates 
Jointly by the Use of a Latent 
Variable
Jiayan Zhu1,2, Wei Zhang3, Qizhai Li3 & Zhengbang Li1

Multiple outcomes are often collected simultaneously in biomedical fields in order to identify whether 
a continuous response and an ordinal response are associated with some covariates simultaneously. 
Here we propose a joint statistical model by the use of a latent variable underlying the ordinal response. 
Asymptotic results are obtained and a jointly test is proposed for testing the continuous response and 
the ordinal response are associated with some covariates simultaneously. Extensive simulations and 
real data analysis results indicate more efficient performances of the proposed method than that of the 
combined p-values method.

Multiple outcomes are often encountered in a variety of fields including social sciences, economics, and biomed-
ical, in order to characterize the effect of a covariate or investigate the association between multiple outcomes 
and the interested variables. In many cases, these outcomes are of mixed types in the sense that some are contin-
uous, and others may be ordinal. For example, in a mental health study1 in Florida, USA, the collected outcomes 
consist of mental impairment, life events, and socioeconomic status(SES) which are of different data types. The 
mental impairment is ordinal, with 4 categories(1 = well, 2 = mild symptom, 3 = moderate symptom formation, 
4 = impaired). For the life events index, it is a composite measure which includes the number and severity of 
important life events occurred to the subject within the past 3 years, such as the birth of a child, a new job, a 
divorce, or a death in the family. The life events index can be taken as a continuous response. SES is measured as 
binary which can be taken as a covariate. Investigators want to judge whether mental impairment or life events 
index is associated with SES.

Various approaches have been developed to model mixed outcomes in the literature. A direct procedure is 
to ignore the correlations among multiple outcomes and fit each outcome with a model that best suits its type 
separately. Dale2 proposed global cross-ratio models as a measure of association for bivariate, discrete and ordinal 
responses. For testing association between a bivariate trait with a continuous and discrete (taking values 0, 1)  
outcomes and a covariate jointly, a widely used class of approaches are latent variable models. Catalano and 
Ryan3 proposed a bivariate latent variable models for clustered discrete and continuous outcomes with the joint 
distirbution being a product of a standard random effects model for the continuous variable and a probit model 
for the discrete variable. Fitzmaurice and Laird4 proposed a model for a correlated binary outcome and a con-
tinuous outcome based on the factorization of the joint distribution of the outcomes. Sammel et al.5 presented 
a latent variable model by assuming that the observed outcomes are physical manifestations of a latent variable. 
Gueorguieva et al.6 proposed a correlated probit model to model clustered binary and continuous responses 
jointly. Teixeira-Pinto et al.7 provided a new joint model for a binary and a continuous outcomes. In genome-wide 
association analysis field, Liu et al.8 developed an extended generalized estimating equation method for bivariate 
association analyses of continuous and binary traits. Their simulation results demonstrated that, compared with 
univariate analysis, bivariate analysis could substantially improve power while having comparable type I error 
rates under certain situations. Yuan et al.9 extended the joint linkage analysis of multivariate qualitative and quan-
titative traits described by Williams et al.10, 11 to association analysis. Yuan et al.9 also assumed two latent variables 
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specified for the qualitative and quantitative traits followed a bivariate normal distribution. With such modeling, 
likelihood-based inference procedures are introduced to test for pleiotropic genetic effects.

In dealing with an single ordinal(taking values 1, 2, …) outcome, the proportional odds model12 is usually 
adopted. In particular, the proportional odds model with the outcome belonging to a set of ordered categories can 
be regarded as an extension of the logistic regression model for binary outcomes. It can be expressed as a series of 
logistic regression models for dependent binary variables with common regression parameters reflecting the 
proportional odds assumption13. When the outcome is continuous, the ordinary linear model is the most often 
used. In order to test the association between a bivariate trait with a continuous and ordinal outcomes and some 
covariates jointly, we also applied a latent variable model and proposed a statistical approach to model the ordinal 
outcome and continuous outcome simultaneously. Let us begin with two ordinary linear models 
Y1 = α0 + Gτα + ε1, and Z = β0 + Gτβ + ε2 where Y1 is a continuous response, Z is a latent continuous variable, 
G = (G(1), 



