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Integrated diagnostic network 
construction reveals a 4-gene panel 
and 5 cancer hallmarks driving 
breast cancer heterogeneity
Xiaofeng Dai1,2, Tongyan Hua1,2 & Tingting Hong3

Breast cancer encompasses a group of heterogeneous diseases, each associated with distinct clinical 
implications. Dozens of molecular biomarkers capable of categorizing tumors into clinically relevant 
subgroups have been proposed which, though considerably contribute in precision medicine, 
complicate our understandings toward breast cancer subtyping and its clinical translation. To decipher 
the networking of markers with diagnostic roles on breast carcinomas, we constructed the diagnostic 
networks by incorporating 6 publically available gene expression datasets with protein interaction data 
retrieved from BioGRID on previously identified 1015 genes with breast cancer subtyping roles. The 
Greedy algorithm and mutual information were used to construct the integrated diagnostic network, 
resulting in 37 genes enclosing 43 interactions. Four genes, FAM134B, KIF2C, ALCAM, KIF1A, were 
identified having comparable subtyping efficacies with the initial 1015 genes evaluated by hierarchical 
clustering and cross validations that deploy support vector machine and k nearest neighbor algorithms. 
Pathway, Gene Ontology, and proliferation marker enrichment analyses collectively suggest 5 primary 
cancer hallmarks driving breast cancer differentiation, with those contributing to uncontrolled 
proliferation being the most prominent. Our results propose a 37-gene integrated diagnostic network 
implicating 5 cancer hallmarks that drives breast cancer heterogeneity and, in particular, a 4-gene panel 
with clinical diagnostic translation potential.

Despite the considerable contributions of traditional diagnostic and treatment modalities made in the battle 
against breast cancer, it still remains as the leading cause of women death worldwide1, 2. Though, if diagnosed 
early and treated appropriately, breast cancer patients have relatively better outcomes than many other types of 
malignancies, it is difficult to reach accurate diagnosis and optimal therapeutic design given distinct patients’ 
morphological features and treatment responses3–7. Canonically, breast carcinomas are grouped as luminal (lumi-
nal A and B), HER2 positive, and triple negative subtypes based on the status of estrogen receptor (ER), proges-
terone receptor (PR) and epidermal growth factor receptor 2 (HER2). While luminal tumors respond well to 
the hormonal therapy Tamoxifen8, and HER2 positive cancers could be properly treated with Herceptin9, triple 
negative breast cancers do not actively react to any available targeted modalities without severe adverse effects due 
to, primarily, lack of the three primary surface receptors10–13.

The diverse clinical consequences of breast cancer patients have led to a surge in the exploration of novel 
biomarkers and subtyping strategies of this complicated disease7. For example, androgen receptor (AR) was used, 
instead of HER2, to classify ER-PR- breast cancers into ER−PR−AR+, ER−PR−AR− subclasses with distinct 
clinical features14. The additional use of proliferation markers KI6715 and/or TOP2A16 with the conventional diag-
nostic modality has led to improved accuracy of identifying luminal A from B tumors. Lots of efforts have been 
devoted to sub-classify the triple negative group (TNG). While some studies use cytokeratins such as CK5/617–23, 
CK1422, CK1722, CK8/1819 to differentiate the basal subtype from the rest TNG tumors, some find EGFR17–20, 22, 
vimentin19, P-cadherin21 or TP6321 effective for this purpose. With the diverse biomarkers identified, the number 
of breast cancer subtypes varies considerably among studies24. These though contribute in deciphering breast 

1National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China. 2The Key 
Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. 
3Department of medical oncology, the affiliated hospital of Jiangnan University, the fourth people’s hospital of Wuxi, 
Wuxi, China. Correspondence and requests for materials should be addressed to X.D. (email: 1281423490@qq.com)

Received: 4 May 2017
Accepted: 23 June 2017
Published online: 28 July 2017

OPEN

mailto:1281423490@qq.com


www.nature.com/scientificreports/

2SCIENTIFIC Reports | 7: 6827 | DOI:10.1038/s41598-017-07189-6

cancer heterogeneity, considerably complicate our understandings toward breast cancer differentiation and ham-
per their clinical translations.

Biomarkers identified from networks are reported more reproducible than individual ones selected with-
out network information25. An integrated network has been considered useful to integrate multiple levels of 
high-throughput information and gain comprehensive understandings of cancer related genomic alterations26. 
Tumor clonal network, by treating tumor as an evolving system and computationally dissecting clones from 
tumors, has been proposed as an effective tool to gain a ‘whole-system’ view of a tumor for personalized cancer 
management27, 28. Ever since 2011 when Weinberg brought up the concept of cancer hallmarks, targeting the hall-
marks of cancer has been considered as a rational approach to the next-generation cancer therapy29. Accordingly, 
cancer hallmark network has opened a novel window for predicting patient clinical outcome from a myriad of 
phenotypic complexities governed by a limited set of organizing principles30. Under this framework, a set of 
mutations and copy number variations were reported effective in predicting subtype-specific drug targets in 
breast cancer31; and cancer hallmark-based gene signature sets were identified beneficial in predicting the recur-
rence and chemotherapy response of stage II colorectal cancer patients32.

Inspired by these previous efforts we, in this paper, focus on identifying genes and hallmarks governing the 
heterogeneity of breast cancer from the network point of view. For this, we constructed six diagnostic networks 
by integrating each of 6 publically available gene expression datasets with protein interaction data retrieved from 
BioGRID33 on 1015 diff-genes previously reported with breast cancer subtyping roles34. Using the Greedy algo-
rithm and mutual information we condensed each of the 6 networks, and merged genes present in at least three 
networks to preserve as much information as possible with the most succinct number of genes.

The resulting integrated diagnostic network contains 37 genes and 43 interactions, among which four, i.e., 
FAM134B, KIF2C, ALCAM, KIF1A, were identified with comparable subtyping efficacies with the initial 1015 
genes (which were evaluated by hierarchical clustering and leave-one-out cross validations). Pathway, Gene 
Ontology, and proliferation marker enrichment analyses reveal five critical cancer hallmarks driving the com-
plexity and heterogeneity of breast cancers, which are ‘enabling replicative immortality’, ‘sustaining proliferative 
signaling’, ‘resisting cell death’, ‘deregulating cellular energetics’, and ‘activating invasion & metastasis’. Our results 
offer a 4-gene panel with feasible size for clinical translation, and underpin 5 cancer hallmarks and associated 
pathways for therapeutic design. These not only update our knowledge toward breast cancer complexity and, 
more importantly, provide practical insights and tools for breast cancer control.

