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Reconstruction of a Genome-
scale Metabolic Network of 
Komagataeibacter nataicola RZS01 
for Cellulose Production
Heng Zhang1,2, Chao Ye3, Nan Xu3, Chuntao Chen1,2, Xiao Chen1,2, Fanshu Yuan1,2, Yunhua Xu4, 
Jiazhi Yang1,2 & Dongping Sun1,2

Bacterial cellulose (BC) is widely used in industries owing to its high purity and strength. Although 
Komagataeibacter nataicola is a representative species for BC production, its intracellular metabolism 
leading to BC secretion is unclear. In the present study, a genome-scale metabolic network of cellulose-
producing K. nataicola strain RZS01 was reconstructed to understand its metabolic behavior. This 
model iHZ771 comprised 771 genes, 2035 metabolites, and 2014 reactions. Constraint-based analysis 
was used to characterize and evaluate the critical intracellular pathways. The analysis revealed that a 
total of 71 and 30 genes are necessary for cellular growth in a minimal medium and complex medium, 
respectively. Glycerol was identified as the optimal carbon source for the highest BC production. 
The minimization of metabolic adjustment algorithm identified 8 genes as potential targets for 
over-production of BC. Overall, model iHZ771 proved to be a useful platform for understanding the 
physiology and BC production of K. nataicola.

Acetic acid bacteria (AAB) are a group of aerobic, gram-negative bacteria belonging to class α-Proteobacteria1. 
They have been isolated from a variety of natural sources, including fruits, fermented foods, plant organs, and 
soil2–4. Komagataeibacter and Acetobacter are the main genera of AAB, and have been widely used in several 
industrial processes, such as acetic acid production and cocoa bean fermentation4, 5. Besides, these bacteria have 
been employed in chemical industries for the production of ascorbic acid and bacterial cellulose (BC)6, 7.

Komagataeibacter nataicola (formerly known as Gluconacetobacter xylinus) has been reported as a high-yield 
cellulose-producing strain8. The strain possesses a number of remarkable physiological properties, such as the 
ability to oxidize a wide range of substrates and to tolerate high concentrations of acetic acid and ethanol9. The 
ability to produce BC is one of the most interesting features of this strain5. Although, BC has a primary chemical 
composition similar to that of the cellulose derived from plants and algae, its excellent structural and mechanical 
characteristics make it a valuable resource for industrial applications10–12. Nonetheless, low fermentation yields 
and high cost of production are the main bottlenecks for large-scale production of BC13. To overcome these dis-
advantages and to improve BC production, three major strategies have been implemented: (1) identification of 
efficient and sustainable cellulose-producing strains14; (2) optimization of the fermentation process12, 15; and (3) 
improvement of productivity of the strains through genetic engineering. Strain mutagenesis is the most common 
approach to increasing BC production16. Up to a 2.3-fold increase in BC production was attained by knocking 
out the membrane-bound glucose dehydrogenase (GDH) enzyme responsible for oxidizing glucose to gluconic 
acid, which is the main by-product of BC fermentation17. Poor understanding of the detailed cellular metabolism 
involved in the production of BC prevents full exploitation of the industrial potential of K. nataicola. Therefore, 
the development of BC-synthesizing microbial cell factories would be worthwhile.

The advancement of the genome-sequencing technology stimulated research at the systemic level. As a result, 
genome-scale metabolic models (GSMMs) have been developed to characterize the physiological behavior and 
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metabolic status of an organism subjected to different environmental and genetic changes18, 19. Advances in 
GSMMs have resulted in the identification of gene-protein-reaction associations, which have found broad appli-
cations in a number of processes, such as elucidation of physiological characteristics, organization of principles of 
metabolism, computational predictions for metabolic engineering, and identification of multi-species relations20, 21. 
More than 100 GSMMs for organisms across all three domains of life have been reconstructed so far22. For AABs, 
the only GSMM reported is iXW433 belonging to Gluconobacter oxydans 621H23. This model was used to examine 
the production of dihydroxyacetone by G. oxydans using glycerol as a carbon source. Nevertheless, no study so 
far has shown a refined GSMM for K. nataicola. The present study describes for the first time reconstruction of a 
GSMM for K. nataicola strain RZS01. The model, iHZ771, has been used to study cellulose production character-
istics of AAB. Elucidation of the pathway for BC biosynthesis in strain RZS01 was based on genome annotation 
and literature mining. The model was also used to propose suitable strategies for improvement of BC production.

