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Chronic post-stroke aphasia 
severity is determined by 
fragmentation of residual  
white matter networks
Barbara K. Marebwa1, Julius Fridriksson2, Grigori Yourganov3, Lynda Feenaughty4,  
Chris Rorden3 & Leonardo Bonilha1

Many stroke survivors with aphasia in the acute period experience spontaneous recovery within the 
first six months after the stroke. However, approximately 30–40% sustain permanent aphasia and 
the factors determining incomplete recovery are unclear. Suboptimal recovery may be influenced 
by disruption of areas seemingly spared by the stroke due to loss of white matter connectivity and 
network integrity. We reconstructed individual anatomical whole-brain connectomes from 90 left 
hemisphere stroke survivors using diffusion MR images. We measured the modularity of the residual 
white matter network organization, the probability of brain regions clustering together, and the 
degree of fragmentation of left hemisphere networks. Greater post-stroke left hemisphere network 
fragmentation and higher modularity index were associated with more severe chronic aphasia, 
controlling for the size of the stroke lesion. Even when the left hemisphere was relatively spared, 
subjects with disorganized community structure had significantly worse aphasia, particularly when key 
temporal lobe regions were isolated into segregated modules. These results suggest that white matter 
integrity and disorganization of neuronal networks could be important determinants of chronic aphasia 
severity. Connectome white matter organization measured through modularity and other topological 
features could be used as a personalized variable for clinical staging and aphasia treatment planning.

Human communication relies on complex interactions of higher-order processes, such as general knowledge, 
memory, semantic association, syntax, and phonological processing. Taken together, key cortical regions need 
not only to be preserved, but also connected and integrated into a neural network in order to permit language 
processing.

Stroke is the leading cause of long term language impairments (aphasia) in adults1. However, many stroke 
survivors with aphasia in the acute phase experience spontaneous recovery within the first six months after the 
stroke. Nonetheless, approximately 30–40% do not recover fully and experience aphasia for the rest of their lives2. 
Even though ischemic stroke may lead to necrotic damage affecting specific brain areas, the functional impair-
ment after stroke can be exacerbated by dysfunction of seemingly spared areas3.

The neurobiological bases for loss of function in remote and spared areas are not completely understood. 
However, extensive work on disconnection syndromes, including from our group4–6, have demonstrated that 
white matter loss and cortical disconnection can extend beyond the stroke lesion3. Importantly, the degree of 
white matter disconnection of Broca’s area is an independent predictor of naming impairments after a stroke, 
controlling for the degree of cortical ischemic damage7, 8. Furthermore, residual anatomical connectivity of spared 
areas plays a significant role in therapy-related improvement in object naming in subjects with aphasia9.

Nonetheless, it is still unclear whether post-stroke white matter damage can be used as personalized predictor 
of chronic aphasia severity.
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Our group has recently described how the comprehensive map of white matter connectivity (the connectome) 
can be measured in stroke survivors by combining innovations in image registration, probabilistic tractography, 
diffusion tensor imaging and statistical assessment of residual networks10, 11. While understanding the effect of 
single elements such as node strength or degree, can explain some of the behavioral impairments after stroke, 
further understanding the complex topological organization of these elements may provide a valuable panoramic 
perspective that may not be captured otherwise.

Examining the community organization via modularity is one such approach to assess the mesoscale organ-
ization in the network. Therefore, in this study, we applied connectome methods to test the hypothesis that 
post-stroke residual white matter connectivity in chronic stroke survivors is associated with long-lasting aphasia 
severity. We employed graph theory methods to assess the community structure of white matter networks and we 
hypothesized that the fragmentation of the connectivity structure of the networks in the dominant hemisphere, 
even when cortical regions are relatively spared, would be associated with more severe aphasia.

Methods
Participants. We recruited 90 participants, (mean age 58.8 ± 12.1 years, 34 women) with a single left hemi-
sphere ischemic or hemorrhagic stroke at least 6 months before the study (mean 42.8 ± 50 months post stroke). 
Participants were included in the study if they did not have a history of any other neurological illness apart from 
the stroke, could follow simple instructions, and were MRI compatible. All participants were right handed. The 
cohort of participants included in this study was also reported in a previous study by our group11. The study was 
approved by the Institutional Review Boards at the Medical University of South Carolina and at the University of 
South Carolina. Written informed consent was obtained from all participants or their legal guardians, as approved 
by our institutions’ IRB. All methods were performed in accordance with guidelines and regulations from our 
institutions’ IRB.

