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Real-Time and Tunable Substrate 
for Surface Enhanced Raman 
Spectroscopy by Synthesis of 
Copper Oxide Nanoparticles via 
Electrolysis
Behzad Sardari & Meriç Özcan

Here we show the capability of copper oxide (CuO) nanoparticles formed on copper (Cu) electrodes by 
the electrolysis as a real time active substrate for surface enhanced Raman scattering (SERS). We have 
experimentally found that using just the ultra pure water as the electrolyte and the Cu electrodes, ions 
are extracted from the copper anode form copper oxide nanoparticles on the anode surface in matter 
of minutes. Average particle size on the anode reaches to 100 nm in ninety seconds and grows to about 
300 nm in five minutes. This anode is used in Raman experiments in real time as the nanoparticles 
were forming and the maximum enhancement factor (EF) of Raman signals were over five orders of 
magnitude. Other metal electrodes made of brass, zinc (Zn), silver (Ag) and aluminum (Al) were also 
tried for the anode material for a possible real-time substrate for SERS applications. Experimentally 
obtained enhancement factors were above five orders of magnitude for brass electrodes like the copper 
but for the other metals no enhancement is observed. Electron microscope images show the cubic 
nanoparticle formation on copper and brass electrodes but none in the other metals studied.

Surface Enhanced Raman spectroscopy (SERS) has emerged as a powerful spectroscopy technique to increase 
the intensity of Raman scattering signals from the analyte of interest. It is generally accepted that the main mech-
anism of the enhancement is due to the amplification of the light by excitation of localized surface plasmon 
resonances (LSPR) of the metallic nanoscale features and/or nanoparticles present on the surface where the ana-
lyte is put onto1. SERS was introduced in the mid-1970s2–4, and since then significant research has been done to 
create and optimize SERS substrates with high density of hot spots in order to obtain the largest enhancement 
factor (EF)5–8. Hot-spots are the locations near nanostructures where the local optical field is enhanced, so that 
Raman scattering signals from the molecules near the hot spots are enhanced 104 to 107 times. Even much higher 
enhancement is possible with some special substrates enabling single molecule detection. The EF is generally 
written as9, 10:
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where Einc is the amplitude of the incident laser light, and Eloc(ωL) and Eloc(ωR) are the local electric field amplitude 
at the incident laser frequency and the local electric field amplitude at the scattered Raman signal frequency 
respectively. In most cases the Raman shift is small enough to justify the approximation: ωL ≈ ωR, in which case 
the SERS enhancement is simply proportional to the fourth power of the local field enhancement:
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Over the years, generally, two different ways of building a SERS active substrate has emerged; coating a substrate 
with pre-synthesized nanoparticles by techniques such as chemical synthesis, colloidal aggregation etc., which are 
called as bottom-up methods1, 11–16, and fabrication of a nanoparticle template on a substrate by the nanofabrica-
tion techniques such as electron beam lithography (EBL), focused ion beam (FIB), scanning probe lithography 
etc., which are called as top-down methods17–21. Synthesis of colloidal nanoparticles is straightforward but it is 
too time consuming process, however it is appropriate for large scale production. Also, the nanoparticles accu-
mulation is another disadvantage of this kind of process. The patterned substrates have advantages compared to 
the nanoparticle colloids such as adjusting the inter-particle distance, uniformity in enhancement factor, repeata-
bility, and absence of particle aggregation issues. However, it has disadvantages as it is a time consuming process, 
more complicated and costly and also needs high tech fabrication facilities.