Methods
Construction of the diff-gene protein network.  Protein interactions (PPI) of 1015 genes differentiating 
breast cancer subtypes (diff-genes) proposed in ref. 34 were retrieved from the public database BioGRID (Biology 
General Repository for Interaction Datasets)33 and used for ‘diff-gene protein network’ construction. BioGRID 
version 3.4.147 was requested which encompasses 1,421,025 protein and genetic interactions, 27,785 chemical 
associations and 38,559 post-translational modifications of major modelling organisms from 58,514 papers.

Construction of diagnostic diff-gene networks.  Six datasets, GSE70947, GSE15852, GSE20711, 
GSE65212, GSE18229-GPL887, GSE65194, were retrieved from the GEO database (Gene Expression Omnibus)35 
and included in this study. We conducted the analysis using data free of metastasis. Two datasets are comprised 
of case-control sample pairs (i.e., each pair is consist of one breast cancer tissue sample and its adjacent normal 
breast tissue), with GSE70947 and GSE15852 each encompassing 148 and 43 sample pairs. GSE20711 contains 88 
breast cancer and 2 normal breast tissue samples. We removed cell line and mammoplasty data from GSE65212, 
GSE18229-GPL887 and GSE65194, and kept 164 (out of 178) samples from GSE65212 (comprised of 153 breast 
cancer and 11 normal breast tissue samples), 77 (out of 94) samples from GSE18229-GPL887 (including 72 breast 
cancer and 5 normal tissue samples), and 165 (out of 178) samples from GSE65194 (composed of 153 breast can-
cer and 12 normal breast tissue samples) for diff-gene network construction.

Differential expression analysis of the diff-genes between breast cancer and normal samples was conducted 
for each dataset using GEO2R, which is an interactive web tool allowing comparisons between two or among 
multiple groups of samples in a GEO series using limma R packages on the original submitter-supplied processed 
data36–38. Diff-genes differentially expressed in breast cancer tissues obtained using each dataset are believed to 
capture subtyping features and specific to tumor cells. They are considered with more profound diagnostic values 
and named ‘diagnostic diff-genes’ here.

The p-values of these diagnostic diff-genes were corrected using the Benjamini & Hochberg adjustment 
method and transformed to paired t-scores using Equation 1,

=
−

+

t
X X

,

(1)

g
g g

S

n

S

n

1 2

g g1
2

1

2
2

2

where = ∑ =X ,gi j
n X

n1
i gij

i
 = ∑ −

− = ( )S X X X,gi n j
n

gij gi gij
2 1

1 1
2

i
i  denotes the expression level of gth gene in the ith sam-

ple and jth experiment, and ni represents the sample size of each sample cohort. The higher the t-score of a given 
gene is the more significant diagnostic value the gene is associated with.

Construction of diagnostic networks.  Each diagnostic diff-gene network was combined with the 
diff-gene protein network by keeping edges in common, forming six independent diagnostic networks. The 
Greedy searching strategy based on mutual information was employed to find the most succinct network 
maintaining the highest accumulated t-score for each diagnostic network using the jActiveModules plugin in 
Cytoscape39. Mutual information is computed by Equation 2, where a and c each denotes the nodes, x and y each 
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represents the t-scores of a and c, p(x, y) is the probability density function of a and c, p(x) and p(y) are the partial 
probability density function of a and c, respectively.
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The Greedy algorithm is an iterative approach where, in each round, it randomly selects one node (seed), expands 
the network by adding nodes that raise the overall t-score until no further increase is obtainable. The top 10 
sub-networks (ranked by t-scores) were merged after generating ‘n0’ (the number of genes in the initial network) 
sub-networks with each gene as the seed, resulting in a network containing ‘nr’ genes (r denotes the rth run). 
Multiple rounds of the Greedy algorithm were run using ‘nr−1’ nodes as the starting network until nr meets the 
stopping criterion which was set to approximately 50 here.

Construction of integrated diagnostic network.  The overlapping rate was computed for each combi-
nation of the six diagnostic networks using Equation 3
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where n ranges from 2 to 6, G1, G2 and Gn each denotes the number of genes in the nth diagnostic network under 
comparison, and G1…n denotes the genes in common among the n compared networks. Genes and edges present 
in at least three diagnostic networks were selected as the integrated diagnostic network.

Identification and evaluation of pivotal diagnostic genes.  Connectivity assessment.  The degee of 
each node, i.e., the number of edges each gene connects with its neighbors, was asssessed to measure the impor-
tance of each identified diagnostic diff-gene. Genes were categorized into <25%, 25–50%, 50–75%, >75% quan-
tiles of the degree distribution, i.e., genes with 1–12, 13–35, 36–76 or >76 degrees were grouped into distinct 
classes. BioGRID contains 13369 nodes and 109670 edges after the removal of singletons, with the node degree 
ranges from 1 to 3576. We computed the percentage of each group of identified diagnostic diff-genes represented 
in BioGRID (Peri) using Equation 4
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where Ns,i represents the number of diagnostic diff-genes in level i and ND,i represents the number of genes in 
BioGRID fell in level i. Permutation test with 1000 runs was conducted to evaluate whether genes in the highly 
connected group (>75% percentile) are obtained by chance.

The enrichment of the connecitivity for gene j (ECj) from the integrated diagnostic network was computed 
using =ECj
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 (Cs,j represents the number of connectivity of gene j in the integrated diagnostic network, and 

CD,j represents the connectivity of gene j in BioGRID).
Genes whose connectivity is highly enriched in the integrated diagnostic network were considered specific to 

and crucial for breast cancer diagnosis, and were selected as candidate ‘pivotal diagnostic genes’.

Patient survival association study.  Kaplan Meier Plotter40 (http://kmplot.com/analysis/index.php?p=service&-
cancer=breast), a database containing clinical information and gene expression data on 3951 breast cancer 
patients, was used to evaluate the clinical association of each candidate pivotal diagnostic gene with breast cancer 
patient 10-year relapse free survival. Genes without significant association with patient survival were excluded 
from the pivotal diagnostic gene panel.