, G(p))τ represents a p-dimensional covariate, α0 and β0 are the intercept parameters, β = (β1, , βp)τ 
and α = (α1, , αp)τ are parameters, and (ε1,ε2)τ follow the bivariate normal distribution with mean vector (0, 0)τ 
and symmetric covariance matrix consisting of diagonal elements being σ1

2, and σ2
2, and off-diagonal elements 

both being ρσ1σ2, respectively. We note that standard errors σ1, σ2 and correlation coefficient ρ are unknown. In 
addition, suppose that Z is a latent variable underlied an observed ordinal response Y2 which can be observed in 
the following manners: Y2 = 1 as −∞ < Z ≤ γ1; Y2 = 2 as γ1 < Z ≤ γ2; 



; Y2 = k as γk−1 < Z ≤ γk; Y2 = k + 1 as 
γk < Z ≤ ∞, where k is an integer related to the number of categories for Y2 and γ1,γ2, , γk are k ordered cutpoint 
values. Note that the latent variable Z is unobserved.

Suppose n independent observations τY Y G( , , )i i i1 2  are available for (Y1, Y2, Gτ), where Gi = (g1i, , gpi)τ, i = 1, 


, n. Based on the foregoing assumption, (Y1i, Zi)τ are independently distributed as a bivariate normal distribu-
tion with mean vector α α β β+ +τ τ τG G( , )i i0 0 . The conditional distribution of Zi given Y1i is normal with mean 
β β α α ρ+ + − −τ τ σ

σ
G Y G( ) ( )i i i0 1 0

2

1
 and variance σ ρ−(1 )2

2 2 . By some algebra, for j = 1, 


, k, and i = 1, …, n, it 
can be obtained that
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where, Φ(·) is the standard normal distribution function.
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. We have

γ γ β β α α θΦ ≤ | = − − − − −τ τ− ⁎ ⁎ ⁎ ⁎Pr Z Y G Y G[ ( )] ( ) , (2)i j i j i i i
1

1 0 1 0

for j = 1, 


, k, and i = 1, …, n.
In this paper, we propose a joint test for testing the association between a bivariate with an ordinal response 

and a continuous response and the covariates of interest. We derive the asymptotic properties for the estimators 
for parameters of interested covariates in the joint model. Extensive simulations are conducted to compare the 
performances of our proposed method to those of the existing combined p-values method. Application to the 
aforementioned mental impairment study in Florida further demonstrate good performances of our new method.

Results
Joint Model for a Bivariate with a continuous response and an ordinal responses and a Covariate.  
For = i n1, , , α α− − τY Gi i1 0  represents error term and has expectation value 0, so β* in (2) can be taken as a 
measure for the association between the ordinal response Y2 and covariates G after adjusting the effect of contin-
uous response Y1. But α α− − τY Gi i1 0  is unobserved for = .i n1, ,  Alternatively, a more common procedure 
instead of (2) is to use

γ γ β β θΦ 
 ≤ 

 = − − −τ− ⁎ ⁎⁎ ⁎⁎ ⁎Z Y G YPr( ) , (3)i j i j i i
1

1 0 1
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where β** = β* − α*, β β α= −⁎⁎ ⁎ ⁎
0 0 0 , α* = αθ*, and α α θ=⁎ ⁎

0 0 . It is obvious that the model (3) links the ordinal 
response Y2 with G and Y2 with a similar manner as the proportional odds model. The main difference is that (3) 
uses the standard normal distribution Φ as the link function, while logit function is utilized by the proportional 
odds model.

With α = α*/θ*, the joint model of continuous variable Y1 and ordinal variable Y2 can be constructed as 
follows:

as j = 1,
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Testing Association between a Bivariate and a Covariate.  The maximum likelihood estimates (MLEs) for 
parameters α ⁎

0 , β ⁎⁎
0 , α*, β**, θ*, γ γ

⁎ ⁎, , k1 , and σ1
2 can be obtained by maximizing the log-likelihood function which 

is implemented by solving score equations in the method section. Denote α β α β θ γ γ σ= τ


