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Direct transfer of classical non-
separable states into hybrid 
entangled two photon states
M. V. Jabir1, N. Apurv Chaitanya1, Manoj Mathew2 & G. K. Samanta  1

Hybrid entangled states, having entanglement between different degrees-of-freedom (DoF) of a 
particle pair, are of great interest for quantum information science and communication protocols. 
Among different DoFs, the hybrid entangled states encoded with polarization and orbital angular 
momentum (OAM) allow the generation of qubit-qudit entangled states, macroscopic entanglement 
with very high quanta of OAM and improvement in angular resolution in remote sensing. Till date, 
such hybrid entangled states are generated by using a high-fidelity polarization entangled states and 
subsequent imprinting of chosen amount of OAM using suitable mode converters such as spatial light 
modulator in complicated experimental schemes. Given that the entangled sources have feeble number 
of photons, loss of photons during imprinting of OAM using diffractive optical elements limits the use of 
such hybrid states for practical applications. Here we report, on a simple generic experimental scheme 
to generate hybrid entangled states in polarization and OAM through direct transfer of classical non-
separable states of the pump beam in parametric down conversion process. As a proof of principle, using 
local non-separable pump states of OAM mode l = 3, we have produced quantum hybrid entangled 
states with entanglement witness parameter of ~1.25 ± 0.03 violating by 8 standard deviation.

Entanglement, the quintessential strong non-classical correlations in joint measurement of at least two sepa-
rate quantum systems, plays a critical role in many important applications in quantum information processing, 
including quantum communication1, quantum computation2, quantum cryptography3, dense coding4 and tele-
portation5. Typically, in photonic quantum optics, spontaneous parametric down-conversion (SPDC) is used to 
produce correlated photon pairs6–9 with many accessible degree-of-freedom (DoF) that can be exploited for the 
production of entanglement. With the first demonstration of entanglement with polarization DoF10, 11, recent 
advancement in quantum optics have provided intrinsic entanglement (entanglement in variety of DoFs such as 
orbital angular momentum (OAM)12, energy time13, time bin14, and many more)15, hyperentanglement16 (entan-
glement in every DoFs) and hybrid entanglement (entanglement between different DoFs of a pair of particles). 
While these entangled states have various applications, the hybrid entangled states encoded with polarization and 
OAM, in particular, allow the generation of qubit-qudit entangled states17 for quantum information, macroscopic 
entanglement with very high quanta of OAM18, important for quantum information science, and supersensitive 
measurement of angular displacement in remote sensing19.

Typically, hybrid entangled states encoded with polarization and OAM are generated through the imprinting 
of chosen amount of OAM to a high-fidelity polarization entangled state using mode converters, such as, spatial 
light modulator (SLM)20 and q-plate21, in complicated experimental schemes. As compared to all mode con-
verters, the SLM have many advantages in terms of dynamic variation in OAM, accessibility to very high OAM 
and flexibility in imprinting two particles with an arbitrarily high difference in OAM18. However, the diffraction 
based OAM imprinting process of the SLM reduces the overall number of photons and thus limiting the use of 
hybrid states for practical applications requiring entangled state with high brightness. In addition to the photon 
losses, the alignment of SLM especially at significantly lower number of photons generated in SPDC process is 
very much complicated than using the same device for the pump beam. To circumvent such problem, as such, it 
is imperative to device alternative techniques to produce hybrid entangled states in simple experimental scheme.

Entanglement properties of the paired photons generated through SPDC process are highly influenced by 
different crystal parameters including birefringence and length, and the spatial structure of the pump beam22, 23. 
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Recent studies have shown that the transfer of pump properties such as non-diffraction24, intensity distribution 
and phase structure25, 26 into the transverse amplitude of the heralded single photons. Therefore, one can in prin-
ciple, manipulate the pump beam to directly generate hybrid entangled states through SPDC process.

On the other hand, light beams with non-separable states in polarization and OAM27, 28 have attracted a great 
deal of interest due to its violation of Bell like inequality29, 30. Here we propose, for the first time to the best 
of our knowledge, direct transfer of non-separable laser beams into hybrid entangled two photon states in a 
simple experimental scheme. As a proof of principle, pumping the contiguous nonlinear crystals with classical 
non-separable pump beam of OAM mode l = 1 and 3, and characterizing the quantum states through the vio-
lation of Bell’s inequalities and the measurement of entanglement witness operator (W) for twin photons, we 
showed that the generated two photons are entangled in both polarization and OAM. The concept is generic and 
can be used for hybrid entanglement with higher OAM, and photons with arbitrarily high difference in OAM 
through proper choice of non-separable states of the pump beam. The concern of rapidly decreasing efficiency of 
the down conversion process for the direct generation of entanglement at higher OAM, can be overcome by using 
the OAM independent beam size of the non-separable states using the scheme mentioned in previous reports23, 31.