Cross validation and hierarchical clustering analysis.  Cross validation was used to quantitatively finalize the piv-
otal diagnostic gene panel and assess its predictive power in breast cancer subtyping according to the status of ER, 
PR and HER2. Leave-1-out and 10-fold cross validations were used, where support vector machine (SVM) and 
k-nearest neighbor (KNN) were employed as the kernels. Both SVM and KNN are supervised machine learning 
methods widely applied in classification. SVM constructs a set of hyperplanes in a high-dimensional space, and 
the classification is achieved by the hyperplane that has the largest distance to the nearest training data point of 
any class. KNN classifies an object by taking a vote of its ‘k’ nearest neighbors, and the object is assigned to the 
class voted by the majority of the ‘k’ neighbors (k = 10 to be consistent with34). The statistics computed from 1000 
simulations were reported.

The hierarchical clustering was used to draw heatmaps for the finalized diagnostic gene panel using R (https://
www.r-project.org), where the distance matrix and agglomeration method were optimized to produce the optimal 
results.

We benchmark the predictive power of the pivotal gene panel against that in ref. 34 where GSE24450, TCGA 
and GSE22220 were used. As FAM134B is missing from GSE22220, we included GSE24450 and TCGA in 
this study. In addition, we added GSE25055 to generalize the subtyping functionality of the pivotal diagnos-
tic gene panel. GSE24450 and GSE25055 were retrieved from the Gene Expression Omnibus (GEO) database. 
GSE24450 contains 183 primary breast tumors that were processed and hybridized to Illumina HumanHT-12_
V3 Expression BeadChips. GSE25055 data was obtained using Affymetrix Human Genome U133A Array 
(HG-U133A) and encompasses 300 samples where 10 samples without consensus subtyping between immuno-
histochemistry marker-based and PAM50 classification were removed (original sample size is 310). TCGA data 

http://kmplot.com/analysis/index.php?p=service&cancer=breast
http://kmplot.com/analysis/index.php?p=service&cancer=breast
https://www.r-project.org
https://www.r-project.org
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(level 3) was retrieved from the TCGA portal at http://tcga.cancer.gov/dataportal, which contains 451 samples 
profiled using Agilent 244 K Custom Gene Expression G4502A-07-3.

Patient tumor sample stratification.  We performed tumor sample stratification based on the expression of each 
of the four pivotal diagnostic genes using GSE24450, TCGA and GSE25055 datasets. Student t test was used to 
assess the significance of each gene in distinguishing breast cancer subtypes stratified by ER, PR and HER2.

Evaluation of diagnostic genes.  Pathway and Gene Oncology enrichment analysis.  Enrichment analy-
ses on the pathways and Gene Oncology (GO) of the identified diagnostic genes were performed using Enrichr 
(http://amp.pharm.mssm.edu/Enrichr/). The performance of the enrichment analysis was evaluated by p-value, 
adjusted p-value, Z-score and C-score. The p-value is computed from the Fisher exact test which assumes a 
binominal distribution and independence of genes under test. The adjusted p-value is the p-value corrected from 
multiple hypotheses testing using the Benjamini-Hochberg method. The Z-score is computed as the deviation 
from the expected rank, which has been precomputed using Fisher’s exact test for many random input gene lists 
for each term in the gene set library. Combined score (denoted as ‘C-score’) was computed to assess the enrich-
ment of each pathway or GO term using Equation 5

= ×C log (p) Z, (5)10

where C is the C-score, p and Z each refers to the p-value and Z-score, respectively.
A gene set is a group of genes sharing a common biological function and used as the prior biological knowl-

edge to be compared against for the enrichment analysis. Enrichr contains 103 gene sets, with genes covered in 
each set ranging from 280 to 49238.

In the pathway enrichment analysis, ‘BioCarta_2016’ was chosen as the gene set, where BioCarta is an interac-
tive on-line resource designed for life science research with pathway information retrieval as a featured function-
ality41. In GO analysis the latest gene ontology annotations (‘GO_2015’) were used as the background.

Cancer proliferation marker enrichment analysis.  Enrichment analysis of genes present in the integrated diag-
nostic network among cancer cell proliferation markers was conducted using Enrichr, where ‘Achilles_fitness_
decrease’ was selected as the gene set. The Achilles project performed a genome-scale screen across 216 cancer cell 
lines for genes required for cancer cell proliferation and/or viability42.

Data availability.  The datasets analysed during the current study include 7 gene expression datasets, 
GSE70947, GSE15852, GSE20711, GSE65212, GSE18229-GPL887, GSE65194, GSE24450, retrieved from 
GEO (http://www.ncbi.nlm.nih.gov/geo), the level 3 breast cancer patient data downloaded from the TCGA 
repository (https://cancergenome.nih.gov), protein interaction data obtained from BioGRID (https://thebi-
ogrid.org/), patient gene expression and clinical survival information stored in Kaplan Meier Plotter (http://
kmplot.com/analysis/index.php?p=service&cancer=breast), pathways from BioCarta (https://cgap.nci.nih.
gov/Pathways/BioCarta_Pathways), gene ontologies from GO database (http://www.geneontology.org/page/
download-annotations), and proliferation markers identified from the Achilles project (https://portals.broadin-
stitute.org/achilles).

Results
The workflow of this study is summarized in Fig. 1.

Diff-gene protein network.  The diff-gene protein network, constructed by retrieving protein interactions 
from BioGRID using diff-genes identified in ref. 34, is comprised of 317 edges and 318 nodes and densely con-
nected around two hubs, i.e., APP and ER (Supplementary Figure S1). The number of edges (degree) connected 
to APP and ER are 100 and 21, respectively. Those of APP and ER from the whole network stored in BioGRID are 
2346 and 571, respectively.

Diagnostic diff-gene networks.  Six diagnostic diff-gene networks, each formed by mapping clinical gene 
expression data to the diff-gene protein network, were obtained (Supplementary Figure S2). These networks were 
named by concatenating the gene expression dataset with ‘PPI’, which represents protein interactions retrieved 
from BioGRID, by ‘&’. Each network contains, on average, 48 nodes and 53 edges, with detailed information 
available in Supplementary Table S1.