Results and Discussion
GSMM of K. nataicola. Reconstructed genome-scale model iHZ771 comprised 771 genes, 2035 metabo-
lites, and 2014 reactions located throughout the cytosol, periplasm, and extracellular compartments, covering 
21.9% of the annotated open reading frames. The metabolic reactions could be classified into eight major sub-sys-
tems: carbohydrates, amino acids, energy, cofactors, lipids, glycan, nucleotides, and transport24. Among these, 
the largest sub-system was amino acid metabolism (18.9%), followed by transport (17.0%), and carbohydrate 
metabolism (12.1%; Fig. 1). Complete information about the iHZ771 model, in terms of all the genes, reactions 
and metabolites is available as SBML in Supplementary Information 1.

Three related models were compared with model iHZ771 to understand its characteristics (Fig. 2). Coverage 
of the annotated ORFs in four models (K. nataicola RZS01, E. coli K-12 MG1655, G. oxydans 621 H, and R. 
sphaeroides 2.4.1) is 21.9%, 27.3%, 16.0%, and 25.0% respectively. A total of 137 genes, mostly belonging to central 
carbon metabolism (8.2%), amino acid metabolism (24.1%), and biosynthesis of the cytoskeleton (11.3%) were 
common among the models. The analysis also revealed that the K. nataicola model consists of 106 unique genes 
catalyzing 245 reactions, some of which belong to carbohydrate metabolism responsible for BC biosynthesis from 
glucose 6-phosphate. The analysis of transport reactions indicated that most of the amino acids and fatty acids 
are transported via ATP-binding cassette transporters or via co-transport, depending on the proton gradient; 
this situation results in excessive consumption of energy. Of note, in K. nataicola, conversion of ethanol to acetic 
acid is guided by a membrane-bound alcohol dehydrogenase, membrane-bound aldehyde dehydrogenase, and 
ubiquinol oxidase which generate a large amount of ATP at early stages25.

Validation of the model. To assess the accuracy of model iHZ771, qualitative simulation of cellular growth 
in the presence of different carbon and nitrogen sources was carried out. Overall, 30 carbon sources (5 saccha-
rides, 3 carboxylic acids, 2 alcohols, and 20 amino acids) and 25 nitrogen sources (ammonium, nitrate, urea, and 
20 amino acids) were predicted for cell growth via flux balance analysis (FBA). Comparison of experimental data 
and the model prediction revealed that K. nataicola can utilize 15 types of carbon sources and 25 types of nitrogen 
sources (Supplementary Information 2-1, and 2-2). The precise (93%) match obtained showed that there were 
no serious faults in the model. The reasons for the discrepancies between the experiment and simulation include 
incomplete annotation and regulatory effects, which were not accounted for in model iHZ77126. Amino acids are 
biologically important small molecules, playing important roles in cell growth. K. nataicola is capable of synthe-
sizing all the amino acids and does not require supplementation with amino acids27. On the other hand, many 
amino acids, such as proline, cysteine, and tyrosine, could not serve as carbon sources. The enzymes responsi-
ble for proline decomposition, including prolyl 4-hydroxylase (EC 1.14.11.2), 1-pyrroline dehydrogenase (EC 
1.2.1.88), and 4-hydroxy-2-oxoglutaratealdolase (EC 4.1.3.16) are absent in K. nataicola. The incomplete decom-
position pathway of proline shrinks the substrate utilization spectrum; glutamic acid and arginine are degraded 
to proline for further utilization28.