Recently, some researchers focused on synthesis of colloidal nanoparticles by electrolysis method for applica-
tions in the inkjet printing and SERS22–25. Synthesis of nanoparticles by electrolysis is a bottom-up method which 
is accomplished due to reduction and oxidation at the cathode and anode respectively and compared to most of 
the other techniques this is a simple and economical method. Therefore, electrochemical method is one of the 
simplest way of producing copper oxide nanoparticles which is discussed in the literature25–31. For example, Yuan 
et al.25 have described the effect of current and electrolyte on the shape and size of the copper oxide nanostruc-
tures. Xu et al.26 have synthesized leaf-like CuO mesocrystals by the electrochemical method then have discussed 
their capability as anode materials for lithium ion batteries. Lu et al.27 have synthesized flower-like microspheres 
CuO by using sodium hydroxide as the electrolyte solution at room temperature. Toboonsung et al.31 have syn-
thesized CuO nanorods by an electrochemical dissolution and deposition process then studied the electrode 
separation and voltage effect etc. on the nanorods morphology and thickness.

Here we present a simple, real-time operating and wavelength tunable copper SERS substrate formed by 
the electrolysis. There are already widely used electrolysis methods for synthesis of nanoparticles as mentioned  
earlier, however those studies include metals salts in the electrolyte, and it takes hours to days for nanoparticle 
production in the solution or on the cathode. There are reports which indicate nanoparticle production on the 
cathode31 and the anode32 with distilled water alone but their measurements were done after hours of electrol-
ysis. Therefore it was quite surprising when we have observed cube shaped nanoparticles on the copper anode 
surface in matter of a few minutes using just the ultra-pure water (UPW) as the electrolyte. Our measurements 
indicate that the ions are extracted from the Cu anode form cube shaped copper oxide nanoparticles on the anode 
surface in such a short time, and we show that this anode can be used as a SERS substrate. Initially, the anode is 
removed from the electrolysis cell and a solution of rhodamine B (RhB) is applied over the surface to perform 
Raman spectroscopy. We obtained enhancement of Raman signals over five orders of magnitude. Afterwards, 
the experimental setup was modified to allow real-time Raman measurements of RhB while the electrolysis is 
ongoing, and we again obtained enhancement over five orders of magnitude within 90 seconds of electrolysis. 
Similar enhancements were obtained with crystal violet (CV) solutions as well. The proposed method has some 
key advantages over existing SERS substrates: its not only a real time SERS substrate but also is a very fast, simple 
and a low cost technique. Furthermore this substrate is tunable in wavelength -albeit only irreversibly and in one 
direction- as the particle size is increasing as a function of time which implies that plasmon resonance wave-
lengths are increasing as well. This technique also omits the need for an electrolyte of containing the metal ions 
of interest for the nanoparticle production as just the deionized or distilled water is enough. This is an important 
point for the Raman measurements because the electrolyte being simply just the water there will not be an extra 
background noise added to the spectrum. This technique also allows preparation of a large effective area for SERS 
enhancement, virtually unlimited area. As long as the current distribution over the anode is uniform which is a 
trivial arrangement, nanoparticle distribution will have quite homogenous distribution. Other metal electrodes 
made of brass, zinc (Zn), silver (Ag) and aluminum (Al) also were tried as the anode but except brass none of 
the other metals showed any enhancement. Also it is confirmed with electron microscope images that there was 
nanoparticle formation on copper and brass electrodes but none on the other metals studied.

In the following sections experimental setup and the performed SERS experiments are presented. 
Experimentally observed enhancement factors were more than five orders of magnitude for copper and brass 
electrodes while for the other metals no enhancement is observed. Later we will discuss the possible mechanism 
of the nanoparticle production on the anode surface which we think the standard electrode potentials of the 
electrodes play a key role. Also, surface plasmon resonance simulations of the nanoparticles were performed in 
accord with the nanoparticle distributions obtained from the SEM images. The simulation results agree with the 
change of SERS intensity as a function of time since as the nanoparticles grow in size SPR wavelengths shift.

Experimental Setup and The Results
Three surface-cleaned copper electrodes have been placed inside a 3 mL quartz cuvette in which two of them were 
put in parallel, facing each other and electrically connected together while the third one is perpendicular to these 
electrodes, as illustrated in Fig. 1. The single electrode is used as the anode and the two parallel electrodes are used 
as the cathode. The reason that the anode and cathode are not located face to face is because we wanted to place 
the Raman probe facing the anode from the remaining facet of the cuvette.