Behavioral Evaluation. All the participants underwent language assessment using the Western Aphasia 
Battery (WAB-R)12. The variable of interest to the current study was the WAB Aphasia Quotient (WAB-AQ), 
which yields a global measure of aphasia severity on a scale of 0–100, with lower scores indicating worse apha-
sia. WAB-AQ reflects overall severity of language impairment in aphasia and is derived from various subtest 
scores including spontaneous speech fluency, auditory comprehension, speech repetition, and naming. Each sub-
test score was obtained by combining the data from its corresponding categories and calculated in accordance 
with the WAB-R manual. Aphasia types were classified according to the WAB. The following aphasia types were 
observed in our participant sample: anomic (26 participants); Broca’s (30 participants); conduction (9 partici-
pants); global (8 participants); Wernicke’s (5 participants); no aphasia (12 participants) with WAB-AQ > 93.7; a 
cut-off typically applied in clinical grounds, but may otherwise exclude individuals with milder deficits.

Image Acquisition. MRI scanning was performed within two days of behavioral testing. Images were 
acquired on a Siemens Trio 3 T scanner equipped with a 12-element head coil located at the University of South 
Carolina. In this study, we used whole brain T1-weighted, T2-weighted and Diffusion EPI images collected from 
each patient.

 (1) T1-weighted image utilizing an MP-RAGE sequence with 1 mm isotropic voxels, a 256 × 256 matrix 
size, and a 9-degree flip angle. For the first 25 individuals we used a 160 slice sequence with TR = 2250 
ms, TI = 900 ms, TE = 4.52 ms. For the latter 65 individuals we used a 192 slice sequence with TR = 2250 
ms, TI = 925 ms, TE = 4.15 with parallel imaging (GRAPPA = 2, 80 reference lines). Each of these scans 
required approximately 7 minutes to acquire.

 (2) T2-weighted image using a sampling perfection with application optimized contrasts using a different flip 
angle evolution (3D-SPACE) sequence. This 1 mm isotropic 3D TSE scan uses a TR = 2800 ms, a TE of 402 
ms, variable flip angle, 256 × 256 matrix scan with 192 slices, using parallel imaging (GRAPPA × 2, 120 
reference lines).

 (3) Diffusion EPI scan which varied in terms of b-value (s/mm2), spatial resolution and other parame-
ters across participants. Fifty-two participants had a sequence with 65 isotropic (2.0 mm) volumes (x1 
B = 0, × 64 B = 1000), TR = 7700 ms, TE = 90 ms, 112 × 112 matrix, with parallel imaging GRAPPA = 2, 60 
contiguous slices. Thirty-eight individuals had a monopolar sequence with 82 isotropic (2.3 mm) volumes 
(x10 B = 0, × 72 B = 1000), TR = 4987 ms, TE = 79.2 ms, 90 × 90 matrix, with parallel imaging GRAP-
PA = 2, 44 contiguous slices. This sequence was acquired in two series (41 volumes in each series) with 
opposite phase encoding allowing us to spatially undistort the images with TOPUP13.

Lesion Mapping. Lesions were manually drawn on each individuals T2 scan by a neurologist (LB). The 
T2 scan was co-registered with the individual’s T1 scan with the transforms applied to the lesion map. The T1 
scans were warped to standard space using enantiomorphic segmentation-normalization14, with these transforms 
applied to the lesion maps. These normalized lesion maps were used to compute the proportion injury to each of 
the 189 regions in the JHU as a ratio of lesioned voxels to the total number of voxels in that region.

Brain parcellation. Normalized brains were segmented into 189 regions using the Johns Hopkins University 
(JHU) brain atlas15. We aligned the anatomical brain atlas containing the JHU parcellation with each individual’s 
T1-weighted images. The T1-weighted images were segmented into probabilistic grey and white matter maps, and 
the grey matter map was divided into regions according to the atlas. We then computed the percentage of damage 
for each grey matter region as a ratio of lesioned voxels to the total number of voxels in that region.
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Anatomical connectome construction. Each participant’s individual connectome was built using the fol-
lowing steps: 1) T1 weighted images were segmented into probabilistic grey and white matter maps using SPM12’s 
unified segmentation-normalization, 2) the probabilistic grey matter map was divided into the JHU anatomical 
regions using the parcellation scheme described above, 3) the white matter and grey matter parcellation maps 
were registered into the diffusion imaging (DTI) space, 4) pairwise probabilistic DTI fiber tracking was computed 
for grey matter regions, 5) the weight of each pairwise connectivity link was determined based on the number of 
streamlines connecting the grey matter region pair, corrected by distance travelled by each streamline and by the 
total volume of the connected regions, and 6) a weighted adjacency matrix M of size 189 × 189 was constructed 
for each participant, with Mi,j representing the weighted link between ROI i and ROI j.