For quantitative assessment of the model’s accuracy at predicting the growth rate, we compared simulated 
growth phenotypes, obtained using glucose and ammonium as the sole carbon and nitrogen sources, respec-
tively, with in vivo growth data29. The experimental data served as constraints to simulate cell growth parameters, 
including the glucose uptake rate, gluconic acid production rate, acetic acid production rate, and bacterial cellu-
lose production rate. As shown in Supplementary Information 2–3, the growth rate in silico was highly consistent 

Figure 1. Distribution of genes and reactions across major metabolic sub-systems in iHZ771.
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with the observed experimental data. Qualitative and quantitative assessments indicated that model iHZ771 may 
be sufficient to accurately describe the cellular metabolism of K. nataicola.

Genes and reactions essential for cell growth. Analysis of essentiality of individual genes and reactions 
in K. nataicola was carried out in model iHZ771 using single gene deletion. It was found that 9.2% (71 genes) 
and 3.9% (30 genes) of the total of 771 genes in iHZ771 are necessary for cellular growth in a glucose-containing 
medium and complex medium, respectively. A total of 112 reactions were predicted to be essential for cell growth. 
We found that 68 reactions (60.7%) overlap with the corresponding reactions encoded by essential genes in a 
glucose-containing medium. The distribution of essential genes and reactions across various metabolic processes 
was also identified (Fig. 3). Most of the essential genes belong to the sub-systems of amino acid, lipid, and carbo-
hydrate metabolic pathways. These genes encode proteins primarily involved in maintaining basic cellular struc-
ture and central metabolism. Furthermore, we found that all the genes necessary for growth in a complex medium 
are also required for growth in a glucose-containing medium. Genes identified in a glucose-containing medium 
mostly participate in amino acid biosynthesis or metabolism. For instance, glutamine synthetase encoded by 
B0W47_07980 converts L-glutamate to L-glutamine, and B0W47_14735 participates in the biosynthesis of 

Figure 2. Comparison of general features of iHZ771 with E. coli iAF1260, G. oxydans iXW433, and R. 
sphaeroides iRsp1095. Numerical values in each section of the Venn-diagram represent the number of genes that 
are common or specific to the respective organism.

Figure 3. Distribution of essential genes and reactions in each subsystem. (a) The distribution of essential 
genes in a glucose-containing medium and a complex medium. (b) The percentage of essential reactions in each 
subsystem in a glucose-containing medium.
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L-arginine. Genes B0W47_13090, B0W47_14725, B0W47_12370, and B0W47_13245 are crucial for the biosyn-
thesis of L-lysine and L-threonine. In the complex medium, however, nutrient supplementation was required for 
these processes. The detailed lists of the essential genes under different conditions are provided in Supplementary 
Information 2–4.