In order to be able to record Raman spectrum of analytes while the nanoparticles are formed on the anode, 
the Raman probe is set in front of the quartz cuvette on an XYZ optical stage for ease of alignment. Longitudinal 
alignment (z-axis) of the probe is necessary for focusing the light source at the anode surface and capturing the 
back-scattered Raman signal, while lateral positioning is necessary for accessing the different parts of the anode 
surface. Raman probe is made by InPhotonics Inc., the spectrometer (QEpro) and the 785 nm infrared laser 
source with adjustable power up to 500 mW are made by Ocean Optics Inc. Laser light is launched from the 
Raman probe and the back-scattered light from anode surface propagates back through the Raman probe to the 
spectrometer. A photograph of the experimental set-up is shown in Fig. 2.
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Initially, the cuvette is filled with ultra-pure water, and just the electrolysis is performed without any Raman 
measurement. The conductivity of the water was 55 nS/cm, and the applied voltage between the anode and the 
cathode was 32 V. After five minutes of electrolysis the anode electrode was removed and dried. The captured 
scanning electron microscope (SEM) images of two different areas from the anode surface after five minutes elec-
trolysis as shown in Fig. 3 confirms the production of cubic nanoparticles with dimensions up to 400 nm. It will 
be explained later that the nanocubes are actually CuO particles.

In the next set of experiments nanoparticle production and Raman experiments were performed simultane-
ously. After replacing the electrodes with a new and clean copper electrodes, we filled the cuvette with rhodamine 
B (RhB) dissolved in ultra-pure water of concentration 5 μM. The conductivity of this solution was 1.56 μS/cm, 
and 32 V was applied during the electrolysis. SEM images of the nanoparticles formed on the anode after 90 sec-
onds and 5 minutes of electrolysis time are shown in Fig. 4. In this figure, histograms of nanocubes dimensions 
are shown in the insets. In the 90 second run the average particle size is about 100 nm but in the 5 min run there 
are two peaks centered at 100 nm and 300 nm of particle size. Although the reasons are unknown, it is interesting 
that we have two groups of nanocubes differing in size forming on the substrate.

Back scattered Raman signals from the anode surface was recorded as a function of time. Since 5 μM solution 
of RhB is too low of a concentration for a normal Raman spectrum recording it is actually impossible to record 
the spectrum without SERS enhancement. Therefore, we had to record normal Raman spectrum of much higher 
concentration RhB solution (100 mM) and normalize measurement results to obtain the enhancement factor of 
our substrate since the Raman intensity is proportional to the number density of the analyte. Namely, to quantify 
the enhancement of the recorded Raman signal we use15, 16:

Figure 1.  (a) Drawing of the experimental setup for preparing real time SERS substrate and recording the 
Raman spectrum simultaneously. (b) Quartz cuvette used as the electrolysis chamber and as a container 
simultaneously for the solution that the Raman spectrum is of interest. The anode and cathode electrode 
dimensions are 50 mm × 8.5 mm × 0.25 mm and 50 mm × 5.5 mm × 0.25 mm respectively. The Raman signal was 
recorded head-on from the anode surface.

Figure 2.  A photograph of the experimental setup for substrate preparation and recording the Raman 
spectrum. Quartz cuvette and the Raman probe are both set on optical XYZ stages for ease of alignment. Laser 
light is launched from the Raman probe and the back-scattered light from anode surface propagates back 
through the Raman probe to the spectrometer.
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where ISERS, Iref, Cref and CSERS correspond to recorded Raman signal intensity with the SERS substrate, inten-
sity of the reference Raman signal, concentration of the reference sample, and concentration of the SERS sam-
ple respectively. Reference recording was performed with a new copper anode before the electrolysis, and after 
that copper electrode is cleaned and electrolysis is performed with lower RhB concentration. Experiments are  
performed with utmost attention to prevent left over contamination over the anode. In addition, we also made 
SERS measurements after replacing the anode altogether that is used for the reference measurements, and the 
results did not change.

