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Remote sensing of seasonal light 
use efficiency in temperate bog 
ecosystems
R. Tortini1, N. C. Coops1, Z. Nesic2, A. Christen   3,4, S. C. Lee3 & T. Hilker5

Despite storing approximately half of the atmosphere’s carbon, estimates of fluxes between wetlands 
and atmosphere under current and future climates are associated with large uncertainties, and it 
remains a challenge to determine human impacts on the net greenhouse gas balance of wetlands at the 
global scale. In this study we demonstrate that the relationship between photochemical reflectance 
index, derived from high spectral and temporal multi-angular observations, and vegetation light 
use efficiency was strong (r2 = 0.64 and 0.58 at the hotspot and darkspot, respectively), and can be 
utilized to estimate carbon fluxes from remote at temperate bog ecosystems. These results improve 
our understanding of the interactions between vegetation physiology and spectral characteristics to 
understand seasonal magnitudes and variations in light use efficiency, opening new perspectives on the 
potential of this technique over extensive areas with different landcover.

Although covering just 3% of the Earth’s land surface, wetlands play a crucial role in the global carbon cycle stor-
ing more carbon than any other terrestrial ecosystem1. Indeed, characterized by moderate primary production 
but slow decomposition rates, wetland ecosystems store approximately half of the atmosphere’s carbon2. However, 
because of their often remote locations and spatial patchiness, the determination of carbon fluxes between wet-
lands and atmosphere under current and future climates are associated with large uncertainties. Furthermore, 
the determination of human impacts on the net greenhouse gas balance of wetlands at the global scale remains 
challenging3.

Near surface remote sensing has been demonstrated to be an effective tool to automatically retrieve quantita-
tive data on physiological processes through the study of the relationship between plant physiological properties 
and biochemical composition of foliage4. This is typically achieved observing narrow spectral wavebands in the 
400–2500 nm range with high spectral and spatial resolution optical sensors5. Tower-based multi-angular spec-
troscopy provides improved insights of ecosystem dynamics through linking spectral features of vegetation and 
carbon fluxes across various spatial platforms and scales6–13. This is particularly true in ecosystem models for 
regional and global estimates of primary production based on light use efficiency14 (LUE). The determination 
of LUE using the photoprotective mechanism in leaves is based on the observation of changes in leaf spectral 
reflectance, and in particular the epoxidation state of the xanthophyll cycle15. The empirical relationship between 
the photochemical reflectance index16 (PRI) and LUE has been demonstrated over a wide range of species17–24, 
proving its potential use for global estimation of LUE using observed spectra. However, the generalization from 
the leaf level to the canopy, regional, landscape and global scales remains challenging due to the usually relatively 
small measured reflectance changes25–27. In fact, airborne and spaceborne sensors can only provide limited meas-
urements determined by the time of the overpass, whereas the temporal dynamics of plant photosynthesis require 
the continuous observation of vegetation status under multiple viewing geometries and illumination conditions28. 
Furthermore, canopy level estimates of biophysical parameters from spectral observations are also affected by 
other variables, such as soil background effects29 and sun-observer geometry30, 31, making the comparison of 
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measurements taken under different geometries and/or at different times of the day and growing season challeng-
ing32. In addition, the relationship between PRI and LUE is species dependent and varies with canopy structure, 
age, Leaf Area Index and possible disturbances26. These limitations are further enhanced in the estimation of the 
fraction of absorbed photosynthetically active radiation (fPAR), subject to bidirectional reflectance and scatter-
ing effects32 overlapping to the reflectance signal33. Previous studies estimated, for example, that grasslands and 
shrublands showed the lowest mean gross primary production (GPP) and least variability in the continental USA, 
with mean peak GPP of an order of magnitude lower than deciduous forests34. Recent research demonstrated the 
suitability of LUE for estimation of GPP in peatlands35; however, the presence of abundant surface water repre-
sents a further limiting factor of spectral observations of chlorophyll signal at wetlands. Among these, global and 
contiguous multi-angular observations are also affected by the cost associated to instrument networks. The use 
of low-cost spectro-radiometers is fundamental to overcome this limitation, and the knowledge obtained from 
these types of studies can then be used to develop models for tower-based vegetation monitoring networks to 
up-scale reflectance parameters to landscape and global scales. The relationships between canopy reflectance and 
plant physiological processes at the stand level can be demonstrated using tower-based spectro-radiometers36, 37, 
and low-cost systems such as the third generation Automated Multiangular SPectro-radiometer for Estimation of 
Canopy reflectance system13 (AMSPEC-III) have been developed over recent years. Multi-angular observations 
acquired at a single location can be used characterize the bidirectional reflectance distribution function38 (BRDF) 
of surface reflectance. This contains information on the structure of vegetated surfaces and shaded parts of the 
canopy39, 40 and facilitates modeling of canopy reflectance independently of the sun-observer geometry, helping to 
overcome the limitations faced by traditional remote sensing techniques and yield more robust estimates of can-
opy constituents. For all these reasons, it is crucial to investigate and better understand the relationship between 
PRI and LUE in complex ecosystems such as wetlands.

