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Optimised metrics for CRISPR-KO 
screens with second-generation 
gRNA libraries
Swee Hoe Ong   , Yilong Li, Hiroko Koike-Yusa & Kosuke Yusa

Genome-wide CRISPR-based knockout (CRISPR-KO) screening is an emerging technique which enables 
systematic genetic analysis of a cellular or molecular phenotype in question. Continuous improvements, 
such as modifications to the guide RNA (gRNA) scaffold and the development of gRNA on-target 
prediction algorithms, have since been made to increase their screening performance. We compared 
the performance of three available second-generation human genome-wide CRISPR-KO libraries that 
included at least one of the improvements, and examined the effect of gRNA scaffold, number of gRNAs 
per gene and number of replicates on screen performance. We identified duplicated screens using a 
library with 6 gRNAs per gene as providing the best trade-off. Despite the improvements, we found that 
each improved library still has library-specific false negatives and, for the first time, estimated the false 
negative rates of CRISPR-KO screens, which are between 10% and 20%. Our newly-defined optimal 
screening parameters would be helpful in designing screens and constructing bespoke gRNA libraries.

The discovery of the bacterial adaptive immune system, namely clustered regularly interspaced short palindro-
mic repeats (CRISPR)-Cas9 system1–5, and its subsequent development6–9 into a genome editing tool have made 
possible the precise targeting and modification of DNA, including in mammalian cells. In addition to genome 
editing, the high versatility of the CRISPR-Cas system has led to the development of various derivative tools for 
epigenome10–12 and base editing13, 14, as well as transcriptional activation/silencing15–18.

We and others have exploited the highly consistent editing efficiency of the CRISPR-Cas system and the scal-
able nature of gRNA vector production, and developed genome-wide CRISPR-knockout (KO) screening19–21. 
In CRISPR-KO screening, a pool of synthetic single guide RNAs (sgRNAs, or simply gRNAs) that targets every 
gene in the genome under interrogation is transduced into the cells under study, usually at the stoichiometry of a 
single gRNA per cell. The final cell population that exhibits the phenotype of interest are then recovered and the 
integrated gRNAs, which reveal the identity of the knocked-out genes, are sequenced in parallel. Analysis of the 
differences in the abundance of gRNAs between the controls and the treated cells would unveil the relationship 
between genes and the phenotype of interest22.

Several factors need to be considered when constructing CRISPR gRNA libraries for effective genome-wide 
CRISPR-KO screening. First and foremost is the selection of gRNAs to be included in a library, as pooled screen-
ing requires the gRNAs to be effective in knocking out only the target genes without affecting other loci which 
may share high sequence similarity. Various algorithms for selecting suitable gRNAs with minimal off-target 
activity have been reported23–27. In addition to off-target effects, it is now evident that different gRNAs exhibit 
varying KO efficiency due to different on-target cutting efficiency20, 28–31 and/or DNA repair outcome32. Lastly, 
genetic variations present in individuals or cell lines may also affect on-target activity. It is therefore important to 
choose gRNAs that target common sequences within the human population and to ensure that every gene has a 
fair chance of being knocked out in various human cell lines.

In this study, we seek to examine the vital design parameters that affect screening efficiency. We first compared 
the performance of three second-generation human genome-wide CRISPR libraries that employed different 
gRNA selection strategies, and used the results to arrive at an estimate of the false negative rate of CRISPR-KO 
screens. We then proceeded to determine the optimum number of gRNA per gene and the number of replicates 
that provide the best trade-off for genome-wide CRISPR-KO screens.
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Results
Screening performance of second-generation CRISPR libraries.  To date, 7 genome-wide CRISPR 
gRNA libraries targeting human genes have been described27, 31, 33–37. Of these, 4 libraries were designed and con-
structed with features that improve gRNA efficacy, thereby increasing screen performance27, 31, 36, 37. In this study, 
we refer to these 4 libraries as second-generation CRISPR libraries (Table 1 and Fig. 1). Apart from differences 
in the constituent gRNAs and a small variation in the human genes targeted (Fig. 1), two other major differences 
among these libraries are (1) the use of on-target prediction for gRNA selection20, 27 and (2) the gRNA scaffold38 
used. The number of gRNAs targeting each gene also differs among the 4 libraries (Table 1). We directly compared 
the performance of 3 second-generation libraries in an identical condition to examine the effect of these major 
differences on screen outcomes.