The T2-weighted image (co-registered into the T1-weighted image) was normalized into the B0 non-diffusion 
image (from the diffusion MRI sequence); this spatial transform was applied to register the probabilistic white 
and grey matter maps (the latter divided into JHU regions of interest) as well as the stroke lesion into the diffusion 
MRI space, where all subsequent calculations were performed.

Tractography was estimated through FDT’s probabilistic method16 with FDT’s BEDPOST being used to assess 
default distributions of diffusion parameters at each voxel, and probabilistic tractography was performed using 
FDT’s probtrackX (parameters: 5000 individual pathways drawn through the probability distributions on prin-
ciple fiber direction, curvature threshold set at 0.2, 200 maximum steps, step length 0.5 mm, and distance cor-
rection). The waypoint mask was set as the white-matter probabilistic map excluding the stroke lesion, ensuring 
that the subsequent weighted connectivity matrix is composed of only the surviving connections. The weighted 
connectivity between the regions i and j was defined as the number of probabilistic streamlines arriving at region 
j when i was seeded, averaged with the number of probabilistic streamlines arriving at region i when j was seeded. 
The connection weight was corrected based on the distance travelled by the streamlines connecting i and j (prob-
trackX’s “distance correction”). The number of streamlines connecting each pair of regions was further divided by 
the sum of the volumes of these regions, giving the number of connections per unit surface. The distance correc-
tion is essential to eliminate linear bias towards longer fibers, and the volume correction avoids oversampling of 
larger ROIs compared to ROIs with smaller areas17. We did not perform a network density correction because as 
previously demonstrated by our group18, in a weighted or non-binarized network, network density does not affect 
network properties as all possible connections are taken into account and scaled based on their weight.

Each individual connectome was represented by a 189 × 189 matrix, where the nodes corresponded to the 
JHU anatomical regions, and the edges corresponded to the anatomical connectivity between the nodes. For this 
study, our analyses were restricted to 57 × 57 matrices that included only grey matter regions (i.e., ventricles and 
white matter regions were excluded).

Succinctly, the following procedures were performed: the lesion was manually drawn on a T2 weighted image 
by a rater who was blinded to the WAB-AQ, the T2 and the T1 weighted image were co-registered and the T1 
weighted image was spatially registered (non-linearly normalized) into standard space using an enantiomor-
phic segmentation-normalization procedure. Then the transformation matrix (T1 to standard space) was used 
to transform the JHU atlas into native T1 space, and a non-linear normalization procedure was used to register 
the T1 to the B0 image, and this transformation matrix was used to transform the JHU atlas from T1 to diffusion 
space. The same procedure was used to transform the lesion (in T1 space) to diffusion space, and finally fiber 
tracking was performed using the JHU ROIs while excluding the lesion mask.

Community Detection. Each connectome created above was partitioned into communities or mod-
ules by optimizing Newman’s modularity algorithm19, implemented in the Brain Connectivity Toolbox20 (e.g. 
[Ci,Q] = modularity_und(W), where W is the weighted undirected connectivity matrix; gamma was maintained 
at the default gamma = 1). Modularity (Q) is a value that quantifies the strength of the network’s modular organ-
ization by identifying groups of nodes that have a stronger intra-community coherence than inter-community 
coherence, and is defined as
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where m is the total number of modules, eii is the fraction of edges in the network that connect nodes that occur 
within the same module i, and ai is the fraction of edges connecting a node in module i to any other random 
node, such that if the modules were assigned randomly, then eij = aiaj. Modularity values are positive if the num-
ber of edges within modules exceeds the number of edges expected by a chance distribution of edges between 
nodes regardless of modules19.