In this work, we assess the relationship between spectral observations under different sun-observer geometry 
and LUE measurements at a disturbed wetland site. In particular, we utilize the tower-based AMSPEC-III system at 
an eddy-covariance (EC) flux tower located at the Burns Bog Ecological Conservation Area (BBECA; Figs 1 and 2),  
a large disturbed, and subsequently restored and rewetted, raised bog ecosystem in the Fraser River Delta on the 
Pacific Coast of British Columbia, Canada, to establish an empirical relationship between PRI observed using 
AMSPEC-III and tower-based EC-measured LUE.

Figure 1.  Location of the BBECA within the lower mainland of British Columbia, Canada. Background image 
from Landsat best available pixel composite45–50. Maps generated using ESRI ArcGIS 10.3 (http://www.esri.com/
arcgis/).

http://www.esri.com/arcgis/
http://www.esri.com/arcgis/
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Results
The heterogeneity of the land cover investigated in this study is shown in Fig. 2, including grass, shrubs, and water 
in addition to anthropogenic elements such as scaffold tower and cabling (not shown in Fig. 2).

Although showing a clear seasonal trend (i.e., decrease in PRI values from June to August and increase from 
September to November), the daily PRI measurements in Fig. 3 as expected are characterized by a high varia-
bility due to sun-observer geometry and atmospheric conditions. This spectral variability is a function of the 
sun-observer geometry, making the BRDF modelling and correction necessary (e.g., Fig. 4). However, for surfaces 
with heterogeneous landcover such as temperate bog ecosystems, this behavior is also due to high spatial variabil-
ity associated with the changing land cover types within the field of view.

In order to calculate LUE throughout the entire season, we modelled the photosynthetically active radiation 
(PAR) using the measured solar irradiance (SW↓) at the study site. The relationship between PRI observed at the 
hotspot (i.e., 20°) and darkspot (i.e., 160°) with the LUE measured from EC is shown in Fig. 5, and shows a signif-
icant relationship of r2 of 0.64 (p < 0.05) and 0.58 (p < 0.05), respectively.

The inter-relationship between LUE under different PAR and soil temperature throughout the season is shown 
in Fig. 6. Low PAR values (i.e., diffuse light) generally correspond to lower stress level (i.e., high LUE; green) and 
higher PRI, whereas high temperature to lower LUE (red).

Discussion
A third generation AMSPEC was installed on a flux tower in Burns Bog (Fig. 1), over a restored and rewet-
ted bog ecosystem, in the lower mainland of British Columbia, Canada. AMSPEC-III features a JAZ-COMBO 
spectro-radiometer (Fig. 2) and, although representing a more affordable option, demonstrated to achieve results 

Figure 2.  In-situ photograph of the AMSPEC-III system taken at the Burns Bog flux tower (Ca-DBB). In the 
figure the system faces approximately 90°E.