To eliminate any bias that might be caused by differences in the lentiviral vector backbone used to generate 
each library, we re-constructed the complete Brunello27 and half of the Whitehead36 libraries on our lentiviral 
backbone (see Methods and Fig. 2a). Doing so also ensures that the three libraries had a similar level of complex-
ity (77 k–92 k gRNAs) which allowed us to perform screens in an identical experimental setting. Screens were 
performed in the colon cancer cell line HT-29 Cas9#3 clone37 in technical triplicate and the gRNA abundance at 
16 days post transduction was analysed (Fig. 2a). For meaningful comparisons we subsampled the read counts 
for 8,948 genes common to the three reconstructed libraries (Fig. 2a; read counts in Supplementary Table S1) 
in all our subsequent analyses. We obtained the false discovery rate (FDR) for these genes using the read counts 
from all three replicates using MAGeCK39, and separately calculated their respective gene-level fold change (FC).

The receiver operating characteristic (ROC) curves of all three libraries showed nearly identical perfor-
mance in discriminating the essential from non-essential genes (Fig. 2b). We however found that the FCs in 
the Human v1 library exhibited a more significant reduction compared to in the other two libraries (Fig. 2c; 
Kolmogorov-Smirnov test, p = 2.8 × 10−7 and 5.3 × 10−9, against the Brunello and Whitehead libraries, respec-
tively, and Fig. 2d). When the gene-level statistical results returned by MAGeCK were compared, the Whitehead 
library detected the largest number of significantly depleted genes (Fig. 2e). This is likely due to the fact that the 
Whitehead library comprises 10 gRNAs per gene, much higher than the Brunello (4 gRNAs per gene) and the 
Human v1 (5 gRNAs per gene) libraries.

We then integrated the FDR and FC values and counted the number of genes depleted at different FDR and 
FC cut-offs. The differences between the libraries immediately became more apparent (Fig. 2f). Nearly all genes 
with FC ≤ 0.5 in the Whitehead library were below 1% FDR, but the fraction of such genes are lower at 62% 
and 45% in the Human v1 and Brunello libraries, respectively. Although the Whitehead library detected the 
largest number of genes, approximately 45% of the genes detected below FDR 20% showed a smaller depletion 
(FC > 0.5). The fraction of such genes was smaller in the Human v1 (23.5%) and Brunello (22.6%) libraries. When 

Library Design principle Scaffold gRNAs* Genes
gRNAs 
per gene

gRNA 
length 
(bases) Addgene ID Reference

Human v1 Avoidance of T stretches; no 
on-target prediction Improved 90,709 18,009 ~5 19 67989 35

Brunello
On-target prediction 
(Rule set 2) and off-target 
prediction

Conventional 77,441 19,114 ~4 20 73178 23

Whitehead On-target prediction Conventional 182,134 18,166 ~10 20 1000000067 19

Toronto 
KnockOut v3

On-target prediction and 
off-target prediction Conventional 71,090 18,056 ~4 20 90294 28

Table 1.  List of second-generation human genome-wide CRISPR libraries. *Gene-targeting gRNAs only; 
excludes control gRNAs. This number differs from the gRNA totals in Fig. 1 because the latter are for the 
number of distinct 19-mer gRNAs.