In order to obtain the optimum required time for electrolysis -to find the maximum EF- we recorded the 
Raman spectrum at various electrolysis times. The recorded spectrums from the anode electrode surface and 
also the variation of EF for the 1509 cm−1 Raman peak of RhB is shown in Fig. 5. As it is clear from this figure, 
even for 30 seconds of electrolysis time the anode surface can function as a SERS active substrate. The maximum 

Figure 3.  SEM images of two different areas from anode surface after 5 minutes of electrolysis while the 
container was filled with ultra-pure water.

Figure 4.  SEM images from anode surface for different electrolysis times when container was filled with 5 μM 
RhB. (a) 90 seconds of electrolysis, the inset shows the histogram of nanoparticles in this image. The average is 
100 nm and the nanocubes size range from 20 nm to 150 nm. (b) 5 minutes of electrolysis time. The inset shows 
the nanoparticle distribution in this image. There are two peaks, first peak is centered around 100 nm, and the 
second peak is centered around 300 nm, and nanocubes size range from 50 nm to 400 nm. The nanoparticles 
shown inside the dashed square regions are used in simulations for calculating the electric field distributions 
and the surface plasmon resonances (see text).



www.nature.com/scientificreports/

5Scientific REPOrTS | 7: 7730  | DOI:10.1038/s41598-017-08199-0

EF, roughly 1.5 × 105, occurred at 90 seconds into the electrolysis then it started to reduce gradually, which after 
5 minutes of electrolysis time the EF decreased to almost 75% of the maximum.

This reduction in EF can be explained by the change in the dimensions of the nanoparticles on the anode 
surface. According to captured SEM images (see Fig. 4) from the anode surface, for 90 seconds electrolysis the 
average size of nanocubes is about 100 nm, while by increasing the electrolysis time to 5 minutes, the average size 
of the larger nanoparticles reaches to about 300 nm. Therefore a peak in EF is expected, as it will be explained in 
the discussion section, maximum enhancement should occur for surface plasmon resonance (SPR) wavelengths 
around 838 nm which corresponds to a nanoparticle size of about 100 nm. After 5 minutes of electrolysis there 
is still a group of 100 nm nanoparticles left but their number is smaller since some of them grew to larger sizes, 
therefore a decrease in EF is expected. The substrate EF uniformity for the Raman peak of 1509 cm−1 was checked 
by measuring the EF on eight random spots through a roughly 1 cm2 area of the anode surface after 90 seconds 
electrolysis. The EF variation through these spots had a relative standard deviation(RSD) of roughly 12 percent, 
and the spectrums and the EF factors of these spots are shown in Fig. 6. A uniform EF was expected from the 
surface since the current density over the anode surface is rather uniform due to our electrode placement, which 
leads to uniform nanoparticle production on the anode. Simulated current distribution in the cuvette is also 
shown in the same figure.

We repeated similar electrolysis experiments with other metal electrodes including brass, Ag, Zn and Al which 
except brass, no Raman enhancement obtained. Enhancement from brass is understandable since it is an alloy of 
Cu and Zn. The obtained Raman signal from the brass anode surface is similar to that of copper, while for silver, 

Figure 5.  Enhancement factor (EF) of 5 μM RhB variation for different electrolysis time. For electrolysis 
time of 90 seconds the EF for the Raman peaks of 1509 cm−1 reaches the maximum value of above 5 orders of 
magnitude. All of the spectrums were recorded in one second with laser power of 250 mW, and the reference 
spectrum was recorded with 100 mM RhB concentration.