Integrated diagnostic network.  The overlaping rates among diagnostic networks enter the plateau when 
we start merging them in triplets (Fig. 2), i.e., the double, triple, quadruple, quintuple, and sextuple integated 
networks contain, on average, 43, 42, 12, 8 and 1 genes, respectively.

We, thus, selected nodes and edges at least present in three diagnostic networks and merged them as the 
integrated diagonosis network (Fig. 3), which includes 37 genes and 43 interactions. The condensed network pre-
serves the two hubs (APP and ER) of the diff-gene protein network, with the degree being 19 and 6, respectively, 
for each gene.

Genes fell into <25, 25–50, 50–75 and >75 percentile of total degree represent 0.07%, 0.95%, 1.55% and 3.64% 
of total genes stored in BioGRID. The gene with the highest degree enrichement is FAM134B (33.33%) which 
together with KIF2C (28.57%), ALCAM (25%) and KIF1A (25%) represent the top 10 percentile degree enrich-
ment among the 37 genes in the integrated diagnostic network.

http://tcga.cancer.gov/dataportal
http://amp.pharm.mssm.edu/Enrichr/
http://www.ncbi.nlm.nih.gov/geo
https://cancergenome.nih.gov
https://thebiogrid.org/
https://thebiogrid.org/
http://kmplot.com/analysis/index.php?p=service&cancer=breast
http://kmplot.com/analysis/index.php?p=service&cancer=breast
https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways
https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways
http://www.geneontology.org/page/download-annotations
http://www.geneontology.org/page/download-annotations
https://portals.broadinstitute.org/achilles
https://portals.broadinstitute.org/achilles
http://S1
http://S2
http://S1
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Pivotal diagnostic gene.  Connectivity assessment.  The BioGRID database contains 13369 nodes and 
109670 edges after removing singletons, with the degree of a single gene ranging from 1 to 3576. In accordance 
with the <25%, 25–50%, 50–75% and >75% percentile of degrees in the integrated diagnostic network, the num-
ber of degrees are classified into four groups, i.e., 1–27, 28–52, 53–111 and >111 degrees, respectively. Genes in 

Figure 1.  Workflow of this project. Each rounded square box represents one dataset, each square box shows 
one set of results, and each diamond box illustrates one operation together with associated algorithms. Datasets 
are shown in italic, where ‘Data_1-6’ represents GSE70947, GSE15852, GSE20711, GSE65212, GSE18229-
GPL887, GSE65194, GSE24450, ‘Data_7-9’ represents GSE24450, GSE25055, TCGA, and ‘BioGRID’ means the 
BioGRID database. The primary outputs are highlighted in bold face, ‘6×’ means that 6 sets of networks were 
generated. Square brackets in each diamond box represent the algorithm or approach used in the operation.

Figure 2.  Overlapping rates for different combinations of diagnostic networks. (A,B,C,D,E and F) each denotes 
the diagnostic network GSE70947&PPI, GSE18229&PPI, GSE15852&PPI, GSE20711&PPI, GSE65194&PPI and 
GSE65212&PPI, respectively, where the network names are defined as the gene expression dataset concatenated 
with ‘PPI’ (representing BioGRID) by ‘&’.
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the integrated diagnostic network are condensed in the group representing the top 25 percentile degrees, i.e., 
3.64% of the total genes from BioGRID in this group as compared with the 1.55%, 0.95%, 0.07% statistics in the 
lower 25 percentile, 25 to 50 percentile and 50 to 75 percentile groups (Fig. 4). Permutation test with 1000 runs 
show that the high enrichment (3.64%) of the highly connected group (>75% percentile degree) in the integrated 
diagnostic network is not obtained by chance (p = 0.005).

The connectivity enrichment of each gene in the integrated diagnostic network as compared with the 
whole protein interaction network from BioGRID ranges from 33.3% (FAM134B) to 0.81% (APP), as listed in 
Supplementary Table S2. There are two break points, i.e., the 4th and 6th genes, where the connectivity enrich-
ment of the diagnostic genes significantly drops (Supplementary Figure S3). The 3rd and 4th genes share the same 
connectivity enrichment. We, thereby, consider the top 6, top 5, top 4 and top 3 as candidates in the pivotal gene 
panel.

Patient survival association study.  The top five diagnostic genes are significantly associated with breast can-
cer 10-year relapse free survival (Fig. 5). FAM134B (p = 7E-08, HR = 0.79), ALCAM (p = 6.7E-10, HR = 0.61), 
KIF1A (p = 2E-05, HR = 0.79) confer protective effect, and KIF2C (p < 1E-16, HR = 1.69) and KIFC1 (p < 1E-16, 
HR = 1.69) are risky on patient clinical outcome. No statistical significance was observed for PHLDA1. Thus, we 
exclude the 6th gene from the candidate gene panel.

Figure 3.  Integrated diagnostic network. This network was obtained by merging nodes and edges present in at 
least three diagnostic networks.

Figure 4.  Enrichment of nodes degree in each percentile level for genes in the integrated diagnostic network. 
The percentile levels were defined as <25, 25–50, 50–75, and >75 percentile of the degrees of each gene in 
the integrated diagnostic network, which correspond to 1–27, 28–52, 53–111, and >111 number of degrees, 
respectively. ‘Genes_BioGRID’ represents the number of genes from BioGRID felt into a given percentile level 
of node degree, and ‘Genes_Selected’ shows that from the integrated diagnostic network.

http://S2
http://S3
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Cross validation.  Leave-1-out cross-validation results show the maximum prediction power of 74.8% and 76.5% 
accuracies from 1000 runs as assessed by SVM and KNN (k = 10), respectively, when applied to the GSE24450 
data; exhibit 68.1% (SVM) and 67.2% (KNN) accuracies when the TCGA dataset was used; and obtain 89.6% 
(SVM) and 88.7% (KNN) scores when GSE25055 was used (Table 1). The average behaviors are 67.8% (SVM) 
and 66.7% (KNN) using GSE24450; 58.6% (SVM) and 56.4% (KNN) using TCGA; and 77.6% (SVM) and 74.6% 
(KNN) using GSE25055 (Table 1).