Figure 1.  Overlaps of targeted human genes and 19-mer gRNAs of second-generation CRISPR libraries. (a) 
Venn diagram showing overlaps of human genes targeted by four second-generation genome-wide CRISPR 
libraries. (b) Venn diagram showing overlaps of 19-mer gRNAs in four second-generation genome-wide 
CRISPR libraries. gRNA sequences of the 3′ 19-mers were used in order to make the 19-mer gRNAs in the 
Human v1 library comparable to the 20-mer gRNAs in the other three libraries.
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Figure 2.  Screening performance of three second-generation CRISPR libraries. (a) Schematic showing the 
screening procedure and the libraries used in this study. (b) ROC curves showing the classification performance 
of the three CRISPR libraries on predefined set of essential and non-essential genes. (c) Density functions 
of gene-level fold change (FC) for 366 essential genes from each library, showing that the Human v1 library 
exhibits a left shift compared to the other two libraries. (d) Pairwise comparison of the gene-level log2 fold 
changes of the 8,948 genes analysed. Red and black dots represent the predefined essential and non-essential 
genes31, respectively. Correlation coefficient was shown for each comparison. Similar to c, the Human v1 library 
exhibits greater FC. (e) Plot showing gene rank by significance. (f) Number of depleted genes detected at the 
indicated FDR and FC by each library. The Whitehead library was also separated into two subsets denoted with 
suffix _A and _B.
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the Whitehead library read count data were separated into two subsets (sets A and B, as described36), each of the 
5 gRNAs-per-gene subsets detected comparable numbers of depleted genes and showed similar trends as the 
Human v1 and Brunello libraries (Fig. 2f). These results indicate that these second-generation CRISPR libraries 
show comparable screening performance and identify similar numbers of depleted genes when the number of 
gRNA per gene is similar. It is however worth noting that the fraction of genes with FDR ≤ 1% is biggest in the 
Human v1 library.

Concordance of depleted genes detected and false negative rate estimation.  We next analysed 
the overlaps of genes that satisfied both cut-off criteria (FDR ≤ 20% and FC ≤ 0.5) in the Human v1, Brunello and 
the two Whitehead subset libraries (Fig. 3a). A total of 955 non-redundant genes were detected by these 4 librar-
ies. Of these, 718 genes (75.1%) were detected by 2 or more libraries, which we dubbed as “high-confidence genes”. 
Within this confident set, 317 genes (44.2%) were detected by all 4 libraries. The concordance between any two 
given libraries was similar, at between 55% and 60%, but the Human v1 library consistently detected more genes 
than the other libraries (Fig. 3b). As demonstrated using the genes detected by the Human v1 library, the FCs and 
FDRs tend to be greater if the genes were detected by more libraries (Fig. 3c). In each library, library-specific hits 
accounted for approximately 10% of the total hits and they have a lower FC. These trends were consistent across 
all gRNA libraries tested (Supplementary Fig. S1a).

One important question that remains unanswered in CRISPR-KO screening is the false negative (FN) rate. 
As we do not know the phenotype of every gene KO in a given cell type, theoretically it is not possible to measure 
the true FN rate of CRISPR-KO screens. We sought to address this issue by utilising the high-confidence gene set 
we defined above to arrive at an estimate. Among the 718 high-confidence genes, the number of genes missed by 

Figure 3.  Properties of the depleted genes detected by three second-generation CRISPR libraries. (a) Venn 
diagram showing overlaps of genes detected at FDR ≤ 20% and FC ≤ 0.5. The Whitehead library was separated 
into two subsets denoted with suffix _A and _B. Genes detected by 2 or more libraries are considered as high-
confidence genes. (b) Pairwise concordance between libraries of detected depleted genes. (c) Box plots showing 
the FC and FDR of genes detected by the Human v1 library. Genes were grouped by the number of additional 
libraries which detected those hits. See Supplementary Fig. S1a for the complete result. (d) Box plots showing 
the FC and FDR of genes detected by all 4 libraries and of genes missed only by the Human v1 library. See 
Supplementary Figure S1b for the complete result.
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each library was 102, 163, 158 and 143 for the Human v1, Brunello, Whitehead_A and Whitehead_B libraries, 
respectively (Fig. 3a), resulting in observed FN rates of between 14% and 23%. Among the FN genes of each 
library, the GO terms related to cell survival and proliferation were highly enriched (Supplementary Table S2), 
indicating that similar to commonly detected genes, these FN genes have fundamental cellular functions. As 
exemplified by the Human v1 library in Fig. 3d, FN genes from this library showed substantially lower FC and 
weaker significance but were detected by the other 3 libraries, albeit at a slightly weaker FC and FDR when com-
pared to the 317 commonly-detected genes. A similar trend was observed in all other libraries for library-specific 
FN genes (Supplementary Fig. S1b). We then analysed the genes missed by 2 libraries and found a similar trend, 
although the FC of genes in this category was considerably lower than that of the commonly detected genes 
(Supplementary Fig. S1c). The gRNAs targeting the FN genes of a given library exhibited marked variation in 
their FC, many of which showed little to no effect on proliferation, whereas the gRNAs from the other libraries 
indeed produced phonotypic effects (Supplementary Fig. S2). We also calculated the FN rates by comparing 
the Human v1, Brunello and the Whitehead full-set and found FN rates of 9.9%, 18.5% and 9.3%, respectively 
(Supplementary Fig. S3). These results suggest that each library has a varying level of inherent false negatives 
and that false negatives are primarily caused by the selection and inclusion of less or non-effective gRNAs in the 
respective libraries.