Figure 6.  Left: The recorded Raman spectrum from eight random spots on the Cu substrate. Middle: 
Comparison of EF through these spots. Calculated RSD of the EF variation for the Raman peak of 1509 cm−1 is 
12 percent. The spectrums were recorded with 90 seconds of electrolysis time and RhB of concentration of 5 μM. 
Right: Simulated current distribution over the cross section of the cuvette. Anode is indicated with solid thick 
line at at x = 0.
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zinc and aluminum no Raman peak is observed. The electrolysis time for these metals were even increased up to 
10 minutes but still no enhancement observed. We have also inspected surfaces of anodes made of Ag, Al, and Zn 
with SEM and has not observed any nanoparticles. Although the nanoparticles on the anode is responsible for the 
SERS enhancement, there must be some nanoparticles in the electrolyte as well. However those nanoparticles are 
expected to be in negligible quantities and too small of size (tens of nanometer in size) as will be discussed later, 
they would not contribute to the Raman enhancement. For confirmation of this fact we also performed EF meas-
urements offline, meaning that RhB solution is applied over the Cu anode electrode after it was removed from the 
cuvette, and we still obtained similar above five orders of magnitude enhancement of Raman signals.

SERS experiments were repeated with solutions of crystal violet (CV) which is widely used as a histological 
stain, particularly in Gram staining for bacteria classification, and as the Fig. 7 shows the Raman peaks were 
enhanced again for more than 105 times.

Discussion
Characterization of Nanoparticles.  A traditional way to prove the existence of copper oxide is X-Ray 
diffractometry (XRD) technique but here we could not use this technique since the nanoparticles are produced 
on the copper surface, and the amount of signal from the copper plate overwhelms the signals emanating from the 
nanoparticles. Therefore, in order to determine whether the nanoparticles are copper or copper oxide, following 
experiment is performed: while the electrolysis is in progress, copper anode was subjected to Raman spectrum 
measurement. Back scattered Raman spectrum from the copper anode surface was recorded and it clearly showed 
the Raman peaks of CuO nanoparticles at 290 cm−1. Furthermore, this Raman peak intensity changes over the 
electrolysis time in a similar fashion to the experiment done with RhB experiments which we can conclude that 
indeed resultant Raman signal is from the forming CuO nanoparticles. Another point to note that CuO max-
imum peak occurs at 60 seconds electrolysis as shown in Fig. 8, while the maximum EF with RhB happens at 
90 seconds electrolysis time. This is expected since the Raman peak of CuO at 290 cm−1 is closer the laser wave-
length than the Raman peak of RhB at 1509 cm−1, which means that nanoparticle size should be smaller for the 
SPR enhancement in this case. The intensity of Raman peak of CuO at 290 cm−1 is also decreasing after 90 seconds 
electrolysis as the case measurement with of RhB indicating that the nanocubes are growing in size.

Figure 7.  SERS Enhancement of crystal violet (CV) solution: 1 μM crystal violet solution on Cu anode after 
3 minutes of electrolysis compared to 100 mM reference Raman measurement. All recordings were done in 1 sec 
with 250 mW of laser power. For example, the Raman peak of CV at 1175 cm−1 is enhanced for more than 105.
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Figure 8.  The recorded Raman spectrums from the anode surface at different electrolysis times which show 
a peak at 290 cm−1. The electrolyte was just the ultra-pure water, and the peak intensity changes in a similar 
pattern as a function of electrolysis time as the Raman measurements done with RhB. This measurement 
confirms that the nanoparticles are indeed CuO particles.
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Nanoparticle Synthesis.  In an electrochemical cell, when a voltage is applied between the anode and cath-
ode, electrons are removed from the anode and they are replaced from the cathode. Metal ions are extracted from 
the anode (cations) and migrate to cathode where the reduction takes place and metallic clusters form. When a 
metal salt is used in the electrolyte such as copper sulphate (CuSO4) in the case of copper nanoparticle production 
with copper anode, due to ionization, CuSO4 is dissociated into Cu2+ and −SO4

2  ions. The current is carried by 
Cu2+ and −SO4

2  in the solution, and Cu2+ ions move towards the cathode. Some of those cations get reduced in the 
electrolyte, the remaining ones arrive to cathode and they get reduced to Cu atoms and deposited on the cathode. 
The metallic clusters are formed over time and this process takes hours to days and the size of nanoparticles pro-
duced are on the order of tens of nanometers to hundred nanometers range23, 24. Therefore in matter of minutes 
the size of nanoparticles deposited on the cathode would be too small to be suitable for SERS applications as the 
surface plasmon resonance frequencies would be towards the UV range and would not be applicable for Raman 
spectrum measurements.