Using 10-fold cross-validation and as compared with the leave-1-out approach, the same maximum and aver-
age prediction power were obtained using GSE24450; similar maximum and average scores were obtained using 
GSE25055, i.e., 88.9% (SVM) and 87.8% (KNN) for the maximum prediction power and 77.6% (SVM) and 75.7% 
(KNN) for the average performance; slightly higher performance was observed using TCGA data, i.e., 59.6% 
(SVM) and 56.1% (KNN) for the average performance, and 69% (SVM) and 68.2% (KNN) for the maximum 
behavior.

Results using SVM as the kernel are more stable than those using KNN as, in most cases, higher average 
performance, lower maximum and higher minimum values were obtained using SVM than KNN. 10-fold cross 
validation behaves better than the leave-1-out approach when data of relatively larger sample size was used. That 
is, the advantage of SVM over KNN becomes evident when TCGA data was used which encompasses 451 samples 
whereas GSE24450 and GSE25055 have 183 and 300 samples, respectively.

Most statistics measured for the 4-gene panel outweigh those in the 3-gene and 5-gene panels, though the dif-
ference is nuance (Table 1). Using GSE24450 as the discovery set for finalizing the pivotal gene panel, we selected 
the 10-fold cross validation approach (with SVM being the kernel) to assess the trajectory of the prediction power 
of the gene panels where one gene from the integrated diagnostic network was added at one time. The results 
show that 1) having more genes added in the panel, overall, improves the prediction power, and 2) the trajec-
tory undergoes a sharp increase during the first 4 genes followed by a mild recession and relativley long plateau 

Figure 5.  Breast cancer patient 10-year relapse free survival associated with each of the four pivotal diagnostic 
genes computed from Kaplan Meier Plotter.
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(Supplementary Figure S4). We thus consider the 4-gene panel as pivotal genes for the subsequent analyses and 
discussions.

Hierarchical clustering analysis.  Four subtypes, [ER+|PR+]HER2−, [ER+|PR+]HER2+, [ER−|PR−]HER2+, 
[ER−|PR−]HER2- (also named TNG), were defined based on the status of ER, PR and HER2, convention-
ally used in clinic. Using only the four pivotal diagnostic markers, ER- tumors (red and yellow), especially the 
[ER−|PR−]HER2− cohort (red), could be clearly distinguished from ER+ samples (green and blue) (Fig. 6) 
using GSE24450, TCGA and GSE25055 datasets.

Patient sample stratification.  Among the four genes, FAM134B and KIF1A function in differentiating ER pos-
itive and ER negative subtypes. The p values are 3.10E-25 (FAM134B) and 3.66E-13 (KIF1A) using TCGA data; 
2.71E-10 (FAM134B) and 4.83E-03 (KIF1A) using GSE24450; and 6.33E-03 (FAM134B) and 1.43E-05 (KIF1A) 
using GSE25055 (Fig. 7). ALCAM and KIF2C could nicely distinguish TNG from the rest. That is, the p values are 
1.01E-12 (ALCAM) and 2.24E-21 (KIF2C) using TCGA data; 1.82E-04 (ALCAM) and 1.97E-03 (KIF2C) using 
GSE24450; and 4.11E-14 (ALCAM) and 2.24E-27 (Fig. 7).

Diagnostic genes.  Pathway enrichment analysis.  Genes from the integrated diagnostic network are 
enriched in 22 pathways obtained from BioCarta41 (Supplementary Figure S5, Supplementary Table S3). The 
C-score and the p-value decreases and increases dramatically from the 6th enriched pathway (Supplementary 
Figure S5). The top five pathways are ‘CDK regulation of DNA replication’ (p = 7.15E-05, C-score = 14.54), 
‘downregulation of MTA3 in ER-negative breast tumors’ (p = 7.15E-05, C-score = 11.11), ‘role of HER2 in sig-
nal transduction and oncology’ (p = 5.37E-03, C-score = 8.72), ‘cyclines and cell cycle regulation’ (p = 4.52E-03, 
C-score = 6.07) and ‘role of Ran in mitotic spindle regulation’ (p = 1.33E-03, C-score = 5.85) (Table 2). Three out 

Gene panel Statistics

GSE24450 TCGA GSE25055

Leave-1-out 10-fold Leave-1-out 10-fold Leave-1-out 10-fold

SVM KNN SVM KNN SVM KNN SVM KNN SVM KNN SVM KNN

3-gene panel

Median 0.677 0.670 0.677 0.670 0.565 0.539 0.579 0.544 0.739 0.713 0.731 0.716

Mean 0.676 0.666 0.676 0.665 0.572 0.543 0.585 0.550 0.732 0.712 0.731 0.712

Max 0.739 0.757 0.730 0.739 0.672 0.661 0.682 0.665 0.887 0.878 0.878 0.875

Min 0.617 0.574 0.626 0.583 0.523 0.470 0.505 0.456 0.557 0.478 0.550 0.491

4-gene panel

Median 0.678 0.670 0.678 0.670 0.582 0.561 0.591 0.562 0.783 0.748 0.775 0.760

Mean 0.678 0.667 0.678 0.667 0.586 0.564 0.596 0.561 0.776 0.746 0.776 0.757

Max 0.748 0.765 0.748 0.765 0.681 0.672 0.690 0.682 0.896 0.887 0.889 0.878

Min 0.626 0.591 0.635 0.591 0.525 0.479 0.522 0.483 0.565 0.478 0.587 0.528

5-gene panel

Median 0.678 0.670 0.678 0.670 0.573 0.548 0.586 0.557 0.765 0.739 0.749 0.745

Mean 0.677 0.668 0.677 0.667 0.579 0.553 0.590 0.559 0.760 0.735 0.751 0.743

Max 0.748 0.757 0.739 0.739 0.672 0.667 0.682 0.665 0.878 0.870 0.871 0.871

Min 0.617 0.591 0.635 0.591 0.528 0.490 0.517 0.475 0.548 0.513 0.554 0.524

Table 1.  Cross-validations of the four pivotal diagnostic genes in differentiating breast cancer subtypes. Leave-
1-out and 10-fold represent two types of cross-validations used for performance assessment. ‘SVM’ and ‘KNN’ 
are used as the kernels for cross-validation, which represents support vector machine and k-nearest neighbor 
classifiers (k = 10), respectively. Statistics of 1000 rounds of iterations are shown.