Figure 3.  Boxplot of daily PRI distribution at the field site between May and November 2015.
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in line with previous generations of AMSPEC13. The absence of vegetation structure (Fig. 2) combined with the 
possible presence of surface water made a spatial stratification of the spectral observations necessary. Indeed this 
heterogeneity significantly affected the measured half hourly PRI, leading to a high daily PRI variability (Fig. 3) 
throughout the growing season, hence adding further complexity to the already necessary BRDF modelling and 
correction (Fig. 4). Given the spatial heterogeneity of the site, the hotspot and the darkspot present different 
landcover; however, both show a good correspondence when compared to LUE (Fig. 5), resulting in r2 = 0.64 
(p < 0.05) and 0.58 (p < 0.05), respectively. This is in good accordance with recent studies demonstrating how 
the relationship between LUE and PRI can be scaled up from foliar to canopy, stand, and even landscape levels42.

The inter-relationship between PRI under different PAR and soil temperature (Fig. 6) shows that optimal 
conditions for vegetation activity in a temperate bog (i.e., high LUE) are characterized by low PAR (<500 µmol 
m−2 s−1) and soil temperature comprised between 15 °C and 20 °C. However, PRI also shows moderate activity 
(i.e., LUE comprised between 1 and 1.5 g C MJ−1) for cold sunny days (i.e., soil temperature <15 °C and PAR 
>1000 µmol m−2 s−1).

As expected, low PAR values (i.e. diffuse light) generally correspond to lower stress level (i.e., high LUE; 
green), whereas high temperature to higher stress (i.e., low LUE; red). However, PRI values seem to be affected by 
the presence of surface water. In fact, for supposedly drier conditions (i.e., high PAR and high soil temperature), 
PRI remains high also for low LUE values. These results are in good accordance with the conclusions in refs 43 
and 44, where PAR and soil temperature were indicated as key environmental factors controlling gas exchanges at 
this study site in 2014 and 2015, respectively. In particular, high water table and in particular surface ponds seem-
ingly suppress fluxes and affect spectral observations. In fact, water table height at the field site decreases steadily 
between June and September 2015. Alternatively, due to increased precipitation and reduced evapotranspiration, 

Figure 4.  Example of PRI BRDF model for July 31st, 2015.

Figure 5.  Daily relationship between BRDF-corrected PRI and LUE at the hotspot (red) and darkspot (blue), 
with logarithmic best fit curve.
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as a consequence of senescence, water table height rises in September and October. These factors make the study 
area a CO2 sink in spring and summer, whereas CO2 fluxes are near zero in fall and winter44.

This work demonstrates the AMSPEC-III versatility in ecosystems presenting complex landcover such as bogs. 
Simultaneous spectral observations of different vegetation types from multiple AMSPEC-III systems can help 
to better understand the interactions between vegetation physiology and spectral characteristics. In addition, 
a combined effort of multiple tower-based AMSPEC-III systems in a network could considerably improve the 
calibration of satellite observations, ultimately leading to improved understanding of changing vegetation spec-
tral features at the global scale. In fact, bogs have mean peak GPP an order of magnitude lower than deciduous 
forests34 and represent a complex landscape and estimating LUE using spectral observations presents a number 
of challenges, including, for example, spectral variation due not only to sun-observer geometry but also by its 
heterogeneous landcover.

AMSPEC-III demonstrated to be suitable for carbon cycle analysis in an environment with heterogeneous 
landcover such as the rewetted bog ecosystem studied here. For these reasons we suggest that, when spatial var-
iability plays a crucial role such as in sensor networks observing a range of different landcover patches over 
extensive areas (e.g., wetlands located in remote regions), cost effective spectral solutions such as the AMSPEC-III 
system represent a natural candidate for the implementation of instrument networks at a broader scale.