In contrast to those studies, when we performed electrolysis with copper anode in ultra-pure water we 
observed copper oxide nanoparticles over the anode surface in matter of minutes at the sizes of up-to 400 nm. 
When the anode material is copper we contemplate the reactions listed in Table 1 to occur on the surface.

Some of the oxidized copper atoms remain attached to surface and combine with OH− to form CuO and start 
the crystallization to form the nanoparticle in cubic form. There should be copper cations moving towards the 
cathode and reduced on the way, or at the cathode but their cluster size must be negligible in size because of the 
short of amount of electrolysis time. When the experiments are repeated for anodes made of other metals such 
as brass, Al, Zn, and Ag, except brass, no nanoparticles on the anode is observed during the electrolysis times 
for up-to ten minutes. The cations from the anode are in competition with H+ to gain the electrons, hence for 
the reduction to form the relevant atoms or their oxides on the anode, and the electrode potential will determine 
which cation will win the competition.

According to electrode potentials listed in the Table 2, copper cations have much more tendency to get 
reduced compared to hydrogen (H+), therefore, more copper cations will gain electrons in competition with H+. 
However, considering the aluminum and zinc cations, hydrogen has more reduction tendency in comparison,  
hence, they will fail to gain electrons and get reduced to produce enough metal atoms and/or metal oxide nan-
oparticles especially in such short electrolysis times. There is an interesting point to note when the anode elec-
trode is made of brass. Since brass is composed of Cu and Zn elements with ratio of approximately 70/30, at 
first glance it is not surprising to have CuO nanoparticle formation. However on the other hand, the oxidation 
potential of Zn is more electropositive so that one can expect ZnO formation instead of CuO. In reality, Zn loses 
electrons easier than Cu (hence oxidizes faster), however in order ZnO or CuO to form, Zn and Cu ions have to 
be reduced. In that case Cu ions wins the competition (since oxidation and reduction potentials are opposite of 
each other). Besides Cu ions, electron capture rate of H+ is also higher than Zn ions. Therefore, as we indicated 
above, when H2O forms H+ and OH−, the oxygen from OH− reduces the Cu ions to form CuO. Then Zn ions must 
travel toward the cathode and they get reduced there. The Raman spectrum of the copper anode and brass anode 
both show the CuO Raman peak (at 290 cm−1) but the brass anode does not show any of ZnO Raman peaks (for 
example, 434 cm−1 and 500 cm−1). Also in a separate experiment, nanoparticles falled out from the brass anode 
are collected on a stainles-steel plate. The EDS analysis of this plate shows that Cu and O elements are present at 
significant amounts (besides the elements present in the steel) but the amount of zinc is negligible.

For the silver, electrode potential is much bigger than that of the hydrogen, hence much more silver atoms 
and consequently nanoparticles (compared to copper) were produced inside the liquid during the experiment 
but the lower tendency of silver for oxidation limits silver oxide nanoparticle growth on the anode surface in 
short time. Also, the silver nanoparticles in the electrolyte must be in too small of a size and/or small number of 
quantity to contribute to the real-time Raman signal enhancement in experiments performed, especially for our 
short electrolysis durations. We confirmed this view by analyzing the dried out electrolyte -after 10 minutes of 

H2O → H+ + OH−

Cu → Cu2+ + 2e−1

2H+ + 2e−1 → H2

Cu2+ + 2OH− → CuO + H2O

Table 1.  Reactions on the anode.