Statistical analysis. For each subject, in the left and right hemisphere, we extracted the modularity score, 
and the optimal community structure, which indicates to which communities each ROI belongs. Since two differ-
ent sequences were used to acquire the DTI data, we first ran an unpaired two-tailed t-test and determined there 
was no significant difference in the modularity scores acquired from the two groups, left hemisphere (p = 0.3340), 
right hemisphere (p = 0.1455). Due to stochasticity of network partitioning which may lead to assignment of 
ROIs to different communities with every run, we performed 100 optimizations of the modularity quality func-
tion for each connectivity matrix and created a community affiliation matrix A, from the optimal community 
structure vector. Aij represented the probability that region Ai and Aj are consistently grouped in the same com-
munity over 100 iterations. We then calculated the mean of all entries in the upper triangular community affilia-
tion matrix, to obtain the left and right hemisphere community affiliation index (C).
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For each subject, we quantified how intact the community structure of the left hemisphere was, compared to 
the right hemisphere via a ratio of the right to left community affiliation index, which we called the fragmentation 
index (FI) defined as

=
−
+
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where RHC is the right hemisphere community affiliation index, and LHC is the left hemisphere community 
affiliation index.

We then performed a one-tailed Pearson correlation analysis, since we had an a priori expectation of effect 
in one direction - higher modularity to correspond to lower behavioral scores, to evaluate relationship between 
modularity, community affiliation index, and fragmentation index with WAB-AQ scores. We also calculated par-
tial correlations controlling for whole brain grey and white matter damage, and for damage in a subnetwork of 
language specific regions as defined by Fedorenko and colleagues21. We further calculated the sum of weighted 
links to each node; the node strength. The mean node strength of left hemisphere nodes was then correlated with 
WAB-AQ.

To determine which pairs of nodes should be in the same module for better WAB-AQ score, we calculated 
for every entry in the left hemisphere community affiliation matrix Aij, an unpaired one-tailed t-test that com-
pared the WAB-AQ scores for participants that had a community affiliation index of 1 against those that had an 
index < 1. The t-test was run only if both groups had at least 5 participants. To control for damage, the analysis 
was further restricted to pairs of regions that were at least 50% preserved for each individual. The p-values were 
Bonferroni corrected at p ≤ 0.05.

In order to assess the relationship between modularity and regional grey matter hubs, the number of preserved 
hubs in the left hemisphere was assessed. Network hubs were defined in accordance with rich club networks22 as 
previously applied to lesion brains and aphasia by our group23, by identifying nodes with high degree that were 
also more densely connected to other high degree nodes than would be expected by chance.

We performed multiple linear regression analyses to evaluate the relationship between WAB-AQ and cortical 
damage, modularity, and the number of hubs. In the first model, WAB-AQ was defined as the dependent variable, 
with damage as the independent variable. The second model had WAB-AQ as the dependent variable, and dam-
age and number of hubs as independent variables. The third model had WAB-AQ as the dependent variable, and 
damage and modularity as independent variables. Adjusted R2 indicated the explanatory power of the model with 
statistical significance set at p < 0.05.

Contributions of the domain general and language specific networks. To determine which 
community structures were associated with aphasia severity, we performed subsequent analyses evaluating 
a sub-network composed of 9 language specific and 8 domain general regions of the networks as defined by 
Fedorenko and colleagues21. Language specific regions included the posterior segment of the middle frontal gyrus 
(MFG), the inferior frontal gyrus opercularis, inferior frontal gyrus triangularis, angular gyrus (AG), superior 
temporal gyrus (STG), pole of the superior temporal gyrus, middle temporal gyrus (MTG), posterior superior 
temporal gyrus (PSTG), and the posterior middle temporal gyrus (PMTG) which corresponds to PSMG in the 
JHU atlas. We also included the posterior inferior temporal gyrus (PITG) which corresponds to PSIG in the JHU 
atlas. Domain general regions included the posterior segment of the superior frontal gyrus (SFG), the dorsal pre-
frontal cortex of the middle frontal gyrus (MFG-DPFC), inferior frontal gyrus orbitalis, precentral gyrus (PrCG), 
superior parietal gyrus (SPG), supramarginal gyrus (SMG), posterior cingulate gyrus (PCC) and the insular. For 
every node in the language specific and domain general networks we calculated the frequency with which the 
node occurred in the same module with other regions in the brain for each subject, in other words, when they 
were not fragmented. We then correlated this value with WAB-AQ scores to determine the correlation between 
the composition of the modules and aphasia severity.