Broad utilization of different substrates. Based on reconstructed model iHZ771, it was predicted that 
strain RZS01 can take up and channel several polyols, sugars, and sugar derivatives into the oxidative pentose 
phosphate pathway (PPP; Supplementary Information 2-5). Two main operative models exist for substrate trans-
port, namely the phosphotransferase system (PTS) driving phosphorylation of substrates by utilizing phosphoe-
nolpyruvate30, and ATP-binding cassette (ABC) transporters driven by ATP31. Constraint-based flux analysis 
simulations were carried out for K. nataicola grown on glucose, fructose, or glycerol, and the maximal uptake rate 
of each carbon source was set at −100 mmol/[(g of dry cell weight [DCW])·h] (negative sign indicates metabolite 
uptake into the cell; Fig. 4)32. As the most widely available carbon source, glucose was easily taken up by sugar 
permeases, encoded by B0W47_14370. The Embden-Meyerhof-Parnas pathway is incomplete in strain RZS01 
because of a lack of the gene encoding phosphofructokinase (EC 2.7.1.11). Nevertheless, the genes encoding 
enzymes of the PPP were present, suggesting that glucose is degraded via the PPP, as also reported for Acetobacter 
pasteurianus 386B4 and G. oxydans 621H33. Besides, a large fraction of glucose is converted into gluconic acid in 
a reaction catalyzed by membrane-bound glucose dehydrogenase in the periplasm, resulting in a sharp decline in 
pH of the medium. It was also found that glycerol switches the pathway from PPP to the tricarboxylic acid (TCA) 
cycle, resulting in the oxidation of triose phosphate without formation of gluconic acid. This way, carbon is not 
wasted on CO2 production. Fructose has different metabolic fate, and is transported into the cell through PTS. 
This process is followed by degradation of pyruvate to acetate, followed by transformation to acetyl-CoA, which 
then enters the TCA cycle for energy synthesis. Addition of ethanol is believed to generate more of reduced nic-
otinamide adenine dinucleotide, which provides suitable environment for BC production by lowering the redox 
potential34. After comparison to the predicted results, we found that glycerol yielded the highest BC production, 
at 5.86 g/L, which was approximately 1.82-fold and 1.49-fold greater than BC production in the glucose and fruc-
tose medium, respectively. In the presence of ethanol, BC production was improved by 5.9%.

In silico simulation of BC production. The BC biosynthetic pathway is independent of other meta-
bolic pathways in the cell. Substrate synthesis for cellulose production processes starts from the glycolytic 
cycle intermediate glucose 6-phosphate. The first stage is isomerization of glucose 6-phosphate to glucose 
1-phosphate, catalyzed by phosphoglucomutase (EC 5.4.2.2) encoded by B0W47_02175 or B0W47_13495. 

Figure 4. Flux-sum intensity comparisons for different carbon sources. A heatmap illustrating the flux-sum 
intensity of cofactors, by-products, and other components of central metabolism. The results were normalized 
to the maximal value of each metabolite, where the darker color indicates stronger flux.
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This action is followed by the reaction of glucose 1-phosphate with UTP catalyzed by B0W47_02365- or 
B0W47_02370-encoded UTP-glucose-1-phosphate uridylyltransferase (EC 2.7.7.9), leading to the formation 
of uridine-5′-diphosphate-α-D-glucose (UDP-glucose). This is a rate-limiting step. Finally, the crucial enzyme, 
bacterial cellulose synthase (EC 2.4.1.12), transfers glucosyl residues from UDP-glucose to the nascent β-D-
1,4-glucan chains. For identification of gene overexpression targets to achieve enhanced production of BC, min-
imization of metabolic adjustment (MOMA) was carried out to re-evaluate the fluxes for an over-expression 
algorithm. The experimental specific production rate of the wild type was found to be 0.5 mmol/[(g DCW)·h] and 
was set as the lower bound for BC transport flux. Under the given constraint conditions, the specific growth rate 
was found to be 0.3321 h−1 by FBA. Thereafter, all the reactions that have a non-zero flux value in the FBA simu-
lation were over-expressed computationally. At the end of this process, 8 reactions were identified as the potential 
over-expression targets based on the fPH value of greater than 1.0 (Fig. 5).