Results
In non-collinear SPDC process, where high energy photon owing to the energy conservation splits into two low 
energy photons known as signal and idler, the generated entangled photons are distributed in a ring with signal 
and idler photons laying in diametrically opposite points [see Fig. 1(a)]. To study the entanglement quality of the 
down converted photons in the current experimental scheme we pumped the dual-BIBO crystal with the input 
state Ψ = +H V_ ( 0 0 )Classical 1

1
2

 in Gaussian spatial intensity distribution by removing the SPP from the 
Sagnac interferometer. Due to orthogonal positioning of the optic axes of the crystals, if the first crystal produces 
down converted photons of the pump photons of |H〉 polarization state into |VV〉 owing to type-I phase-matching, 
the second crystal converts pump photons of |V〉 polarization state into down converted photons in |HH〉 state 
and vice versa. Since the crystal thickness is small and the coherence length of the pump laser is high (~25 m), the 
photons generated from both the crystals are highly indistinguishable in space and time. Therefore, one can write 
the output state, ψ of the down converted photons as a superposition of individual states |HH〉 and |VV〉. 
However, one need to determine the state and the quality of polarization entanglement of the two photon states. 
In doing so we used standard coincidence measurement technique and recorded the two-photon interference in 
terms of photon coincidence between the twin photons distributed in Arm-1 and Arm-2 (see Fig. 1(a)) under two 
non-orthogonal projection bases, H/V (horizontal/vertical) and D/A (diagonal/anti-diagonal) using two polari-
zation analysers as the quantum state analyser with the results shown in Fig. 2(a). As expected, the normalized 
coincidence rate (measured with the coincidence window of 10 sec) show the expected sinusoidal variation with 
angle of the quantum state analyser with fringe visibilities 99.7 ± 0.03% and 96.9 ± 0.04% for H (red dots) and D 
(black dots) bases respectively. The measured visibilities under both basis are higher than 71%, large enough32 to 

Figure 1. Direct generation of hybrid entangled two photon states. (a) Schematic of the experimental setup. 
Laser 405 nm, continuous wave single frequency diode laser at 405 nm providing 70 mW of output power; λ/2, 
half-wave plate; PBS1-2, polarizing beam splitter cube; SPP, spiral phase plates; M, mirrors; schematic marked in 
yellow represents polarization Signac interferometer; C, dual-BIBO crystal having optic axis orthogonal to each 
other for the generation of entangled photons; A, analyser; λ/4, quarter wave plate; IF, interference filter; D1-2, 
single photon counting module (SPCM); TDC, time-to-digital converter. (b) Analyser comprises with PBS and 
λ/2. Spatial distribution of the (c) non-separable pump beam, (d) conditioned idler photon and (e) heralded 
signal photons.
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violate Bell’s inequality. However, using the coincidence rates we measured the Bell’s parameter to be 
S = 2.73 ± 0.04 indicating the polarization entanglement of the generated two-photon states. We also constructed 
the density matrix of the state using linear tomographic technique33. Figure 2(b) shows the graphical representa-
tion of density matrix of the generated state. From this analysis, we determine the state to be 
Ψ = | 〉 − | 〉HH VV( )1

1
2

 and fidelity is 0.992.
For the generation of hybrid-entanglement, we prepared the classical pump beam in non-separable states28 in 

OAM and polarization DoF by placing SPP inside the polarization Sagnac interferometer with phase variation 
corresponding to OAM mode of l = 1, 2 and 3. The non-separable states of the pump beam incident to the non-
linear crystal can be expressed as, Ψ = | 〉 + | − 〉φ−Hl e V l_ ( )Classical

i
2

1
2

 with the intensity distribution shown in 
Fig. 1(c). To verify the non-separability, measurement in one DoF influence the outcome of the measurement in 
other DoF, we projected the pump state having OAM mode of l = 1 and 3 at different polarization states, horizon-
tal (|H〉), vertical (|V〉), anti-diagonal, (|A〉), diagonal (|D〉), left circular (|L〉) and right circular (|R〉) in Poincaré 
sphere and recorded the intensity of the beam with the results shown in Fig. 3. As evident from Fig. 3, the projec-
tion of the pump state on |H〉 and |V〉 states result in vortex intensity profile with OAM order l and −l respec-
tively. However, the projection on |A〉, |D〉, |L〉 and |R〉 states produce intensity distribution corresponding to the 
superposition of two opposite helical wavefronts of OAM order l resulting a ring lattice structure containing 2l 
number of petals at different orientations. All these projected intensity distributions can be represented by differ-
ent points on the LG-Bloch (Poincaré) sphere. The change in the images of Fig. 3(a) and (b), represent the projec-
tion of the pump state corresponding to OAM mode of l = 1 and 3 respectively, with the change in polarization 
projection verifies the generation of non-separable states. The inset image of Fig. 3(a) and (b) show intensity 
profile of the pump state without any projection.