Optimal number of gRNAs per gene and number of replicates on screening performance.  As 
reported previously39, the number of gRNAs per gene has a substantial impact on statistical results. We sought to 
revisit this question as the greater efficiency accorded by the second-generation libraries may affect the optimal 
parameters for CRISPR-KO screening. We cloned the 10 gRNAs-per-gene Whitehead sub-library used above 
into our lentiviral vector carrying the optimised scaffold37, 38 and performed the same screen (read counts in 
Supplementary Table S1). This library showed greater FC than the library using the conventional scaffold, indicat-
ing that the optimised scaffold can further improve gRNA efficacy even if the gRNAs were already selected based 
on on-target prediction scores (Supplementary Fig. S4).

In order to assess the effect of the number of gRNAs per gene, we down-sampled this dataset and generate a 
series of read count subsets, ranging between 3 and 9 gRNAs per gene (5 subsets for each per-gene gRNA num-
ber) and performed MAGeCK and ROC curve analyses individually. As expected, the library with 10 gRNAs per 
gene exhibited the greatest area under the curve (AUC); however, even with fewer numbers of gRNAs, ROC curve 
analysis detected only marginal performance difference across the subsets (Fig. 4a). Consistent with our previous 
observation (Fig. 2f), greater difference became evident when we compared the numbers of depleted genes with 
FDR and FC cut-offs (Fig. 4b). The subsampled libraries with 3 gRNAs per gene detected few hits below 10% 
FDR, whereas the performance improved markedly in libraries with 4 gRNAs per gene. The total numbers of 
depleted genes detected below 10% FDR increased further as the number of gRNAs per gene increases up to 10 
gRNAs per gene. However, when FC was also used as an additional criterion, the number of depleted genes with 
FDR ≤ 10% and FC ≤ 0.5 plateaued at around 6 gRNAs per gene, whereas the number of genes with FDR ≤ 10% 
and FC > 0.5 kept increasing. These results indicated that increasing the number of gRNAs per gene is beneficial 
to a certain point, but beyond this point the increase in significance only accounts for genes with a minor effect 
(as indicated by their low FC) and thus are not crucial to the phenotype in question.

We next analysed the effect of the number of replicates on the screening outcome. For each down-sampled 
dataset, we performed statistical analysis with reducing number of replicates from 3 to 2 to 1 and counted the 
genes with FDR ≤ 0.1 and FC ≤ 0.5 (Fig. 4c). This analysis revealed that conducting a screen in more replicates 
improved sensitivity and detected a greater numbers of genes, particularly when using libraries with 4 or 5 gRNAs 
per gene. However, the difference between 2 and 3 replicates became negligible in libraries that contain 6 or more 
gRNAs per gene. Moreover, when using libraries with 9 gRNAs per gene, screens with a single replicate were as 
robust as those with 2 or more replicates.