Of the eight targets identified, four (PGM, UGP, CS, and CT) are directly involved in the biosynthetic path-
way of BC, whereas the remaining four targets (G6PIS, GADT, FADT, and UDPK) do not belong to the native 
BC precursor pathway. During the biosynthesis of BC, the membrane-integrated cellulose synthase (CS, EC: 
2.4.1.12) containing BcsA, BcsB, BcsC, and BcsD, encoded by B0W47_12635, B0W47_12640, B0W47_12645, 
and B0W47_12650, respectively, is responsible for the formation and translocation of glucan chains. The activity 
of CS could be stimulated by its allosteric regulator, c-di-GMP, via PilZ domains35. Over-expression of CS led 
to enhanced BC production from 0.5 to 1.0 mmol/[(g DCW)·h]. As a mutase, PGM (EC: 5.4.2.2) catalyzes the 
conversion of D-glucose 6-phosphate into D-glucose 1-phosphate, which is the precursor of BC. A decrease in 
the growth rate by 47% was accompanied with a two-fold increase in BC production after over-expression of this 
gene. Bacterial cellulose biosynthesis may be regulated by energy metabolism. Both GADT (EC: 2.2.1.1) and 
FADT (EC: 2.2.1.2) participate in the PPP, which provides large amounts of NADPH for cellular biosynthesis and 
growth25. Over-expression of these genes led to 98% and 58% increases in BC production, respectively.

Modelling of metabolic stressors. To further investigate the cellular behavior under the influence of 
changes in environmental conditions, robustness analysis was conducted. Cell growth and BC accumulation were 
found to possess similar adaptive capacity (Fig. 6). Simulation data revealed that cell growth and BC production 
are both resistant to high absorption of protons, in agreement with the fact that this strain was initially isolated 
from vinegar brew36. Nonetheless, increasing the proton extraction rate over 12 mmol/[(g DCW)·h] resulted 
in inhibition of cell growth and of BC accumulation. In strict aerobic bacteria, oxygen plays a crucial role in 
maintaining intracellular metabolism, being the primary electron acceptor37. According to simulation intended 
to predict the phenotype at different oxygen uptake rates, the highest BC production was observed at the oxygen 
uptake rate of 10 mmol/[(g DCW)·h]. For cellular growth, 32 mmol/[(g DCW)·h] was found to be the best uptake 
rate, which was far above that for BC accumulation. These simulation results, namely, that higher oxygen tension 
inhibits cellulose production, are in line with the results obtained by Hwang38. We, therefore, determined that a 
relatively high concentration of dissolved oxygen is beneficial for cell proliferation at the first stage. Nevertheless, 
to avoid the excessive oxygen exposure, a low dissolved-oxygen concentration is employed during BC production.

As for other environmental disturbances, such as changes in sulphur and phosphate content, robustness anal-
ysis was carried out. Sulphur and phosphate perform key functions in the biosynthesis of the cell scaffold, where 
the former participates in the biosynthesis of sulphur-containing amino acids: methionine and cysteine. The sim-
ulation results indicated that a high sulphur uptake rate is beneficial for cell growth, resulting in the flux of a large 
amount of substrates to biomass. This finding is in agreement with other reports39. Phosphate is mainly present in 
plasma membrane, nucleic acids, and some coenzymes. Nonetheless, when the uptake rate of phosphate reaches 
1.25 mmol/[(g DCW)·h], cell growth is retarded. This prediction is supported by one study, where a decrease in 
BC production was obtained after supplementation with phosphate sources40.

Figure 5. Calculated BC production flux and fPH as a function of over-expression of a gene.
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Conclusions
Our study describes a GSMM, iHZ771, for K. nataicola. Validation of the model revealed that it can accurately 
simulate phenotypic behavior under various conditions. Analysis of essentiality of genes and reactions high-
lighted the importance of the metabolic backbone for cell growth. Flux intensity analysis in the presence of dif-
ferent carbon sources revealed that glycerol is beneficial for BC production. Eight simulated targets responsible 
for increasing BC production were identified via the MOMA algorithm. The lack of experimental information on 
gene over-expression is still a setback for the validation of the model created here. Further experiments on this 
should help us better refine and complete the networks. Overall, the proposed model is expected to be useful for 
systemic analysis of AAB and should facilitate future biotechnological applications.