⁎ ⁎⁎ ⁎ ⁎⁎ ⁎ ⁎ ⁎a ( , , , , , , , , )k0 0 1 1
2  

and denote the corresponding MLE by α β α β θ γ γ σ= τ���� �� � ��ˆ ⁎ ⁎⁎ ⁎ ⁎⁎ ⁎ ⁎ ⁎a ( , , , , , , , , )k0 0 1 1
2 . Following the statistical 

asymptotical theory14, under the null hypothesis where neither the continuous response Y1 nor the ordinal response 
Y2 is associated with covariates G, we have −τ τˆn a a( ) asymptotically follows from the normal distribution with 
mean vector 0(2p+k+4)×1 and covariance I−1(a), where I(a) is the Fisher information matrix(see method section). As 
mentioned earlier, β* in (2) measure the association between the ordinal response Y2 and G by adjusting the effect of 
continuous response Y1. Denote β β α= +�� �⁎ ⁎⁎ ⁎ and let V be a submatrix corresponding to the 3rd to the (2p + 2)th 
rows and columns of I−1(a), and B = (Ip, Ip), where Ip is a p × p identity matrix. Then we can conclude that β⁎ is an 
asymptotic unbiased estimate for the parameter β* and it follows asymptotically from the normal distribution with 
mean vector β** + α* and covariance matrix BVBτ as the sample size n goes to infinity according to the multi-normal 
distribution theory15.

Our goal of this paper is to test whether the bivariate with the outcomes of mixed types (Y1 and Y2) is associ-
ated with covariates G of interest. The null hypothesis is neither the continuous response Y1 nor the ordinal 
response Y2 is associated with the variable G. Denote η α α β β= τ� � �� � ��⁎ ⁎ ⁎ ⁎( , , , , , )p p1 1  and η=


W var( ). We can 

obtain W = HVHτ, where, =
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. The detailed derivation of W is displayed in method section. With 

this, we propose a joint test denoted by

η η= τ −�� �WJT ( ) ( ) , (7)1

which follows from a Chi-Squared distribution with degree freedom of 2p under the null hypothesis, where 
= τ� �W HVH  is a consistent estimate of the covariance matrix W, and V  is a consistent estimate of the covariance 

matrix V corresponding to the 3rd to the 2p + 2th rows and columns of − ˆI a( )1 .

Simulation Results.  In this section, we explore the performances of JT by comparing it to a method of 
combined p-values16 (denoted by CP). In our case, CP can be implemented as: firstly, we apply the ordinary linear 
model to regressing Y1 on G and calculate the p-value denoted by pv1 for testing the association between Y1 and 
G; secondly, we apply the proportional odd model to regressing the ordinal response Y2 on G and denote the 
resulted p-value by pv2; lastly, we use the statistic CP = −2log(pv1) − 2log(pv2) as the final test. The p-value of CP 
can be calculated by the permutation method with 200 iterations. Assume that p = 1, and n = 500. We generate a 
1-dimensional covariate G from standard normal distribution with sample size n and fix it as a covariate in our 
simulation iterations. The correlated error terms can be sampled from a bivariate normal distribution with mean 
vector (0, 0)τ and covariance matrix in which its diagonal elements are both equal to 1 and the non-diagonal ele-
ment is equal to ρ. We generate continuous variable Y1 and the latent continuous variable Z based on the former 
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two linear models in introduction section with parameter α0, β0, α1 and β1. We consider 2 scenarios with 3 ordi-
nal category values(k = 2) and 4 ordinal category values(k = 3). Tables 1 and 2 show the empirical type I error 
rates for k = 2 and k = 3 respectively. Tables 3 and 4 show the empirical powers for k = 2 and k = 3 respectively.