Figure 4.  Optimal number of gRNAs per gene and number of replicates. (a) Box plots showing area under the 
curve (AUC) from ROC analysis using different gRNAs per gene. (b) The number of depleted genes detected at 
the indicated FDR and fold change (FC) cut-offs. (c) The number of depleted genes detected at FDR ≤ 10% and 
FC ≤ 0.5 from reduced numbers of replicates for each subset.
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Taken together, we concluded that screens using a second-generation library with 6 gRNAs per gene in dupli-
cate would provide the most suitable and practical trade-off. To evaluate the sensitivity of libraries with 6 gRNAs 
per gene, we re-designed our library and generated new Human v3 library, yielding a total of 114,749 gRNAs 
targeting 18,740 human genes (Supplementary Table S3). To test this new v3 library and to evaluate the screening 
parameters we had determined, we randomly selected 5,000 genes as a test set and cloned an oligo pool into a 
modified version of our lentiviral vector (Supplementary Fig. S5) and similarly performed a screen in HT-29 cells 
(read counts in Supplementary Table S4). The new lentiviral gRNA vector incorporated a library-specific barcode, 
which can be used for a reverse primer-annealing site, thus preventing gRNA amplification from existing lentivi-
ral gRNA vectors due to cross-contamination. The vast majority of depleted genes with the new v3 library showed 
improved significance (Fig. 5a). Further corroboration using RNA-seq data37 also showed the v3 library as pro-
ducing higher significance in the expressed genes but not in the non-expressed genes (Fig. 5b,c). As the principle 
of gRNA selection and the gRNA scaffold used remained unchanged, there was no significant difference in the 
FC between the v1 and v3 libraries (Fig. 5d; Kolmogorov-Smirnov test, p = 0.44). We next conducted statistical 
analysis with various numbers of replicates and compared the number of depleted genes (Fig. 5e). Consistent with 
the observation in Fig. 4c, there was almost no difference in the number of depleted genes between the 3- and 
2-replicate screens with the v3 library. Even with a single replicate, the reduction in detecting depleted genes was 
marginal and the new library could thus detect more genes than the three-replicate screen with the v1 library.

Discussion
Prior to the advent of CRISPR-Cas9-based genome editing technology, genome-wide recessive screening had 
been typically performed using the RNA interference technology40. However, the intrinsic nature of RNAi, namely 
incomplete silencing and frequent off-target effects, resulted in low detection sensitivity and inconsistent results 
across laboratories. In contrast, the CRISPR-Cas9 system directly modifies genomic DNA and generates inacti-
vating mutations, thereby exhibiting greater gene perturbation efficiency and stronger phenotypic outcomes. This 
was well exemplified by a recent study on CRISPR-KO screens for host factors required for HIV-1 infection41. 
Nonetheless, the CRISPR-Cas9 system has several pitfalls. As a result of nucleic acid-based recognition of targets, 

Figure 5.  Screening performance of the 5-gRNAs-per-gene Human v1 and 6-gRNAs-per-gene Human v3 
libraries and the effect of replicates. (a) Scatter plot comparing gene-level significance between the Human v1 
and v3 libraries. (b,c) Cumulative distribution function of gene-level significance of expressed (b) and non-
expressed (c) genes. Non-expressed genes are defined as having FPKM values of less than 0.5 and expressed 
genes as having FPKM values of 0.5 and above. (d) Scatter plot comparing the fold change between the Human 
v1 and v3 libraries. (e) The number of depleted genes detected by the Human v1 and v3 libraries with different 
number of replicates.
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the CRISPR-Cas9 system could exhibit off-target effects through imperfect hybridisation between a gRNA and 
target DNA23, 42. A few computational prediction methods have been developed23, 27, but predicting which poten-
tial off-target sites are actually cleaved is still difficult. Selecting gRNAs with the fewest predicted off-target sites 
would still be the most practical approach.

Another major pitfall of CRISPR-KO screening, especially screens in cancer cell lines, is the false pos-
itives caused by copy number aberration43, 44. As CRISPR-KO screening relies on double-stranded DNA 
break (DSB) generated by wildtype Cas9 protein to inactivate gene function, the higher number of DSBs in 
copy-number-amplified regions generate higher genotoxicity than those in normal copy number regions, causing 
cell proliferation delay or deletion of cancer driver genes in such regions. As a result, genes without any prolifera-
tive impact may be falsely identified as a screen hit. Gene copy number data should ideally be incorporated when 
interpreting screening results from cancer cell lines to minimise false-positive calls.