Methods
Study area.  Burns Bog is a remnant ombrotrophic raised bog ecosystem expanding for approximately 20 km2 
located between the south arm of the Fraser River and Boundary Bay in Metro Vancouver, British Columbia 
(Fig. 1) on a large estuarine delta with chemistry influenced by the nearby marine environment. This, along with 
its flora supporting distinctive bog vegetation communities and recognized rare and endangered plant and wild-
life species, contributes to Burns Bog’s environmental unicity and global significance45. Burns Bog contains about 
14 km2 of disturbed bog ecosystems with previous land uses including peat mining, agriculture or recreation, in 
addition to 6 km2 of relatively undisturbed raised peat bog. While not pristine, the bog has retained enough of its 
ecological integrity to allow its restoration over time45. In 2005, the major remaining bog ecosystem was declared 
a conservancy area (Burns Bog Ecological Conservancy Area, BBECA) and restoration efforts primarily focus 
on rewetting by a large-scale ditch-blocking program46. To allow the continuous measurements of CO2 fluxes 
using EC, a scaffold tower was installed inside BBECA in summer 2014 on a floating platform (122°59′05.60″W, 
49°07′45.59″N, WGS-84, Fluxnet ID Ca-DBB) within a field of 400 × 250 m dimension. This field has been har-
vested and disturbed between 1957 and 1963, and re-wetted in 200843. The current vegetation is dominated by a 
white beakrush (Rhynchospora alba) - Sphagnum ecosystem reaching a height of 30 cm in summer43. Sphagnum 
carpets are discontinuous in this area, with dispersed scrub pine (Pinus contorta) and birch (Betula pendula) trees 
surrounding the area observed.

The study area is characterized by standing water ponds intermixed with vegetation for most of the year. 
Vegetation coverage was almost complete in summer, covering ponds, so the surface was less patchy in summer 
compared to spring and fall, when standing water ponds were intermixed with vegetation44. During the study 
period (i.e., May 14th to November 6th, 2015) the water table fluctuated between +15 cm (above surface, flooded) 
and −22 cm (below surface). Summer 2015 was an unusually dry early summer (May to July precipitation: 

Figure 6.  PRI for different PAR and soil temperatures at 5 cm depth. Low PAR values (i.e., diffuse light) 
generally correspond to lower stress level (i.e., high LUE; green), whereas high temperature to higher stress (i.e., 
low LUE; red).
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36 mm, compared to 154 mm in the 30-year climate normal 1981–2010, at Vancouver International Airport). 
Consequently, the water table in summer 2015 at the study site was lowest compared to the preceding 7 years 
(start of measurements).

AMSPEC-III spectral observations.  Spectra were measured from May 14th to November 6th, 2015 using 
an AMSPEC-III system mounted on the flux tower at 4.5 m above reference height (Fig. 2). The AMSPEC-III 
system features a JAZ-COMBO portable spectro-radiometer (JC; Ocean Optics, Dunedin, FL, USA) with an 
upward-looking sensor featuring a cosine diffuser to correct sky irradiance for varying solar altitudes. A pan-tilt 
unit (model PTU-D46–17; Directed Perception, Burlingame, CA, USA) allows the system to record data at var-
ious view zenith angles (VZAs) and view azimuth angles (VAAs) from the initial position. In particular, spectra 
were recorded at VZA ∈ {43°; 53°; 63°} and VZA ∈ {48°; 58°; 68°} every 15 min (half full rotation) and, in order 
to minimize the influence of the tower apparatus, in this study we focus on 20° ≤ VAA ≤ 160°. In addition to 
a RGB webcam image (model NetCam SC 5MP; StarDot, Buena Park, CA, USA) automatically acquired and 
co-registered to the simultaneous spectra, solar irradiance and canopy radiance were recorded simultaneously to 
the sensors viewing geometry, solar position, time of measurement in order to model the BRDF36 and scale the 
spectral observations. The AMSPEC-III system components are described in ref. 13.

Differences in light sensitivity were corrected by measuring the reflectance of a diffuse reference target (i.e., 
Labsphere Spectralon®) and through a cross-calibration approach of canopy reflectance (ρ), defined as the ratio 
of canopy radiance and solar irradiance8:

ρ =
⋅ ′
⋅ ′

L I
I L (1)

where L is the measured radiance of the canopy sensor, I is the simultaneously measured irradiance, L′ is the 
measured radiance of the control surface, and I′ is the irradiance at the time L′ was measured.

The raw JC spectra were collected with 0.145 nm nominal resolution (2048 channels covering the 200–
1100 nm spectral range) and resampled to 3.3 nm full width at half maximum (FWHM) using the arithmetic 
mean of overlapping bands (cfr. ref. 13). The spectra utilized in this work were ultimately configured to 154 wave-
bands in the 522–809 nm spectral range.

In order to exclude any influence from the platform, the scaffold tower or the wooden boards providing access 
to the platform itself, the analysis of the spectra was restricted to the region comprised between a view azimuth 
angle of 20° and 160°.