Methods
Whole-genome sequencing. Genomic-DNA isolation and purification from K. nataicola RZS01 was car-
ried out as per the protocol described by Florea et al.41. Quality of the genomic DNA was assessed by agarose gel 
electrophoresis. Whole-genome sequencing was carried out using an Illumina technology (HangZhou GeneRui 
Biotechnology Co. Ltd., Hangzhou, China). As a consequence, the complete genomic sequence, composed of 
a circular chromosome and six plasmids, was obtained. The accession number of the complete sequences of 
this strain from this study can be found in GenBank (http://www.ncbi.nlm.nih.gov) under the accession no. 
CP019875 to CP019881.

Reconstruction and refinement of the GSMM. The general principles of GSMM reconstruction pro-
cess have been described elsewhere42. Whole-genome sequence of K. nataicola RZS01was uploaded to the RAST 
server (http://rast.nmpdr.org/) to call and annotate the genes. The initial model was constructed based on the pro-
tein homology through a local sequence similarity search (BLASTp). Three existing models, iXW433, iRsp1095, 
and iAF1260 belonging to Gluconobacter oxydans 621 H, Rhodobacter sphaeroides 2.4.1, and Escherichia coli K-12 
MG165543, respectively, served as templates. The homology search parameters for prokaryotes in BLASTp were 
set at an identity of ≥35%, and an e-value of ≤10−6 44. The reaction lists from BLASTp were integrated in the same 
format. This action was followed by manual refinement of the model with the help of public databases, such as 
KEGG, MetaCyc, Biopath, CELLO, and the COBRA software package. The process involved the following steps: 
(1) assignment of appropriate subcellular compartments; (2) determination of reaction directionality; (3) addi-
tion of metabolite transport and exchange reactions; (4) checking the consistency in terms of element and charge 
balance; (5) verifying connectivity of the network by the GapFind algorithm followed by filling or correcting the 
reactions from other organisms according to the literature.

Figure 6. Simulation of the effects of perturbation of culture conditions on BC production and cell growth. 
Robustness analysis of the proton extraction rate (a), oxygen uptake rate (b), sulphur uptake rate (c), and 
phosphorus uptake rate (d). The red line indicates the cell growth rate, and the blue line denotes the BC 
production rate.
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Biomass composition. An equation, based on experimental analysis and literature that describes the cellu-
lar composition is widely used as an objective function in the constraint-based model. The major macromolecular 
constituents of the cells in the exponential growth phase were quantified to generate an appropriate biomass 
equation. These components consisted of DNA, RNA, proteins, lipids, cell wall constituents, and small molecules. 
DNA and RNA were quantified using a mini kit. G + C content (61.49%) was used to determine the individual 
weights of nucleotides in DNA and RNA. Coomassie brilliant blue staining was carried out to determine protein 
content45. Because the components of amino acids were not available, we utilized the genome information to 
estimate the amino acid composition. Lipid analysis was conducted as described previously46. As a member of 
family Acetobacteriaceae, strain G. oxydans 621 H was subjected to the analysis of biomass composition, specifi-
cally composition of peptidoglycan23. In all the simulations carried out in the present study, biomass composition 
was assumed to be constant under different environmental conditions. Growth-associated maintenance energy 
requirement was estimated according to the protocol described for E. coli43. Detailed information on calculation 
of biomass composition is provided in Supplementary Information 3.

In vivo growth screens. Growth screens were carried out in triplicate in a 250-mL baffled-flask containing 
50 mL of culture broth. For qualitative simulation of cellular growth in the presence of different carbon and nitro-
gen sources, a defined medium was used for analysis, which contained 20 g of a carbon source, 5 g of a nitrogen 
source, 3 g of Na2HPO4, 1 g of KH2PO4, 0.02 g of MgCl2, 0.02 g of CaCl2, and 0.0015 g of aminobenzoic acid per 
litre, and the initial pH was adjusted to 6.0. The medium used for seed culture contained 20 g of glucose, 6 g of 
(NH4)2SO4, 1 g of KH2PO4, 0.4 g of MgSO4, 3 g of peptone, 2.25 g of yeast extract, and 0.4 g of sodium carbox-
ymethylcellulose per litre. To prepare for the fermentation process, the strain was cultured in a seed medium for 
36 h. Next, the seed cultures were centrifuged for 10 min at 8,000 × g, and then washed twice with a 0.9% NaCl 
solution. After that, the supernatant was decanted and resulting pellet was resuspended in 50 mL of the NaCl solu-
tion, of which 4 mL (equivalent to 8% of the inocula) was inoculated into 50 mL of the culture medium in 250-mL 
flasks. The cultures were grown at 30 °C, with shaking at 160 rpm for 5 days.