For the first scenario with k = 2, the final ordinal outcome Y2 can be obtained by dichotomizing Z into 1, 2, 3 
with the thresholds of γ1 = 0 and γ2 = 1. The nominal significant level is set to be 0.05 to calculate the empirical 
type I error rate and power. All results are calculated based on 500 replicates. From Table 1, we can see that both 
JT and CP have correct type I error rate since the values are always close to the nominal significance level of 0.05. 
For example, when α0 = 0.2, β0 = 0.2, and ρ = 0.3, the empirical type I error rates of JT and CP are 0.047 and 
0.052, respectively. For example, when α0 = 1.2, β0 = 1.2, and ρ = 0.9, the empirical type I error rates of JT and CP 
are 0.048 and 0.053, respectively. From Table 3, it can be seen that the performance of CP is unsatisfactory when 
the correlation coefficient ρ is large. However, our proposed test JT always has more desirable powers than CP 
when parameter α1 is much smaller than β1 and the correlation between Y1 and Y2 is not weak. For example, when 
α0 = 0.2, β0 = 0.2, α1 = 0.05, β1 = 0.15, and ρ = 0.9, the powers of of JT and CP are 0.922 and 0.57, respectively. 
When α0 = 1.2, β0 = 1.2, α1 = 0.05, β1 = 0.15, and ρ = 0.8, the powers of of JT and CP are 0.876 and 0.674, respec-
tively. Another example is that when α0 = 0.2, β0 = 0.2, α1 = 0.05, β1 = 0.15, and ρ = 0.7, the powers of of JT and 
CP are 0.756 and 0.582, respectively. In addition to this, when α0 = 1.2, β0 = 1.2, α1 = 0.05, β1 = 0.15, and ρ = 0.5, 
the powers of of JT and CP are 0.716 and 0.658, respectively. When the parameters α1 is larger than or equal to 
β1, the powers of the proposed test JT and CP are nearly the same. For example, when α0 = 0.2, β0 = 0.2,α1 = 0.15, 
β1 = 0, and ρ = 0.3, the powers of of JT and CP are 0.8 and 0.792, respectively. The powers of of JT and CP are 
0.832 and 0.866 respectively, when α0 = 1.2, β0 = 1.2, α1 = 0.15, β1 = 0.15, and ρ = 0.9.

For the second scenario with k = 3, the final ordinal outcome Y2 can be obtained by dichotomizing Z into 1, 2, 
3, 4 with the thresholds of γ1 = −0.6, γ2 = 0 and γ3 = 0.6. The nominal significant level is set to be 0.05 to calculate 
the empirical type I error rate and power. All results are calculated based on 500 replicates. From Table 2, we can 
see that both JT and CP have correct type I error rate since the values are always close to the nominal significance 
level of 0.05. For example, when α0 = 0.2, β0 = 0.2, and ρ = 0.4, the empirical type I error rates of JT and CP are 
0.05 and 0.046, respectively. For example, when α0 = 1.2, β0 = 1.2, and ρ = 0.8, the empirical type I error rates of 
JT and CP are 0.046 and 0.049, respectively. From Table 3, it can be seen that the performance of CP is unsatisfac-
tory when the correlation coefficient ρ is large. However, our proposed test JT always has more desirable powers 
than CP when parameter α1 is much smaller than β1 and the correlation between Y1 and Y2 is not weak. For exam-
ple, when α0 = 0.2, β0 = 0.2, α1 = 0, β1 = 0.15, and ρ = 0.9, the powers of of JT and CP are 0.996 and 0.636, respec-
tively. When α0 = 1.2, β0 = 1.2, α1 = 0.05, β1 = 0.15, and ρ = 0.8, the powers of of JT and CP are 0.774 and 0.608, 
respectively. Another example is that when α0 = 0.2, β0 = 0.2, α1 = 0, β1 = 0.15, and ρ = 0.7, the powers of of JT 
and CP are 0.968 and 0.692, respectively. In addition to this, when α0 = 1.2, β0 = 1.2, α1 = 0, β1 = 0.15, and ρ = 0.5, 
the powers of of JT and CP are 0.744 and 0.586, respectively. When the parameters α1 is larger than or equal to 
β1, the powers of the proposed test JT and CP are nearly the same. For example, when α0 = 0.2, β0 = 0.2,α1 = 0.15, 

ρ α1 β1 JT CP ρ α1 β1 JT CP

α0 = 0.2, β0 = 0.2

  0.3 0 0 0.047 0.052 0.7 0 0 0.048 0.049

  0.4 0 0 0.052 0.048 0.8 0 0 0.050 0.046

  0.5 0 0 0.048 0.051 0.9 0 0 0.047 0.050

  0.6 0 0 0.049 0.047 0.99 0 0 0.049 0.053

α0 = 1.2, β0 = 1.2

  0.3 0 0 0.046 0.049 0.7 0 0 0.052 0.049

  0.4 0 0 0.053 0.050 0.8 0 0 0.047 0.048

  0.5 0 0 0.048 0.048 0.9 0 0 0.048 0.053

  0.6 0 0 0.051 0.052 0.99 0 0 0.049 0.051

Table 1.  Empirical type-1 error rates for tests JT and CP with 3 ordinal categories(k = 2).