Figure 6.  Breast cancers from GSE24450, TCGA and GSE25055 clustered by the four pivotal diagnostic genes.
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of the 5 pathways are associated with cell cycle, one represents the metastatic feature of ER negative subtype, and 
one shows the importance of HER2 mediated signaling in differentiating breast cancer subtypes.

Gene Ontology enrichment analysis.  72 biological processes, 17 cellular components and 14 molecular 
functions, collectively called GO terms, are enriched by genes from the integrated diagnostic network with 
adjusted p values below 0.05 (Supplementary Table S4). The top 5 enriched biological processes are ‘mitotic 
cell cycle’ (adjusted p = 4.85E-09, C-score = 44.12), ‘mitotic cell cycle phase transition’ (adjusted p = 1.27E-05, 
C-score = 26.19), ‘cell cycle phase transition’ (adjusted p = 1.27E-05, C-score = 26.14), ‘cell division’ (adjusted 

Figure 7.  Breast cancers from TCGA categorized into ‘luminal vs. non-luminal’ or ‘TNG vs. non-TNG’ for 
each of the four pivotal diagnostic genes.
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p = 3.65E-05, C-score = 22.33), and ‘microtubule-based process’ (adjusted p = 2.27E-04, C-score = 20.32), which 
are all associated with cell cycle and division (Fig. 8). The top 5 enriched cellular components are ‘nucleop-
lasm’ (adjusted p = 1.12E-04, C-score = 20.37), ‘cytosol’ (adjusted p = 8.33E-05, C-score = 19.70), ‘microtubule 
cytoskeleton’ (adjusted p = 1.12E-04, C-score = 19.12), ‘perinuclear region of cytoplasm’ (adjusted p = 2.69E-
03, C-score = 13.74) and ‘kinesin complex’ (adjusted p = 2.69E-03, C-score = 12.91), which are locations and 
components involved during mitotic cell division (Fig. 8). Accordingly, the top 5 enriched molecular func-
tions, ‘microtubule binding’ (adjusted p = 2.57E-03, C-score = 14.41), ‘tubulin binding’ (adjusted p = 4.42E-03, 
C-score = 13.04), ‘ATP binding’ (adjusted p = 4.42E-03, C-score = 12.94), ‘protein kinase binding’ (adjusted 
p = 5.88E-03, C-score = 12.91) and ‘kinase binding’ (adjusted p = 8.46E-03, C-score = 11.99), convolve the pro-
teins, ATP and kinases required for cell division (Fig. 8).

Cancer proliferation marker enrichment analysis.  Out of the 216 cell lines used to screen genes having a 
context-specific effect on cell proliferation and/or viability in the Achilles project42, 64 are enriched with genes 
in the integrated diagnostic network (Supplementary Figure S6. The C-score drops considerably and the p value 
undergoes a sharp increase from the 6th cell line (cell lines are ranked with the decrease of the C-score and 
increase of the p-value). The top five cell lines are ZR7530, SNU840, HCC2218, NCIH23 and BT474, among 
which 4 out of 5 are breast or ovary cancers. Genes enriched in these 5 cell lines are TOP2A, HER3, CDC25B, 
MCM2, TUBB, HNRNPU, and CCND3, where TOP2A, HER3, CC25B and MCM2 appear three times, TUBB and 
HNRNPU pop up twice and CCND3 is only present in the ovary cell line SNU840 (Table 2). Genes enriched in the 
top breast cancer cell lines are TOP2A, HER3, CDC25B, MCM2 and TUBB (Table 2).

Discussion
Integrated diagnostic network reveals 4 pivotal genes with diagnostic potential.  The integrated 
diagnostic network preserves the top two hubs of the diff-gene protein network retrieved from BioGRID, i.e., APP 
and ER (Supplementary Figure S7). It is intuitive that ER dominates the diagnostic network given its prominent 
roles and canonical use in breast cancer subtyping7. APP, however, is even more promiscuous, which has 4 to 
5 times number of edges of ER in the whole protein interaction network of BioGRID or the diff-gene protein 
network, and the fold drops to 3 when the network is condensed to the integrated diagnostic network. This, on 
one hand, implicates that the network, once trimed to capture breast cancer heterogeneity, is shifted towards 

Pathways
Adjusted 
p-value Z-score C-score Genes

CDK Regulation of DNA 
Replication 7.15E-05 −1.5235 14.54 CDT1;MCM5;MCM2

Downregulation of MTA3 in 
ER-negative Breast Tumors 7.15E-05 −1.1643 11.11 HSPB1;ESR1;GAPDH

Role of HER2 in Signal 
Transduction and Oncology 5.37E-03 −1.6685 8.72 ERBB3;ESR1

Cyclins and Cell Cycle 
Regulation 4.52E-03 −1.1252 6.07 CCND3;CDKN2A

Role of Ran in mitotic spindle 
regulation 1.33E-03 −0.8836 5.85 RANGAP1;AURKA

Table 2.  Statistics of the top 5 pathways enriched by genes present in the integrated diagnostic network. Genes 
from the integrated diagnostic network and enriched in a given pathway are listed accordingly as ‘Genes’.

Figure 8.  Top 5 enriched GO terms for genes in the integrated diagnostic network.
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ER-driven and, on the other hand, suggests the critical roles played by APP in mediating carcinogenesis and 
subtype differentiation. APP has multiple human isoforms due to alternative splicing and encodes a type I trans-
membrane protien (amyloid precursor protein) expressed in many tisues. APP has been implicated in many 
cellular processes including hormonal regulation43. In particular, APP has been reported as a primary androgen 
target gene promoting prostate cancer growth43, and suggested to promote breast cancer proliferation with its 
immunohistochemical status proposed as a prognostic factor in ER positive breast cancers44; a recent study fur-
ther unveiled its role in accerlerating the motility of advanced breast tumors, implicating its therapeutic targeting 
opportunity45.