With successful generation and verification of the non-separable states, we pumped the dual-BIBO crystal with 
the state, Ψ = | 〉 + | − 〉φ−Hl e V l_ ( )Classical

i
2

1
2

, for direct transfer of classical non-separable states into hybrid 
entangled two photon states. According to the OAM conservation in nonlinear processes34, the OAM of the pump 
photon should be equal to the sum of the OAMs of the generated signal and idler photons35, 36,  
= .lp = ls + li. Here, lp, ls and li are the OAM of pump, signal and idler photons respectively. Since the OAM conserva-
tion law does not put any selection rule for the OAMs of the signal and idler photons, the OAMs of signal and idler 
can have arbitrary values owing to the conservation law. However, if we force signal or idler to carry fixed OAM 
value, then its partner photon will have a particular OAM with certainty. For example, if we project either signal or 
idler photons into Gaussian mode (l = 0), then the OAM of the idler or signal photon will be equal to that of pump 
photon, indicating the possibility of direct transfer of the non-separable states in OAM and polarization DoF of the 
pump to one of the down converted photons. Therefore, in the present experiment, the state of the paired photons 
(considering idler photons in Gaussian mode) generated from the dual-BIBO crystal while pumped with 
non-separable states, Ψ = | 〉 + | − 〉φ−Hl e V l_ ( )Classical

i
2

1
2

 can be written as, Ψ = | 〉 + | − 〉φ−Hl e V l( )i
2

1
2

 while 
the signal photon is projected by the analyzer in the D polarization. Here, the polarization DoF of idler photon and 
OAM DoF of signal photon are entangled. However, if the idler photon is projected in D polarization (for example) 
the paired photon state will transformed in to Ψ = | 〉 ⊗ | 〉 + |− 〉φ−D l e l0 ( )i

3
1
2

. As a proof of principle, in the pres-
ent experimental scheme, we pumped the crystal with non-separable states, Ψ _Classical 2 for two different values of 
OAM (l = 1, 3) as shown in Fig. 3, and projected the photon (idler) of Arm-1 into Gaussian mode (l = 0) using a lens 
and multi-mode fiber similar to the reports24, 25 and measured the spatial distribution of the heralded photon (signal) 
in the form of coincidence counts per 10 s in the transverse [x-y plane, see Fig. 1(a)] plane of Arm-2 with the results 
shown in Fig. 4. As evident from the gallery of images of Fig. 4(a) and (b) representing the spatial distribution of the 
heralded signal photon for the non-separable states corresponding to OAM mode of l = 1 and l = 3 respectively, the 

Figure 2. Study on two-photon polarization entanglement, and identification of the state. (a) Visibility graph 
of polarization entangled state at H (red dots) and D (black dots) bases. (b) Graphical representation of the 
density matrix obtained from linear tomographic technique for polarization entangled state.



www.nature.com/scientificreports/

4Scientific RepoRtS | 7: 7331  | DOI:10.1038/s41598-017-07318-1

projection of the idler photon in Arm-1 to different states (|H〉, |A〉, |R〉, |V〉, |D〉 and |L〉 as marked by the white 
letters in the images) in the polarization Poincaré sphere with the help of λ/4 plate and analyser, A, directly projects 
the probability distribution of the heralded signal photons in Arm-2 in a ring lattice spatial structure with 2l number 
of petals to different points on the LG-Bloch sphere. Such observation intuitively gives the impression of generation 
of hybrid entangled two photon states through the direct transfer of classical non-separable states of the pump.

Figure 3. Intensity profiles of the non-separable states of the pump beam for two different OAM modes. 
Depending on the projection of the beam in different polarization states, |H〉, |A〉, |R〉, |V〉, |D〉 and |L〉 (as 
shown by the white letters on the images) on the Poincaré sphere, the mode pattern of the beam recorded by the 
CCD camera change to different points on LG-Bloch sphere for (a) | + 〉| − 〉φ−H e V1/ 2 ( 1 1 )i  and (b) 

| + 〉| − 〉φ−H e V1/ 2 ( 3 3 )i . Inset images are intensity distribution of the non-separable states for OAM mode 
l = 1 and l = 3 without any polarization projection.