Reaction Electrode Potential (V)

Al3+ + 3e− → Al −1.66 V

Zn2+ + 2e− → Zn −0.76 V

2H+ + 2e− → H2 0.00 V

Cu2+ + e− → Cu+ 0.15 V

Cu2+ + 2e− → Cu 0.34 V

Ag+ + 1e− → Ag 0.8 V

Table 2.  Reduction potentials of the metals.
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electrolysis- with EDS and XRD methods. EDS measurements indicate majority of nanoparticles are indeed silver 
with a neglibible amount of oxygen presence. XRD analysis indicated that silver nanoparticle dimensions are in 
the range of 10 to 15 nm.

Surface Plasmon Resonance Simulations.  As far as the SERS phenomenon is concerned usually noble 
metals and transition metals are used for the SERS substrates. However metal oxides are also confirmed to act as 
the SERS active substrate15. The first experiment on the use of metal oxides as the SERS substrate was reported in 
198333, and this area is still research in progress. There is also a report showing the capability of copper oxide as 
a SERS active substrate with enhancement factor of two orders of magnitude34, and also some late work on metal 
oxide SERS-active substrates by defect engineering35. In general it is contemplated that there is a charge transfer 
effect within the metal/metal oxide interface. The charge transfer allows manipulation of the localized surface 
Plasmon resonance and finally the Raman signal enhancement factor36. In our case, we performed our simula-
tions for copper oxide nanoparticles over a metallic surface therefore this effect is included. When the simulations 
are performed without metal backing there is only semiconductor/dielectric resonances of the particles and the 
resultant electric fields are not as high as when the copper oxide nanoparticles sitting over copper surface. The 
effect of nanoparticle size on the EF factor is investigated using finite difference time domain (FDTD) technique 
by calculating the surface plasmon resonance (SPR) wavelength of nanoparticles. The simulation is performed 
first for a single nanocube of size ranging from 100 nm to 400 nm, with cubic mesh and minimum mesh step size 
of 4 nm and the time step size stability factor of 0.85. The calculated extinction cross sections of the nanocubes as 
a function of wavelength is shown in Fig. 9 below.

As it is clear form this figure the growth in nanocubes size leads to red shift in surface plasmon resonance 
peaks and also produce other SPR resonance wavelengths -due to excitation of higher-order resonance modes- 
appearing at shorter wavelengths. The red shift in SPR causes a mismatching between the SPR peak and the 
excitation source wavelength used, which is the reason for EF having a maximum as a function of electrolysis 
time. However the single nanoparticle simulation is not really reflecting the reality since it does not include the 
mutual coupling effects between the nanoparticles and the substrate. Light intensity should increase in the gap 
between the nanoparticles and on the sharp corners and crevices, therefore a more realistic simulation is in order 
for calculating the field distribution and the extinction cross section. For this purpose we selected a realistic col-
lection of particles as shown with the dashed squares in Fig. 4. For the ninety second run simulations, we selected 
the 1 μm × 1 μm area shown in this figure and performed a FDTD simulations. Here we assumed nanocubes are 
copper oxide nanocubes of size ranging from 85 nm to 150 nm in accord with the particle dimensions on that 
selected square. Inter-particle distances were assumed to range from 10 nm up to 350 nm and the nanocubes were 
sitting on copper substrate. The electric field was assumed to propagate perpendicular to the substrate surface. 
The values for the refractive index, n, and the extinction coefficient, k for copper and copper oxide are taken from 
literature37, 38. The results of this simulation is shown in Fig. 10, where the particle distribution, electric field dis-
tribution at the surface plasmon resonance of 794 nm, and the extinction cross section as a function of wavelength 
is shown.

Same simulation is repeated for larger particle distribution which is obtained by five minutes of electrolysis. In 
this case The simulated area was 2 μm × 2 μm, and the nanocube dimensions were ranging from 60 nm to 300 nm 
with inter particle gaps ranging from 50 nm to 1000 nm as estimated from Fig. 4. The results of this simulation is 
shown in Fig. 11, where the particle distribution, electric field distribution at the surface plasmon resonance of 
971 nm, and the extinction cross section as a function of wavelength is shown.