Analytical methods. Concentrations of glucose, organic acids and ethanol were measured by means of a 
high-performance liquid chromatography (HPLC) system (Agilent, USA) equipped with an HPX-87H column 
(Bio-Rad, Hercules, CA) and a dual λ absorbance detector. To determine DCW, the culture broth was resus-
pended in 0.2% (w/v) cellulase in citric acid-sodium citrate buffer (pH 4.8) and hydrolyzed for 2 h at 50 °C, then 
filtered through filter paper. The cells were dried overnight in an oven and weighed on filter paper, with a correc-
tion for the amount of weight lost by the filter paper that did not contain cells. The BC produced in the shake flask 
was collected from the medium directly and treated with 4% (w/v) NaOH at 85 °C for 2 h to remove impurities 
and cells attached to cellulose. Then, the BC was washed in tap water until the pH of water became neutral. The 
purified BC was dried to constant weight at 80 °C and weighed. Growth rates were calculated by determining the 
exponential growth phase region in a series of samples taken during each growth screen. For this correspond-
ing exponential growth phase region, the ratio of an analyte to grams of dry weight (DW) of the sample was 
determined using a linear fit obtained by the least-squares method (‘regress’ function in MATLAB). This value 
(mmol/g DW) was then multiplied by the growth rate to obtain the corresponding uptake or production rate. The 
ratios were finally multiplied by the growth rate to obtain the uptake or production rates.

Constraint-based flux analysis. This analysis was used to simulate cellular metabolism of K. nataicola 
under varying environmental conditions. The analysis was conducted by means of Cobra Toolbox 2.05 with 
MATLAB 2012b and Gurobi 6.5.1 optimizer. Identification of the over-expression targets was carried out using 
the MOMA framework for better prediction of the flux distribution. The over-expression algorithm involved five 
steps47: (1) BC production flux (as determined experimentally) was imposed upon the reconstructed model; (2) 
flux for each reaction was calculated based on the complex medium by adjusting uptake rates of specific chem-
ical components of the medium, such as the basic elements and 20 amino acids. The maximal rates of uptake of 
amino acids were set to 0.1 mmol/[(g DCW)·h]. Glucose served as the sole carbon source, and its uptake rate 
was set to 8.45 mmol/[(g DCW)·h], as described elsewhere29; (3) amplifying flux was imposed upon individual 
reactions with non-zero flux (to simulate the effect of gene over-expression); (4) MOMA was performed to solve 
the problem of over-expression; (5) finally, identification of the over-expression targets was done and led to a 
phenotype fraction value, fPH, greater than unity [equation (1)]. Steps 3 and 4 were iterated for every reaction 
inside the model24.
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Flux-sum. Constraint-based flux analysis indicates only the reaction rates in terms of fluxes, and does not 
provide any information about the concentration of metabolites. Therefore, the concept of ‘flux-sum’ (φi) was 
incorporated into then model to compare the turnover rates of metabolites in Komagataeibacter. The flux-sum of 
metabolite i can mathematically be formulated as equation (2):
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where Sij is the stoichiometric coefficient of metabolite i involved in reaction j, and vj is flux or specific rate of 
metabolic reaction j. Pi denotes the set of reactions producing metabolite i, and Ci represents the set of reactions 
consuming metabolite i48.
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