ρ α1 β1 JT CP ρ α1 β1 JT CP

α0 = 0.2, β0 = 0.2

  0.3 0 0 0.048 0.054 0.7 0 0 0.049 0.045

  0.4 0 0 0.050 0.046 0.8 0 0 0.052 0.048

  0.5 0 0 0.046 0.049 0.9 0 0 0.048 0.051

  0.6 0 0 0.051 0.052 0.99 0 0 0.050 0.053

α0 = 1.2, β0 = 1.2

  0.3 0 0 0.049 0.050 0.7 0 0 0.046 0.051

  0.4 0 0 0.047 0.046 0.8 0 0 0.46 0.049

  0.5 0 0 0.052 0.045 0.9 0 0 0.049 0.048

  0.6 0 0 0.050 0.050 0.99 0 0 0.048 0.053

Table 2.  Empirical type-1 error rates for tests JT and CP with 4 ordinal categories(k = 3).
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β1 = 0, and ρ = 0.3, the powers of of JT and CP are 0.872 and 0.856, respectively. The powers of of JT and CP are 
0.87 and 0.916 respectively, when α0 = 1.2, β0 = 1.2, α1 = 0.15, β1 = 0.15, and ρ = 0.9.

Real Data Analysis.  To further explore the performance of JT and CP on the testing for the association 
between multiple outcomes of mixed types and interested covariates, we apply them to the mental health study1 in 
Florida, USA which can be downloaded in www.stat.ufl.edu/aa/glm/data. Mental impairment acts as the ordinal 
response and life event index which is a composite measure of the number and severity of important life events 
acts as the continuous response, and socioeconomic status(SES) acts as a 1-dimensional covariate. There are 
totally 40 samples. The 40 observations analyzed here are merely reflective of patterns found with much larger 
sample in the study mentioned in introduction section. There are 4 categories about mental impairment values 
being 1, 2, 3 and 4, which means k = 3. Our aim is to test whether the Mental impairment or life event index is 
associated with SES simultaneously. The p-values of JT and CP for testing this association are 0.042 and 0.46 by 
R software, which indicates that the proposed method can identify the association under significance level 0.05.