In order to assess the strength of the connections within the communities, we further selected the traditional 
language regions: Broca’s area (inferior frontal gyrus opercularis and inferior frontal gyrus triangularis), and 
Wernicke’s area (superior temporal gyrus), and for each subject, extracted modules that contained these regions. 
We then calculated the average intra-modular degree for the modules containing these regions, and the participa-
tion coefficient for the three ROIs, which were then correlated with WAB-AQ, controlling for grey matter damage 
to the ROIs contained in each module.

Statistical analyses were performed in MATLAB Release 2015b.

Results
Relationship between Aphasia Severity and Modularity (Q). The mean aphasia quotient (WAB-AQ) 
was 62.6 ± 28.9. As indicated in the left panel of Fig. 1, left hemisphere modularity (Q) was significantly corre-
lated with WAB-AQ scores such that greater modularity was associated with worse aphasia severity (r = −0.42, 
p < 0.00001) - partial correlation controlling for ROI-specific proportion of damage in the left hemisphere 
(r = −0.21, p = 0.0246), partial correlation controlling for language specific network damage in the left hemi-
sphere (r = −0.21, p = 0.0225), partial correlation controlling for white matter damage in the left hemisphere 
(r = −0.28, p = 0.0044). Right hemisphere modularity (Q) was not significantly correlated with WAB-AQ (see 
right panel of Fig. 1). Figure 2 shows the correlation between left hemisphere modularity and WAB subscores: 
auditory comprehension, fluency, object naming, and repetition. There was no significant correlation between the 
whole brain modularity score and WAB-AQ (r = 0.1445, p = 0.1742), or any of the WAB subscores.
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Relationship between Aphasia Severity and mean node strength. The left hemisphere mean node 
strength was significantly correlated to WAB-AQ (r = 0.3625, p < 0.0001), but did not survive partial correlation 
controlling for the grey and white matter damage. Supplementary Figures 3 and 4 shows the relationship between 
WAB-AQ (and WAB subscores) and node strength.

Relationship between Aphasia severity and Community Affiliation Index (C). The left hemisphere 
community affiliation index was significantly correlated with WAB-AQ (r = 0.44, p < 0.00001), Fig. 3 left panel). 
The direction of the effect indicates that subjects whose connectomes exhibited more consistent left-hemispheric 
node-community assignments across optimizations of the clustering algorithm had higher WAB-AQ.

Figure 1. Correlation between modularity and aphasia severity in the left hemisphere (r = −0.4215, 
p < 0.00001), right hemisphere (r = 0.0698, p = 0.5135).

Figure 2. Correlation between left hemisphere modularity and subsets of WAB-AQ: Auditory comprehension 
(r = −0.4345, p < 0.00001), Fluency (r = −0.4561, p < 0.00001), Naming (r = −0.3948, p < 0.00001), and 
Repetition (r = −0.3644, p < 0.00001).
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Aphasia severity and community affiliation index was not significantly correlated when controlling grey or 
white matter damage. There right hemisphere community affiliation index was not significantly correlated with 
WAB-AQ (Fig. 3 right panel).

Relationship between Aphasia severity and Fragmentation Index (FI). There was a significant neg-
ative correlation between the fragmentation index and WAB-AQ (r = −0.43, p < 0.0001, Fig. 4), indicating that 
subjects with more fragmented left hemispheres had more severe aphasia.

Aphasia severity and fragmentation index was not significantly correlated when controlling grey matter 
damage, but was significantly correlated when controlling for white matter damage (r = −0.22, p = 0.0175). To 
illustrate the network fragmentation, Figs 5 and 6 show two example participants with very different lesion vol-
umes (subject 1: 359.4 cm3 percent white matter damage: 0.168; subject 2: 76.1 cm3, percent white matter damage: 
0.099). The impact of the lesion into the white matter fragmentation is remarkable. Subject 1’s left hemisphere 
was partitioned into 14 modules. The fronto-parietal and middle-temporal networks are highly fragmented, with 
relative disconnection between the frontal and subcortical regions, which are grouped into different modules 
(Fig. 5A). The right panel of Fig. 5A. shows the left hemisphere community affiliation matrix of subject 1, which 
is visibly sparser compared to the right hemisphere, indicating an unstable clustering with very few nodes con-
sistently grouped in the same modules over 100 runs. Figure 5B is the same subject’s right hemisphere, which was 
partitioned into 4 groups, and displays significantly less fragmentation, and a more stable clustering. Figure 6A 
and B represents subject 2 left and right hemisphere respectively, whose modularity pattern did not reveal dra-
matic fragmentation. Subject 1 had a WAB-AQ score of 48.1 while subject 2 scored 88.1. Figures 7 and 8 show 
two example participants, subject 3 has percent white matter damage, lesion volume and location comparable 
to subject 2 (subject 3: 99.24 cm3, percent white matter damage: 0.096). Subject 3’s left hemisphere is however 
fragmented into 9 modules compared to subject 2’s 4 modules. This fragmentation occurs mainly in the infe-
rior frontal temporal regions, with the same subject’s right hemisphere remaining relatively intact (4 modules 
– Fig. 7B). Subject 3 had a WAB-AQ score of 58.2 Subject 4 had behavioral and fragmentation patterns similar 
to subject 1 even with a significantly smaller lesion volume (subject 4: 206.36 cm3, percent white matter damage: 