Figure 4. Gallery of images representing the probability distribution of the heralded signal photons. 
Depending on the polarization of the idler photon projected (white letters in the images) at different points 
in the polarization Poincaré sphere, the spatial distribution of the heralded signal change into different mode 
patterns in the LG-Bloch sphere. The sequence of coincidence images of the heralded signal due to particular 
polarization of its partner (idler) photon while pumping with non-separable states of (a) first order, and (b) 
third order LG modes around the meridian (vertical circle) and the equator (horizontal circle) in the LG-Bloch 
sphere confirms the generation of hybrid entangled two photon states encoded in polarization and OAM. In 
absence of any polarizer in the path of the idler photon, the spatial distribution of the heralded signal photon 
(inset) shows a statistical mixture of all states of the LG-Bloch sphere.
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However, for confirmation and quantitative study of the entanglement we explore the features of the LG 
modes. It is well known that the superposition of any two equal OAM modes with opposite helicities, 

= + −φ
±

−LG l e ll
i  results in radially symmetric ring lattice with 2l number of petals. However, the relative 

phase, φ between the two OAM modes results in spatial rotation of φ
π l2

360
2

0
5 which can in principle be used to 

identify and discriminate between different superpositions of the OAM modes. To distinguish the spatial rotation 
and therefore different superpositions for the verification of entanglement in OAM and polarization DoF we have 
evaluated the coincidence of the heralded signal photons per angular region, θ, from the coincidence images (see 
insets of Fig. 5) for the idler polarization in mutually unbiased bases, |A〉, |D〉 and |R〉, |L〉 for the pump OAM mode, 
l = 1 and l = 3 with the results shown in Fig. 5(a) and (b) respectively. Let’s assume that at an angle θ, we have the 
maximum coincidence for anti-diagonal (A) projection. The nth maxima in the same projection appears at an angle, 
θ + n

l
360

2

0
, where n is an integer in the range, 1 ≤ n ≤ 2l. The angular separation between two consecutive maxima is, 

l
360

2

0
. On the other hand, in mutually unbiased (say, L) and orthogonal (D) basis the maxima will shift to an angle 

θ +
l

450
 and θ +

l
900

 respectively. As evident from Fig. 5(a), for OAM mode, l = 1, two consecutive maxima in 
A-projection (black dots) occur at θ = 0° and θ + = 180

l
360

2
00
 and the maxima in the L- (blue dots) and D- (red 

dots) projections have angular shift of angle θ + = 45
l

45 00
 and θ + = 90

l
90 00

 respectively with respect to 
A-projection. Similarly in case l = 3, as evident from Fig. 5(b), we observe two consecutive maxima in same pro-
jection basis to have an angular separation of 60° and the maxima in the L- (blue dots) and D- (red dots) projec-
tions have angular shift of angle 15° and 30° respectively with respect to maxima in A-projection. Such spatial 
rotation of the OAM mode of the heralded signal photon for the projection of the idler at different points in the 
polarization Poincaré sphere confirms the entanglement in both OAM and polarization DoF. However, to esti-
mate the entanglement quality we have calculated the entanglement witness operator, = +Ŵ V VR L D A/ /  using the 
quantum interference visibilities, VR L/  and VD A/  in two mutually unbiased bases R/L and D/A respectively. For all 
separable states, the entanglement witness operator satisfies the inequality, ≤Ŵ 1 and exceeding the limit verifies 
entanglement20, 37. Using the values of VR L/  and VD A/  we estimate the entanglement witness operator for OAM 
mode l = 1, 2, and l = 3 to have a value Ŵ  = 1.56 ± 0.04, 1.40 ± 0.04 and 1.25 ± 0.03, clearly violating the inequality 
by more than 14, 10 and 8 standard deviation respectively. It is to be noted that we did not apply any background 
correction to the experimental results. Slight lower violation of inequality in case of l = 3 with respect to that of 
l = 1 can be attributed to the error in visibility data due low signal to noise ratio in the spatial distribution of the 
lower number of down converted photons. The stronger violation requires increase in the number of down con-
verted photons. However, the present study confirms generated twin photons are entangled in both OAM and 
polarization DoF.

Discussion
In conclusion, we have successfully demonstrated a novel experimental scheme generating hybrid entangled 
two photon states. Pumping a contiguous nonlinear crystal using non-separable states of pump beam of OAM 
mode, l = 1 and 3, we have generated two photon hybrid entangled states. Characterization of the generated 
quantum state through tomography, and violation of Bell’s inequality parameter shows high quality polarization 
entanglement whereas, the measurement of entangled witness parameter verifies the generation of two photons 
state entangled in both OAM and polarization DoFs. The concept is generic and can be used to produce hybrid 
entangled states with higher quanta of OAM and photons with arbitrarily high difference in OAM through the 
proper selection of the nonclassical state of the pump beam.