Genes with degrees over-represented in the integrated diagnostic network are FAM134B, KIF2C, ALCAM 
and KIF1A, the combined effort of which has shown a comparable subtyping accuracy with the 1015 diff-genes 
reported in ref. 34 (Fig. 6, Table 1). The leave-one-out cross validations using GSE24450 (namely HEBCS in ref. 
34) were reported to be 0.757 and 0.748, respectively, from SVM and KNN in ref. 34, and were 0.75 and 0.77, 
respectively, in this study; similarly, 0.735 and 0.723 were obtained using TCGA data from SVM and KNN in 
ref. 34, and 0.67 was observed from both approaches here (Table 1). These results suggest that the four pivotal 
diagnostic genes capture, if not all, the majority of the subtyping information imbedded in the diff-genes. By 
varying subtype combinations, we found that FAM134B and KIF1A function best in stratefying cancers accord-
ing to ER status, and ALCAM and KIF2C act as the identifiers of triple negative cancers; while FAM134B and 
ALCAM express relatively higher in ER+ or non-TNG subtypes, KIF1A and KIF2C have comparatively lower 
expression in tumors of these classes (Fig. 7). Expression of these four genes, thus, may offer a succint panel for 
breast cancer diagnosis in addition to ER, PR and HER2 status. Truly, in accordance with this, patient 10-year 
relapse free survival analysis of each gene from this panel reveals that over-expression of FAM134B, ALCAM, 
KIF1A and low-expression of KIF2C each conveys a favorable clinical outcome with statistical significance 
(Fig. 5). FAM134B encodes an endoplasmic reticulum-anchored autophagy receptor mediating the degration of 
endoplasmic reticulum46. Its genetic mutation, resulting in decreased FAM134B expression, is a frequent event 
in the progression of oesophageal squamous cells47 and colorectal cancers48, which is adversely associated with 
patient clinical and pathological parameters and congruent with the tumor suppressive properties of FAM134B 
as previously reported48 as well as demonstrated in this study (Figs 6 and 7). ALCAM, the activated leukocyte cell 
adhesion molecule, has been known involved in cell migration and adhesion49, 50, in accordance with its identified 
role here in distinguishing TNG breast cancers, featured by high invasiveness, from the rest (Fig. 7). Decreased 
ALCAM expression has been implicated in poor breast cancer prognosis and promoted metastasis ability49–54, 
confirming with its tumor suppressive roles observed in Fig. 5 as well as previously suggested55. Impaired ALCAM 
expression is associated with induced ER+ breast cancer cell apoptosis and autophagy56, and down-regulating 
ALCAM expression sensitizes ER+ breast cancers to Tamoxifen treatment57, suggesting the therapeutic potential 
of down-regulating ALCAM in ER+ cancers which is consistent with its relatively higher expression in such 
tumor subtypes (Fig. 7). Both KIF1A and KIF2C encode members of the kinesin family, whose active movement 
supports several cellular functions including mitosis58. KIF1A was reported over-expressed in ER- breast cancer 
cell lines MDA-MB-231 and MDA-MB-468, and contributes to their chemotherapeutic resistance15. Elevated 
level of KIF2C was found in non-small cell lung cancer cells, which promotes cancer cell migration and could be 
suppressed by targeting the RAS-RAF-MEK1 pathway59. These not only support our observations on their diag-
nostic potential (Figs 6 and 7) but also suggest their therapeutic opportunities in cancer control.

Enrichment analysis reveals 5 cancer hallmarks driving breast cancer heterogeneity.  The top 5 
pathways enriched by genes in the integrated diagnostic network (adjusted p < 0.01) are ‘CDK regulation of DNA 
replication’, ‘down-regulation of MTA3 in ER negative breast cancers’, ‘role of HER2 in signal transduction’, ‘cyc-
lins and cell cycle regulation’ and ‘role of Ran in mitotic spindle regulation’ (Table 3). These pathways show two 
prominent phenotypic features dominating breast cancer heterogeneities, i.e., proliferation and metastasis, and 
imply three cancer hallmarks. That is, three out of the five pathways reflect the ‘enabling replicative immortality’ 
(cell cycle) hallmark, one is associated with the ‘sustaining proliferative signaling’ (HER2 transduction), and one 
represents the ‘activating invasion & metastasis’ (MTA3 is metastasis associated 1 family member 3). As MTA3 is 
an estrogen-regulated gene60 whose promoter region contains an ER binding site, these pathways also consolidate 
the roles of ER and HER2 in breast cancer subtyping.

Genes enriched in these 5 pathways are ER, HER3, MCM2, MCM5, CDT1, CCND3, CDKN2A, RANGAP1, 
AURKA, HSPB1, GAPDH. Genes such as ER and HER3 reflect the proliferative property of breast cancer cells. 
ER has long been recognized to mediate cell signaling in response to hormonal stimuli and known to drive the 
proliferative feature of breast cancer cells61. HER3 forms heterodimers with other members of this family, lead-
ing to the activation of pathways governing cell proliferation and differentiation. Seven of the 11 genes suggest 

Name Type p-value Z-score C-score Genes

ZR7530 breast 0.023110909 −1.760811151 6.633768881 TOP2A;HER3;CDC25B;MCM2

SNU840 ovary 0.023110909 −1.713280168 6.454698254 CCND3;TUBB;HNRNPU

HCC2218 breast 0.023110909 −1.710427594 6.443951326 TOP2A;HER3;CDC25B;MCM2

NCIH23 lung 0.023110909 −1.67847526 6.323572486 TOP2A;HNRNPU;MCM2

BT474 breast 0.035418911 −1.619832446 5.411065504 HER3;TUBB;CDC25B

Table 3.  Top 5 enriched cell lines from cancer proliferation marker enrichment analysis. Cell line name, type, 
p-value, Z-score, C-score and genes enriched in each cell line are provided.
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the vital roles of the G1/S and G2/M check points for ‘enabling replicative immortality’. MCM2 and MCM5 are 
members of the MCM family of chromatin-binding proteins which, together with CDT1, are involved in DNA 
replication initiation and up-regulated during the G1/S transition. CCND3 encodes cyclin D3 that forms a com-
plex with CDK4/6, the activity of which is required for the G1/S transition in the cell cycle; and CDKN2A encodes 
an inhibitor of CDK4. RANGAP1 encodes a protein interacting with Ras-related nuclear protein 1 (Ran), which 
is phosphorylated by the cyclin B/CDK1 complex (M phase kinase) and plays essential roles during cell mitosis62. 
AURKA is a cell cycle regulated kinase involved in microtubule formation and/or stabilization at the spindle 
pole during chromosome segregation and, thus, implicated with fundamental roles during mitosis and meiosis63. 
HSPB1, a member of the heat shock protein family, is reported to suppress PTEN level and, consequently, leads 
to reduced apoptosis in human breast cancer cells64, implicating the properties of cancer cells in ‘resisting cell 
death’. GAPDH encodes the glyceraldehyde-3-phosphate dehydrogenase whose up-regulation is correlated with 
aberrant gene profiling associated with both glycolysis and gluconeogenesis65. This suggests the Warburg effect, 
which represents the ‘deregulating cellular energetics’ hallmark.