ρ α1 β1 JT CP ρ α1 β1 JT CP

α0 = 0.2, β0 = 0.2

  0.3 0 0.15 0.802 0.748 0.7 0 0.15 0.882 0.588

  0.3 0.05 0.15 0.748 0.732 0.7 0.05 0.15 0.756 0.582

  0.3 0.15 0.15 0.922 0.948 0.7 0.15 0.15 0.85 0.894

  0.3 0.15 0.05 0.832 0.86 0.7 0.15 0.05 0.868 0.702

  0.3 0.15 0 0.8 0.792 0.7 0.15 0 0.964 0.744

  0.4 0 0.15 0.782 0.64 0.8 0 0.15 0.966 0.586

  0.4 0.05 0.15 0.752 0.746 0.8 0.05 0.15 0.86 0.626

  0.4 0.15 0.15 0.908 0.942 0.8 0.15 0.15 0.84 0.886

  0.4 0.15 0.05 0.822 0.802 0.8 0.15 0.05 0.946 0.69

  0.4 0.15 0 0.846 0.792 0.8 0.15 0.05 0.99 0.716

  0.5 0 0.15 0.802 0.644 0.9 0 0.15 0.998 0.558

  0.5 0.05 0.15 0.724 0.676 0.9 0.05 0.15 0.922 0.57

  0.5 0.15 0.15 0.906 0.932 0.9 0.15 0.15 0.832 0.866

  0.5 0.15 0.05 0.84 0.784 0.9 0.15 0.05 0.98 0.674

  0.5 0.15 0 0.896 0.780 0.9 0.15 0 0.982 0.646

  0.6 0 0.15 0.852 0.618 0.99 0.05 0.15 0.986 0.622

  0.6 0.05 0.15 0.778 0.686 0.99 0.05 0.15 0.98 0.54

  0.6 0.15 0.15 0.886 0.904 0.99 0.15 0.15 0.77 0.836

  0.6 0.15 0.05 0.862 0.77 0.99 0.15 0.05 0.99 0.606

  0.6 0.15 0 0.922 0.768 0.99 0.15 0.05 0.996 0.774

α0 = 1.2, β0 = 1.2

  0.3 0 0.15 0.758 0.684 0.7 0 0.15 0.924 0.622

  0.3 0.05 0.15 0.72 0.682 0.7 0.05 0.15 0.842 0.700

  0.3 0.15 0.15 0.912 0.942 0.7 0.15 0.15 0.952 0.958

  0.3 0.15 0.05 0.766 0.76 0.7 0.15 0.05 0.948 0.844

  0.3 0.15 0 0.77 0.768 0.7 0.15 0 0.976 0.846

  0.4 0 0.15 0.708 0.588 0.8 0 0.15 0.94 0.512

  0.4 0.05 0.15 0.71 0.668 0.8 0.05 0.15 0.876 0.674

  0.4 0.15 0.15 0.89 0.918 0.8 0.15 0.15 0.938 0.948

  0.4 0.15 0.05 0.76 0.74 0.8 0.15 0.05 0.964 0.812

  0.4 0.15 0 0.838 0.758 0.8 0.15 0.05 0.982 0.682

  0.5 0 0.15 0.784 0.598 0.9 0 0.15 0.998 0.47

  0.5 0.05 0.15 0.716 0.658 0.9 0.05 0.15 0.916 0.594

  0.5 0.15 0.15 0.87 0.92 0.9 0.15 0.15 0.924 0.942

  0.5 0.15 0.05 0.79 0.724 0.9 0.15 0.05 0.986 0.788

  0.5 0.15 0 0.88 0.782 0.9 0.15 0 0.994 0.732

  0.6 0 0.15 0.884 0.648 0.99 0.05 0.15 0.996 0.406

  0.6 0.05 0.15 0.78 0.682 0.99 0.05 0.15 0.99 0.566

  0.6 0.15 0.15 0.918 0.946 0.99 0.15 0.15 0.9 0.934

  0.6 0.15 0.05 0.812 0.692 0.99 0.15 0.05 0.98 0.654

  0.6 0.15 0 0.908 0.78 0.99 0.15 0.05 0.996 0.764

Table 3.  Empirical powers for tests JT and CP with 3 ordinal categories(k = 2).

http://www.stat.ufl.edu/aa/glm/data
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Discussion
In this paper, we propose a joint model for modeling the association between a bivariate with a continuous out-
come and an ordinal outcome by using a latent variable. We conduct some statistical inferences on the parameters 
in the proposed joint model. Furthermore, a test method is proposed to test whether the the continuous response 
or ordinal response is associated with covariates. Extensive simulations are conducted to assess the performances 
of the proposed test procedure. From the simulation results, the proposed method always outperforms the com-
bined p-value method when the correlation of the continuous response and the ordinal response is not weak. 
Application to a real data analysis further demonstrates the superiority of the new method. When Y1 and Y2 act 
as traits related to genetic, and G acts as genotypes, our proposed joint model and test can be applied in modern 
genome wide association study analysis as Hu et al.17. In addition, when the dimension number p and categories 
related number k become large, it is hard for JT to solve a large number of equations. A feasible approach for ordi-
nal data is to build the test based on ranks18, 19. Our analysis is based on an assumption that the observations are 
from a bivariate normal distribution. When this assumption is not satisfied, a robust method is more appealing. 
So it deserves further study.