Figure 3. Correlation between community affiliation index (C) and aphasia severity. Left Hemisphere 
(r = 0.4438, p < 0.00001), Right Hemisphere (r = 0.12, p = 0.3144).

Figure 4. Correlation between Fragmentation index and aphasia severity (r = −0.4302, p < 0.0001).
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0.035). Subject 4 revealed a similar pattern of fragmentation in the left hemisphere, with a relatively intact right 
hemisphere (Fig. 8A and B respectively), and had a WAB score of 41.8.

Figure 9 shows the lesion locations of all 4 example subjects.
Supplementary Table 1 shows pairs of regions that when in the same module, are associated with a higher 

WAB-AQ score. Overall, they indicate that nodes in the temporal, inferior frontal, middle temporal and insular 
regions need to be more tightly associated in the context of the overall community structure for preservation of 
language.

Relationship between Aphasia severity and cortical damage, modularity, and hubs. There was 
a significant relationship between WAB-AQ and total brain damage (F = 49.1, p < 0.00001, adjusted R2 = 0.351). 
When number of hubs was added as a predictor, the model composed of damage and number of hubs had equivalent 
explanatory power, and number of hubs was not a significant predictor of deficit (F = 25.7, p < 0.00001, adjusted 
R2 = 0.357; damage (p =  < 0.00001), hubs (p < 0.18)). With modularity added as a predictor, the model composed of 
damage and modularity had a higher explanatory power, with modularity being a significant predictor of deficit in 
addition to cortical damage (F = 27.4, p < 0.00001, adjusted R2 = 37.2; damage (p < 0.00001), modularity (p = 0.049)).

Relationship between Aphasia severity and inter- and intra-module connectivity. There was a 
significant relationship between aphasia severity and the reduced size of modules containing language specific 
regions in the temporal lobe. The superior temporal gyrus (p = 0.0053), the pole of the superior temporal gyrus 
(0.0054), the middle temporal gyrus (p = 0.0042), the posterior middle temporal gyrus (p = 0.0448), and the 

Figure 5. (A) Exemplar data Subject 1, left hemisphere lateral view, each color represents a single community. 
Note the fragmentation of the fronto-parietal and middle-temporal networks with relative disconnection 
between the frontal and subcortical regions, which are grouped into different modules. Subject 1 had a lesion 
volume of 359.4 cm3, percent white matter damage of 0.168, and a WAB-AQ score of 48.1. (Supplementary 
Table S2 shows the labels associated with the nodes on the community affiliation matrix). Note the 
fragmentation, unstable clustering shown and missing nodes in the community affiliation matrix compared to 
the right hemisphere matrix. (B) Exemplar data Subject 1, right hemisphere lateral view, each color represents a 
single community. There was no apparent fragmentation, and the network was divided into 4 communities. The 
community affiliation matrix also showed stable clusters over 100 runs.

http://1
http://S2
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posterior inferior temporal gyrus (p = 0.0123) we all significantly correlated with WAB-AQ as shown on Fig. 10. 
(Not corrected for multiple comparison). Nodes from the domain general network did not significantly correlate 
with aphasia severity.

Pars triangularis. There was a significant relationship between intra-modular degree and WAB-AQ (r = 0.265, 
p = 0.0058), and between the node’s participation coefficient and WAB-AQ (r = 0.4848, p < 10−5). Participation coef-
ficient survived partial correlation with module specific damage (r = 0.271, p = 0.0051). Intra modular degree did 
not survive partial correlation. There was no significant correlation between module size and WAB-AQ.