Although, according to theory the maximum SERS enhancement occurs when the substrate resonates at laser 
wavelength, in practice the maximum enhancement takes place when the SPR resonance occurs around the mid-
dle of the excitation wavelength and Raman scattering wavelength39. Since the laser source has a wavelength 
of 785 nm, the Raman peak of RhB at 1509 cm−1 (corresponds to 891 nm in terms of wavelength), therefore we 
would expect enhancement for SPR resonances around 838 nm. According to our simulations for a typical dis-
tribution of nanoparticles at 90 seconds, the resonance wavelength is around 794 nm for average nanoparticle 
size of 100 nm as shown in Fig. 10. Considering that the particles are distributed randomly and the selected area 

Figure 9.  Simulated SPR of copper oxide nanocubes of different size; increasing the nanocubes size leads to red 
shift in SPR wavelength and also excitation of the higher order resonance modes.
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produces resonances around the expected wavelengths, we can conclude that the experimental results are in good 
agreement with the theoretical predictions; as the SEM images in Fig. 4 show, the average size of nanocubes are 
about 100 nm when the maximum EF occurs. When the electrolysis time is extended to 5 minutes the resonant 
wavelength is shifted to 971 nm as observed from Fig. 11. Also it is known that as the nanoparticle size grow com-
parable to the wavelength of excitation, the nonradiative modes are excited on the particles which diminishes the 
SERS enhancement factor40. We might also see this effect come into play for longer electrolysis times.

Conclusion
In conclusion, we have experimentally found that using just the ultra-pure water as the electrolyte and the  
copper electrodes, ions extracted from the anode form copper oxide nanoparticles on the anode surface in matter 
of minutes. As a proof of principle experiment, we used this anode electrode as a SERS substrate for enhancing 
the Raman peaks of RhB and CV and obtained EF factors over five orders of magnitude. The proposed method 
has some key advantages over existing SERS substrates: it is not only a real time SERS substrate but also is a very 
fast, simple and a low cost technique. This technique also allows preparation of a large effective area for SERS 
enhancement, virtually unlimited area as long as the current is uniform over the substrate during the electrolysis. 
Although nanocubes are the only nanoparticles produced and in random orientation, their size is controllable, 
and the repeatability of the substrate, as far as the nanoparticle size is concerned, is excellent. Furthermore this 
substrate is tunable in wavelength, although irreversibly and only in one direction. We also investigated other 
metal electrodes including Ag, Al, Zn and brass for their real time SERS substrate capability, which none of them 
except brass exposed this capability, nanoparticles were produced only at copper and brass anodes for electrolysis 
times up-to ten minutes. An explanation for CuO nanoparticle formation on anodes made of copper and brass 
but not with other metals is given using standard electrode potentials of the metals. Also, surface plasmon res-
onance simulations of the nanoparticles were performed in accord with the nanoparticle distributions obtained 
from the SEM images. The simulation results agree with the change in SERS intensity as a function of time since 
as the nanoparticles grow in size SPR wavelengths shift.

Figure 10.  (a) The simulated area is 1 μm × 1 μm where size of copper oxide nanocubes range from 85 nm up 
to 150 nm, inter-particle gaps range from 10 nm to 350 nm. (b) Electric field amplitude distribution at 50 nm 
above the surface at SPR resonance of 794 nm. (c) The extinction cross section of this assembly of nanocubes as 
a function of wavelength.

Figure 11.  (a) The simulated area is 2 μm × 2 μm where size of copper oxide nanocubes range from 60 nm up 
to 300 nm, inter-particle gaps range from 50 nm to 1000 nm. (b) Electric field amplitude distribution at 50 nm 
above the surface at SPR resonance of 971 nm. (c) The extinction cross section of this assembly of nanocubes as 
a function of wavelength.
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