ρ α1 β1 JT CP ρ α1 β1 JT CP

α0 = 0.2, β0 = 0.2

  0.3 0 0.15 0.846 0.784 0.7 0 0.15 0.968 0.692

  0.3 0.05 0.15 0.83 0.81 0.7 0.05 0.15 0.868 0.7

  0.3 0.15 0.15 0.96 0.978 0.7 0.15 0.15 0.91 0.946

  0.3 0.15 0.05 0.842 0.872 0.7 0.15 0.05 0.934 0.79

  0.3 0.15 0 0.872 0.856 0.7 0.15 0 0.992 0.816

  0.4 0 0.15 0.868 0.776 0.8 0 0.15 0.994 0.672

  0.4 0.05 0.15 0.824 0.804 0.8 0.05 0.15 0.956 0.76

  0.4 0.15 0.15 0.946 0.968 0.8 0.15 0.15 0.89 0.946

  0.4 0.15 0.05 0.878 0.85 0.8 0.15 0.05 0.956 0.76

  0.4 0.15 0 0.906 0.858 0.8 0.15 0 0.996 0.806

  0.5 0 0.15 0.878 0.716 0.9 0 0.15 0.996 0.636

  0.5 0.05 0.15 0.798 0.732 0.9 0.05 0.15 0.978 0.642

  0.5 0.15 0.15 0.942 0.964 0.9 0.15 0.15 0.89 0.93

  0.5 0.15 0.05 0.868 0.822 0.9 0.15 0.05 0.998 0.712

  0.5 0.15 0 0.918 0.822 0.9 0.15 0 0.998 0.766

  0.6 0 0.15 0.946 0.738 0.99 0 0.15 0.998 0.626

  0.6 0.05 0.15 0.83 0.772 0.99 0.05 0.15 0.996 0.644

  0.6 0.15 0.15 0.916 0.938 0.99 0.15 0.15 0.852 0.874

  0.6 0.15 0.05 0.9 0.824 0.99 0.15 0.05 0.996 0.71

  0.6 0.15 0 0.962 0.84 0.99 0.15 0 0.998 0.756

α0 = 1.2, β0 = 1.2

  0.3 0 0.15 0.696 0.618 0.7 0 0.15 0.856 0.552

  0.3 0.05 0.15 0.706 0.688 0.7 0.05 0.15 0.722 0.584

  0.3 0.15 0.15 0.936 0.968 0.7 0.15 0.15 0.9 0.93

  0.3 0.15 0.05 0.816 0.874 0.7 0.15 0.05 0.918 0.81

  0.3 0.15 0 0.836 0.872 0.7 0.15 0 0.972 0.85

  0.4 0 0.15 0.72 0.644 0.8 0 0.15 0.948 0.548

  0.4 0.05 0.15 0.698 0.69 0.8 0.05 0.15 0.774 0.608

  0.4 0.15 0.15 0.936 0.946 0.8 0.15 0.15 0.888 0.93

  0.4 0.15 0.05 0.844 0.862 0.8 0.15 0.05 0.93 0.796

  0.4 0.15 0 0.882 0.846 0.8 0.15 0 0.988 0.818

  0.5 0 0.15 0.744 0.586 0.9 0 0.15 0.988 0.482

  0.5 0.05 0.15 0.682 0.644 0.9 0.05 0.15 0.876 0.552

  0.5 0.15 0.15 0.912 0.946 0.9 0.15 0.15 0.87 0.916

  0.5 0.15 0.05 0.866 0.834 0.9 0.15 0.05 0.98 0.744

  0.5 0.15 0 0.9 0.818 0.9 0.15 0 0.996 0.798

  0.6 0 0.15 0.784 0.594 0.99 0 0.15 0.996 0.484

  0.6 0.05 0.15 0.694 0.66 0.99 0.05 0.15 0.998 0.548

  0.6 0.15 0.15 0.904 0.928 0.99 0.15 0.15 0.842 0.872

  0.6 0.15 0.05 0.89 0.836 0.99 0.15 0.05 0.998 0.756

  0.6 0.15 0 0.934 0.85 0.99 0.15 0 0.994 0.776

Table 4.  Empirical powers for tests JT and CP with 4 ordinal categories(k = 3).
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Methods
Statistical Inference on Joint Model.  In this part, we make statistical inference by the use of MLE statis-
tical theory. Based on the joint model in results section, the likelihood function for unknown parameters can be 
given by

∏α β α β θ γ γ σ β β θ γ γ
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γ γ σ τ


⁎ ⁎, , , )k1 1
2  by solving the equations group (11) based on the Newton’s method in R software. According to 

the statistical asymptotisc theory14, under the null hypothesis where neither the continuous response Y1 nor the 
ordinal response Y2 is associated with covariates G, we have −τ τˆn a a( ) asymptotically follows from the normal 
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distribution with mean vector 0(2p+k+4)×1 and covariance I−1(a), where I(a) is the Fisher information matrix taking 
the following form
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Derivation of Covariance Matrix W.  Denote V as sub-matrix in I−1(a) with the 3rd to the (2p + 2)th rows 

and columns, and =

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, where Ip is the identity matrix with dimension p, 0p is the null matrix with all 

elements 0 and dimension p. According to asymptotic theorems14, as sample size n goes for infinity, 
α
β

α
β


























.

×
�
�

⟶
⁎

⁎⁎

⁎
⁎⁎N V,

p

D

2 1

 By some algebra, we have η α
β

=






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�
�

⁎

⁎⁎H . We can obtain that η


 is an asymptotic unbi-

ased estimate for parameters η; and η η− τ


⟶N HVH(0, )
D

 as sample size n goes for infinity based on the 
multi-normal distribution theory15.
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