Pars opercularis. There was a significant relationship between intra-modular degree and WAB-AQ (r = 0. 
3520, p < 0.0001), and between the node’s participation coefficient and WAB-AQ (r = 0.4308, p < 0.00001). 
Participation coefficient survived partial correlation with module specific damage (r = 0.2865, p = 0.0032). Intra 
modular degree did not survive partial correlation. Module size was significantly correlated with WAB-AQ 
(r = 0.2073, p = 0.0250).

Superior temporal gyrus. There was a significant relationship between intra-modular degree and WAB-AQ 
(r = 0.5112, p < 10−7), and between the node’s participation coefficient and WAB-AQ (r = 0. 3915, p < 0.00001). 
Both participation coefficient (r = 0.2112, p = 0.0235) and intra modular degree (r = 0.2898, p = 0.0029) survived 
partial correlation with module specific damage.

Module size was significantly correlated with WAB-AQ (r = 0. 2538, p = 0.0079), and also survived partial 
correlation with module specific damage (r = 0.1782, p = 0.0474).

Discussion
The primary purpose of the current study was to determine the degree to which post stroke fragmentation of 
brain anatomical connectivity affects language ability after stroke. To investigate this hypothesis, we analyzed 

Figure 6. (A) Exemplar data Subject 2, each color represents a single community left hemisphere lateral view. 
Both hemispheres did not reveal dramatic fragmentation patterns. Subject 2 had a lesion volume of 76.1 cm3, 
percent white matter damage of 0.099, and a WAB-AQ score of 88.1. The community affiliation matrix showed 
relatively stable clustering over 100 runs. (B) Exemplar data Subject 2, right hemisphere lateral view, each color 
represents a single community, and again there was no apparent fragmentation, and the network was divided 
into 4 communities. The community affiliation matrix showed stable clustering over 100 runs.
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the anatomical connectome from a large cohort of chronic stroke survivors with left hemisphere focal damage, 
and employed graph theory methods to assess the community structure of global and peri-Sylvian networks. We 
hypothesized that the fragmentation of the brain community structure and the disintegration of peri-Sylvian 
networks, even when these regions are relatively spared, would be associated with worse chronic aphasia. Our 
findings strongly supported our hypothesis: fragmentation to the brain neuronal network community structure, 
even when the cortical structures were relatively spared, were directly associated with more severe aphasia in the 
chronic period.

These results have direct implications for a better understanding of the mechanisms associated with 
post-stroke language recovery, as well as the relationship between neuronal network integrity and complex cog-
nitive functions. Network modularity is one of the hallmarks of complex biological systems. It confers compu-
tational advantages, efficient processing, and robust responses to perturbations24. Modularity represents a fine 
balance between integration and segregation where both extremes can lead to poorly efficient networks. Very 
high modularity can lead to disintegrated or fragmented networks, while very low modularity can lead to lack of 
specialization. In our cohort, we observed that stroke lesions are associated with higher mean modularity in the 
lesioned hemisphere (μ = 0.4226) compared to the intact hemisphere (μ = 0.3450), suggesting that anatomical 
damage caused by the stroke is not only related to regional destruction, but may affect the entire organization of 
the remaining neuronal network architecture, resulting in a more segregated organization that hinders commu-
nication between modules. The clinical impact of this measured change in modularity was confirmed by the fact 
that subjects with very high modularity scores had more severe chronic aphasia, even when controlling for degree 
of cortical lesion.

Post-stroke high modularity scores are likely related to a combination of increased local clustering or modu-
lar fragmentation, weaker inter-modular integration, and, as our group previously demonstrated in post-stroke 
damage, loss of connectivity hubs23. These variables lead to less efficient information transfer.