Almost all genes enriched in the top 5 pathways have been implicated with cancer diagnostic potentials. 
ER has been canonically used as a clinical routine for breast cancer subtyping7. HER3 overexpression has been 
observed in diverse human cancers and been reported diagnostic of poor outcome in, e.g., breast cancer66 and 
melanoma67. MCM2 and MCM5 have been used for the diagnosis of colon cancers68. The prognostic value of 
CDT1 has been recently evaluated in breast cancer, whose over-expression was observed in tumor cells and sig-
nificantly associated with poor patient survival69. CCND3 amplification has been proposed as a marker predicting 
tumor progression in, e.g., breast cancer70 and bladder urothelial carcinoma71. CDKN2A hyper-methylation has 
been suggested as a predictive factor for unfavorable prognosis of, e.g., colorectal cancer72, 73, rectal cancer74, and 
adult acute lymphoblastic leukemia patients harboring BCR-ABL1 fusions75. AURKA over-expression is reported 
strongly associated with tumor grade and proposed with prognostic value for disease progression76. HSPB1 
encodes the heat-shock protein 27 which plays crucial roles in tumorigenesis and is reported an independent 
prognosis marker for malignancies such as lung cancer77. Elevated level of GAPDH positively associated genes is 
proportional to the malignant stage of various tumors and unfavorable prognosis65.

Gene ontology analysis reveals cell division to be the most enriched cellular event differentiating breast cancer 
subtypes (Fig. 8). This, together with the 7 out of 11 genes identified from pathway analysis and participating 
directly in cell cycle, implicate that ‘enabling replicative immortality’ may be one of the driving hallmarks foster-
ing the proliferative feature of breast cancer cells and their differentiation.

Cancer proliferation marker enrichment analysis reveals that 7 genes from the integrated diagnostic network 
are enriched in cancer cells. Among them, 5 (TOP2A, HER3, CDC25B, MCM2 and TUBB) are from breast cancer 
cell lines (Table 3) and, in particular, HER2 positive cells (ZR7530 is [ER+PR−]HER2+, HCC2218 and BT474 
are [ER−PR−]HER2+78). TOP2A, topoisomerase II alpha, functioning as an enzyme relaxing DNA supercoils, 
has long been used as a cancer proliferation marker and applied for breast tumor subtyping7. Importantly, abnor-
mal TOP2A expression has been reported associated with increased cancer responsiveness to anthracycline-based 
chemotherapy79, suggesting its therapeutic implications besides confirmed diagnostic roles. HER3 encodes an 
EGFR family protein that is used as a prognostic marker in hormone receptor-negative breast cancers includ-
ing the TNG and the HER2 positive subtype66, 67, and is as critical as HER2 in cell proliferation maintenance80. 
CDC25B is a member of the CDC25 family of phosphatases that activates the cyclin dependent kinase CDC2 and 
required for the entry of cells into mitosis. The association between CDC25B expression and cell proliferation is 
multifaceted: on one hand, CDC25B is up-regulated in multiple tumor types with increased levels correlated with 
higher proliferation, and its elevated level in the mammary glands has led to accelerated mammary epithelial 
proliferation that ultimately leads to tumor formation when exposed to the carcinogen DMBA in vivo81; on the 
other hand, its tumor suppressive roles and anti-proliferative effect have been reported by several studies81, 82. 
MCM2 expression is correlated with that of KI67, a widely used proliferation marker in addition to ER, PR and 
HER2 for breast cancer subtyping in some studies7, and proposed as a sensitive maker of gastric cardiac cancer83. 
TUBB encodes the beta chain of tubulin, which polymerizes into microtubules that function in many essential 
cellular processes including mitosis, and thus indicative of cell proliferation. It is reported that targeting tubulin 
arrests mitosis and inhibits tumor cell proliferation, rendering microtubule-targeted drugs indispensable for the 
therapy of various cancers84. Some of these proliferation markers have intrinsic connections, so far reported, 
with HER2 status or expression. For instance, TOP2A aberrations are frequently found in HER2-amplifed breast 
cancers, accounting for 30–90% of such tumors7, 85. HER3 forms heterodimers with HER2 in downstream signal 
transduction, and plays a central role in HER2-amplified breast cancers80. CDC25B expression could be induced 
through HER2 signal transduction in human lung cancer cells86. These, collectively, suggest the importance of 
‘sustaining proliferative signaling’ and, in particular, HER2 transduction, in driving the complex morphological 
and pathological features of breast cancers.

Conclusion
This study constructed an integrated diagnostic network composed of 37 nodes and 43 edges, by using infor-
mation integrated from 6 publically available gene expression datasets and protein interactions retrieved from 
BioGRID to trim the 1015 diff-genes previously reported. We identified 4 pivotal diagnostic genes (FAM134B, 
KIF2C, ALCAM, KIF1A) from this network, which form a largely reduced gene panel preserving comparable 
subtyping efficacies with the initial 1015 diff-genes. Further pathway, GO, and proliferation marker enrichment 
analyses of the integrated diagnostic network collectively suggest two carcinogenic transitions governing breast 
cancer differentiation, i.e., proliferation and metastasis, and five out of 10 cancer hallmarks87, i.e., ‘enabling rep-
licative immortality’ (i.e., cell cycle, especially G1/S and G2/M), ‘sustaining proliferative signaling’ (ER, HER2), 
‘resisting cell death’, ‘deregulating cellular energetics’ (aerobic glycolysis), and ‘activating invasion & metastasis’ 
empowering such processes, with the first two being the most prominent. Our work provides a gene panel of 
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reasonable size with clinical translation potential, and hallmarks driving breast cancer heterogeneities. The piv-
otal genes and primarily hallmarks (or implicated top pathways) identified may offer novel diagnostic markers 
or therapeutic targets, alone or in combination with current clinical modalities, for the benefit of breast cancer 
patients.
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