It is possible to determine vegetation LUE, a key attribute to understand photosynthetic functioning, observ-
ing the variations in spectral reflectance resulting from the epoxidation state of the xanthophyll cycle15 due to the 
photoprotective mechanism of leaves. In particular, these variations are displayed as absorption features at 505 
and at 531 nm, and can be quantified using the PRI, a normalized index that compares the reflectance at 531 nm 
to a xanthophyll insensitive wavelength (i.e., 570 nm) defined as16:

ρ ρ

ρ ρ
=

−

+
PRI

(2)
531 570

531 570

where ρ531 and ρ570 are measured reflectance at 531 and 570 nm, respectively.
To reduce the spectral variation associated with changes in land cover we stratified the spectra-derived BRDF 

models of PRI based on land cover type. This stratification is necessary in order to cluster the main land cover 
type, under the assumption that similar BRDF kernels should originate from similar land cover types. In order to 
do so, we selected a clear day (i.e., July 31st, 2015) to fit a BRDF model for VAA comprised between 20° and 160° 
with a 1° × 1° spatial resolution (Fig. 4). When, within each 1° × 1° cell, PRI was positive for >50% of the obser-
vations, the spectra associated with that viewing geometry was excluded from the analysis. The visual comparison 
of the remaining viewing geometries and the images acquired using the webcam confirmed that this stratification 
was able to remove standing water ponds, exposed soil and observations which contained sky and non-vegetation 
components. In addition, in order to have a more homogeneous range of observations, only the central hours of 
each day (i.e., 1000–1500) were considered.

Eddy-covariance and climate measurements.  Continuous, half-hourly ecosystem fluxes of 
CO2 were measured using an EC system installed on the micrometeorological flux tower. An ultrasonic 
anemometer-thermometer (model CSAT3; Campbell Scientific, Logan, UT, USA) and an open-path CO2/H2O 
infrared gas analyzer (model LI-7500; LI-COR Inc., Lincoln, NE, USA) were operated at 1.8 m height, to measure 
NEE47, 48. Gross Primary Production (GPP) is defined as the difference between Net Ecosystem Exchange (NEE) 
and daytime ecosystem respiration (RD)49.

Additionally, climate and environmental conditions were continuously monitored and storead at 5 min inter-
vals. This included soil/water temperatures recorded at the depth of 5 cm using thermocouples (type T), SW↓ 
recorded at 4.25 m (CNR-1, 4-component radiometer, Kipp & Zonen, Delft, Netherlands), and incident and 
reflected PAR (µmol m−2 s−1) recorded at 4.25 m using a quantum sensor (LI-190; LI-COR Inc., Lincoln, NE, 
USA).

We calibrated the relationship between PAR and SW↓ from July 10th, 2015 (i.e., when PAR measurements 
started) to November 6th, 2015 (i.e., last day of AMSPEC measurements), and obtained the following scaling 
factor f:
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= . ± . −µf mol J1 798 0 026 (3)1

PAR at the field site started being measured on July 9th, 2015. To extend the analysis to the period before the 
installation of the PAR sensor, we utilized the observed linear relationship between PAR and SW↓ (in W m−2) 
for all-weather situations (Fig. 7a). More specifically, using a binning approach, and in particular separating 
200 ≤ SW↓ ≤ 1000 into 50 W m−2 wide bins, we calculated the ratio of the mean PAR and the mean SW↓ for each 
bin (Fig. 7b), and the scaling factor f is the mean of all these ratios.

We tested the relationship between the linearly modelled PAR and the actual measured PAR on an independ-
ent dataset (i.e., from March 1st to May 1st, 2016) and obtained a RMSE = 22.59 µmol m−2 s−1 with r2 = 0.99 
(p < 0.05), confirming that this can reliably be used to model PAR before July 10, 2015.

Daily LUE was calculated using half hourly measurements for situations with incident PAR measured at 
4.25 m of >10 μmol m−2 s−1 as follows14:

=
⋅

LUE GPP
PAR f (4)PAR

A detailed description of the EC measurements and the derivation of LUE from EC flux data can be found in 
ref. 50.
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