CRISPR-KO screening using the first-generation libraries did not robustly detect genes in negative selec-
tion. In order to improve screening performance, two different approaches have been taken. One approach is 
to optimise the gRNA scaffold sequences. Several studies have been conducted thus far and resulted in a similar 
structure, which showed more robust phenotypic outcomes38, 45, 46. Another approach is to computationally pre-
dict on-target efficiency using nucleotide biases on gRNA KO efficiency. These improvements have been adopted 
when generating the second-generation CRISPR-KO libraries.

The degree of differences between the four second-generation CRISPR libraries may not be immediately 
apparent with a quick glance at Table 1. However, the overlapping patterns of the human genes targeted and 
the constituent gRNAs in Fig. 1 revealed that only a measly 0.3% of the 350,860 unique gRNAs are shared by 
all four libraries, and only about 16% are present in more than one library, despite having 17,070 genes (87.1% 
of the total) targeted by all four libraries. Even the three libraries that were designed using on-target prediction 
algorithms (Table 1) shared only 4,002 gRNAs, a mere 1.42% of the three-library 281,418 gRNA pool. This great 
diversity of gRNAs is a testament to the huge effect that the gRNA design principles have on the composition of 
CRISPR libraries.

Despite the huge differences in the composition of the gRNAs and other parameters (Table 1), the estimated 
false negative rates of the four libraries (Human v1, Brunello and the two Whitehead subsets) turned out to be 
remarkably similar at between 14% and 23% (at FDR ≤ 20% and FC ≤ 0.5). This indicates that each of the librar-
ies has their fair share of gRNAs which are not active in producing gene knockouts. This also suggests that false 
negatives are difficult to avoid simply via currently-available computational methods of gRNA selection, as the 
elaborate on-target prediction algorithms did not show significant advantage over the gRNA design principles 
we used for the Human v1 library. Further work is required to understand factors that influence gRNA efficacy. It 
would also be worth considering the construction of new CRISPR libraries via selecting and incorporating vali-
dated active gRNAs when more CRISPR-KO datasets using different libraries become available.

Our in silico subsampling analyses from the 10-gRNA-per-gene Whitehead half library (Fig. 4) identified a 
substantial gRNA number-dependent effect on statistical results returned by MAGeCK. It is evident from our 
results that a higher number of gRNAs per gene allows for a more robust statistical analysis but can become 
over-sensitive with the tendency of calling genes with a relatively minor phenotypic effect (i.e. lower fold change 
values) as significant hits. From the perspective of practicality, a higher number of gRNAs per gene would cause 
the following two disadvantages. Firstly, increasing the numbers of gRNAs per gene invariably results in a larger 
library size. As a consequence, ensuring that the library complexity is maintained throughout the screening pro-
cess would become increasingly challenging, and the loss of library complexity could lead to poor screening out-
come. The second shortcoming of using a higher number of gRNA per gene means over-detecting hits, resulting 
in unnecessary downstream validation work. Therefore, it is important to identify a practical trade off that reports 
biologically meaningful outcome with libraries small enough to perform a proper screen. For second-generation 
CRISPR-KO libraries, we have showed that the use of a library containing 6 gRNAs per gene in duplicated screens 
is likely to be the optimal design parameter for genome-wide CRISPR-KO screens. In the validation screen of 
our new Human v3 library, we have detected with just a single replicate significantly more depleted genes than 
duplicated screens using our v1 library (Fig. 5e). This translates to a reduction of 60% in required reagents and 
laboratory work such as tissue culture and sequencing. For data analysis, several statistical packages have been 
developed and more are likely to be developed47–50. To narrow down a large number of primary hits to high confi-
dence hits, additional statistical analyses using these newly developed tools would be of great utility.