Figure 7. (A) Exemplar data Subject 3, each color represents a single community left hemisphere lateral 
view. There was marked fragmentation of the inferior frontal and middle-temporal networks with relative 
disconnection between the frontal and subcortical regions, with the left hemisphere grouping into 9 modules. 
Subject 3 had a lesion volume of 99.24 cm3, percent white matter damage of 0.096, and a WAB-AQ score of 
58.2. There was unstable clustering and missing nodes in the community affiliation matrix compared to the 
right hemisphere matrix. (B) Exemplar data Subject 3, right hemisphere lateral view, each color represents a 
single community. There was no apparent fragmentation, and the network was divided into 4 communities. The 
community affiliation matrix showed relatively stable clustering over 100 runs.
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It is important to acknowledge that we used each participant’s own right hemisphere as a control, which 
assumes anatomical integrity of the right hemisphere. This is a limitation for two reasons. First, is assumes that 
the right hemisphere is relatively preserved after the stroke, when in fact there could be remodeling due to deaf-
ferentation or demand for compensation due to loss of function. Second, it does not consider the physiological 
asymmetries in anatomical connectivity. It would therefore be essential to determine the reliability of the right 
hemisphere as a self-hemispheric control. Despite this potential limitation, there is an inherent advantage of 
using the subject’s own non-lesioned hemisphere anatomy as the control, since it considers the relative disruption 
of network topology when controlling for other issues such as age, pre-stroke microangiopathic white matter 
loss and global network organization, which affect both hemispheres equally. Furthermore the right hemisphere 
re-organization has been implicated in aphasia recovery25 and therefore assessing the degree of re-organization 
in relation to the lesioned hemisphere maybe more informative than comparison to healthy controls. For this 
reason, this approach was successful to demonstrate a strong and significant correlation between the left hemi-
sphere community affiliation index and WAB-AQ, indicating that language was preserved if more regions were 
consistently grouped in the same module and not segregated across modularity optimization runs.

While modularity is a measure of global network organization, the mutual participation of key regions into 
the same module is of potential interest. Thus, we identified pairs of regions that when in the same module, were 
associated with a higher WAB-AQ score (supplementary Table 1). We did not explore the typical composition of 
modules beyond two pairs but were still able to observe consistent pairing of the classical language regions, as well 
as other cortical and insular regions in patients who did not have severe aphasia. The impact of changes of the typ-
ical composition of modules (with two or more regions) may be a topic for further focused study. Furthermore, 
we acknowledge that we did not perform direct out of sample prediction, perhaps a more informative measure of 
recovery, to determine the predictive power of modularity, we still propose this to be an important first step in the 
understanding of topological changes post-stroke.

Importantly, our results suggest that connectome community structure may be a very useful, personalized, and 
unique score to inform about language prognosis after stroke. Currently, our ability to predict aphasia recovery 

Figure 8. (A) Exemplar data Subject 4, each color represents a single community left hemisphere lateral 
view. Note the fragmentation of the fronto-parietal, inferior frontal and middle-temporal networks with the 
hemisphere grouping into 9 modules. Subject 4 had a lesion volume of 206.36 cm3, percent white matter damage 
of 0.035, and a WAB-AQ score of 41.8. Note the missing nodes and unstable clustering in the community 
affiliation matrix. (B) Exemplar data Subject 4, right hemisphere lateral view, each color represents a single 
community. There was no apparent fragmentation, and the network was divided into 3 communities. The 
community affiliation matrix also showed stable clustering over 100 runs.
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Figure 9. Overlap plot of damage locations in our 4 exemplar subjects. Subject 1: total lesion volume 359.4 cm3, 
Subject 2: total lesion volume 76.1 cm3, Subject 3: total lesion volume 99.24 cm3, Subject 4: total lesion volume 
206.36 cm3.

Figure 10. Regions from the language specific and domain general networks whose module sizes were 
significantly correlated with aphasia severity. STG-superior temporal gyrus (p = 0.0053), STG-pole -the pole 
of the superior temporal gyrus (0.0054), MTG- middle temporal gyrus (p = 0.0042), PMTG- posterior middle 
temporal gyrus (p = 0.0448), and PITG- posterior inferior temporal gyrus (p = 0.0123).
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is still suboptimal and tied to lesion size and location even though evidence points to the reorganization of the 
remaining brain networks beyond the lesion as being crucial for recovery. Our results show a significant correla-
tion between disintegration of the community structure and long-term aphasia severity, providing an indication 
into one of the many determinants of the biological substrates of stroke recovery. There are no other methods that 
can provide an accurate description of post-stroke prognosis regarding language. This may be the optimal usage 
of the connectome community structure, which can inform clinicians and patients about the magnitude of brain 
framework damage. Furthermore, this is an optimal approach for clinical translation of computational neuro-
science because the connectome community structure provides a unique and yet abridge window to the basic 
framework from which complex cognitive functions arise, i.e., the systems organization of neuronal networks.

In conclusion, we confirm that preservation of anatomical white matter network architecture is directly related 
to long-term aphasia severity. Loss of white matter integrity, even when the cortical regions are preserved, is asso-
ciated with more severe aphasia. Modularity provides a single index that indicates the integrity of system-level 
organization of neuronal networks.
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