Figure 5. Distribution of heralded signal photon number per angular region. Coincidence per angular region 
for A (black dots), D (red dots), R (pink dots) and L (blue dots) projections of the idler photon for OAM 
(a) l = 1, and (b) l = 3. The lines are theoretical fit to the experimental data. (Inset) Image of the probability 
distribution of the heralded signal photons. Errors are estimated from iteration.
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Materials and Methods
The schematic of the experimental setup is shown in Fig. 1(a). A continuous-wave, single-frequency (<12 MHz) 
UV laser providing 70 mW of output power at 405 nm in Gaussian spatial profile is used as a pump laser. The laser 
power to the experiment is controlled using a half-wave plate (λ/2) and a polarizing beam splitter (PBS1) cube. A 
second λ/2 plate placed after PBS1 converts the linearly polarized Gaussian beam represented by the state, |H0〉 
(here, the first and second terms of the ket represent polarization and OAM of the beam respectively) in to 
Ψ = | 〉 + | 〉H V_ ( 0 0 )Classical 1

1
2

. Here, H and V represents horizontal and vertical polarization respectively and 
the Gaussian beam has OAM mode of, l = 0. To prepare classical non-separable states, the pump beam is passed 
through a polarization Sagnac interferometer comprising with PBS2, three mirrors (M) and a polarization inde-
pendent spiral phase plate, SPP. The PBS2 splits the pump state, Ψ _Classical 1 in two counter propagating beams in 
the Sagnac interferometer with |H0〉 and |V0〉 beams propagating in counter clock-wise (CCW) and clock-wise 
(CW) directions respectively. After a round trip both the beams recombine in the PBS2 and produce output state 
same as that of the input state, Ψ _Classical 1. However, due to the presence of SPP that converts Gaussian beam (l = 0) 
into optical vortex of OAM mode, ± l, the output state of the Sagnac interferometer will be different than that of 
the input state. Depending on the direction of thickness variation of the SPP, if the CCW beam, |H0〉, while pass-
ing through the SPP in the Sagnac interferometer acquires spiral phase corresponding to an optical vortex of 
order + l (say) then the CW beam, |V0〉, will acquire optical vortex of order -l and vice versa. As a result, the 
output of the Sagnac interferometer can be represented by the classical non-separable states, 
Ψ = | 〉 + | − 〉φ−Hl e V l_ ( )Classical

i
2

1
2

. The phase factor, φ, arises due to the asymmetric positioning of the SPP 
inside the Sagnac interferometer. Two contiguous BIBO (bismuth borate) crystals each of 0.6-mm thick and 
10 × 10 mm2 in aperture with optic axes aligned in perpendicular planes, is used as nonlinear crystal for SPDC 
process. Both the crystals are cut with, θ = 151.7° (φ = 90°) in optical yz-plane for perfect phase-matching of 
non-collinear type-I (o → e + e) degenerate down converted photons at 810 nm in a cone of half-opening angle~3° 
for normal incidence of pump. Orthogonal positioning of the optic axes of the BIBO crystals facilitate the pump 
photons in both |H〉 and |V〉 polarization states to produce respective non-collinear SPDC photons in concentric 
cones around the direction of the pump beam. For entanglement studies, we select two diametrically opposite 
points of the SPDC ring [red circle in Fig. 1(a)] in the horizontal plane and named them as Arm-1 and Arm-2. In 
Arm-1, we conditioned one of the down-converted photons (say idler photon) using a hard aperture of diameter 
~460 µm and multimode fiber25. To herald its partner photon (here signal) we collected the photons in Arm-2 
using a collimator with an opening diameter of ~460 µm and a multi-mode fiber assembly placed on x-y scanning 
stage. The photons of each arm are analysed through coincidence count using a combination of single photon 
counting module (SPCM) and a time-to-digital converter (TDC). A time window of 2.5 ns was used to measure 
the coincidence counts. Quarter-wave plate, λ/4, and analysers, A, [comprised with a λ/2 plate and PBS as shown 
in Fig. 1(b)] are used to analyse the photons in polarization basis. The interference filter (IF) with transmission 
bandwidth of ~10 nm with central wavelength at 810 nm is used to extracts degenerate photons from broad spec-
trum of SPDC process. Figure 1(c–e) show the spatial distribution of the non-separable states of pump beam, 
conditioned idler and heralded signal photons respectively.
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