CRISPR-KO screens in cancer cell lines have been successfully conducted and have identified novel therapeu-
tic targets34, 36, 37, 51, 52. There will be, however, more demands in screening cell types less amenable to scaling up, 
such as organoids and primary cells53. Our newly defined optimal screening parameters would be helpful to other 
researchers in the field who are considering conducting such screens with genome-wide libraries or constructing 
bespoke gRNA libraries.

Methods
Plasmid construction.  pKLV3-U6gRNA5(BbsI)-PGKpuroBFP-W-L1 was constructed by cloning a gBlock 
fragment containing the gRNA expression cassette and a bar code into the MluI-BamHI site of pKLV2-U6gR-
NA5(BbsI)-PGKpuroBFP-W37 using a Gibson assembly kit (NEB).

CRISPR libraries.  The Brunello library was purchased from Addgene (catalog #73178). The gRNA 
expression cassette of the Brunello library was PCR-amplified with primers (5′-TAGTACCGGGCCCTACG 
CGTGAGGGCCTATTTCCCATG-3′ and 5′-CTACCCGGTAGAATTGGATCCAAAAAAAGCACCGACTCG-
3′). The resulting PCR product was purified with a gel purification kit (Qiagen) and cloned into the MluI-BamHI 
site of pKLV2-U6gRNA5(BbsI)-PGKpuroBFP-W using a Gibson assembly kit (NEB). Five assembly reactions 
were performed with 100 ng of the vector and 9.1 ng of the insert fragment per reaction at 50 °C for 30 min. The 
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reactions were then combined, purified with a MinElute PCR purification kit (Qiagen) and eluted into 10 µl water. 
Assembled DNA was electroporated into DH10B electro-competent cells (NEB) with 1 µl per reaction. All 10 
reactions were combined, incubated at 37 °C for 1 hr and directly inoculated into 500 ml 2xTY medium contain-
ing 50 µg ml−1 ampicillin. Plasmid DNA was purified from overnight culture using a Plasmid Maxi kit (Qiagen).

For the Whitehead library (Addgene catalog #1000000067), gRNA sequences for randomly selected 
9,190 genes were obtained from the published gRNA list. The sequences were appended as follows: 
5′-GCAGATGGCTCTTTGTCCTAGACATCGAAGACAACACCGN20GTTTTAGTCTTCTCGTCGC-3′. 
Pooled oligos was purchased from CustomArray and cloned into pKLV2-U6gRNA5(BbsI)-PGKpuroBFP-W as 
described previously21.

The v3 library was designed essentially as described previously37 with a minor modification. We added another 
gRNA selection filter of GC% being 40–80% and selected 6 gRNAs per consensus coding sequence (CCDS). 
An oligo pool containing 30,000 gRNAs targeting 5,000 randomly selected genes was purchased from Twist 
Bioscience and cloned into pKLV3-U6gRNA5(BbsI)-PGKpuroBFP-W-L1 as described previously21.

Virus production, transduction, screening, gRNA amplification and sequencing.  These 
were performed as described previously21, 37. To amplify gRNA fragments from the v3 library, 
5 ′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTTGTGGAAAGGACGAAACA-3 ′  and 
5′-TCGGCATTCCTGCTGAACCGCTCTTCCGATCTTACCCAGACTGCTCATCGTC-3′ were used.

Processing of gRNA count tables.  All FDR values were calculated using MAGeCK version 0.5.339.
Prior to the calculation of fold change (FC) values, all gRNA count values were first normalised against the total 

of the baseline plasmid counts to account for the sequencing yield variability between replicates, then incremented 
by 1 to avoid division-by-zero errors. The incremented gRNA counts for the replicates were then totalled and aver-
aged, before division by the gRNA baseline plasmid read count to arrive at the gRNA-level fold change. Gene-level 
FC values were calculated as the average of the fold change values of all constituent gRNAs for each gene.

ROC analysis.  ROC analysis were done in R, using predefined lists31 of non-essential genes (n = 927) and 
essential genes (n = 684).

Data Availability.  All data generated or analysed during this study are included in this published article and 
its Supplementary Information files.
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