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ADME-Space: a new tool for 
medicinal chemists to explore 
ADME properties
Giovanni Bocci1, Emanuele Carosati1, Philippe Vayer2, Alban Arrault2, Sylvain Lozano2 & 
Gabriele Cruciani1

We introduce a new chemical space for drugs and drug-like molecules, exclusively based on their in 
silico ADME behaviour. This ADME-Space is based on self-organizing map (SOM) applied to 26,000 
molecules. Twenty accurate QSPR models, describing important ADME properties, were developed 
and, successively, used as new molecular descriptors not related to molecular structure. Applications 
include permeability, active transport, metabolism and bioavailability studies, but the method can be 
even used to discuss drug-drug interactions (DDIs) or it can be extended to additional ADME properties. 
Thus, the ADME-Space opens a new framework for the multi-parametric data analysis in drug discovery 
where all ADME behaviours of molecules are condensed in one map: it allows medicinal chemists to 
simultaneously monitor several ADME properties, to rapidly select optimal ADME profiles, retrieve 
warning on potential ADME problems and DDIs or select proper in vitro experiments.

The complex path of any new molecular entity (NME) to reach its target often involves the passage through 
several barriers as well as the survival into complicated biological systems. An ensemble of processes determine 
the bioavailability of a NME, and several factors may critically affect its pharmacokinetic (PK) properties. In the 
development of pharmaceutical drugs, this caused a high attrition rate: in the past, around 40% of all drug failures 
were due to adsorption, distribution, metabolism and excretion (ADME) problems1. Including preclinical ADME 
studies led to a reduction of failures caused by PK, but drug toxicity remains a problem2, 3. Both non-optimal 
ADME and toxicity (ADMET) can end up with late-stage failures, responsible for a big waste of time and money, 
and unfortunate cases like rofecoxib (Vioxx) and troglitazone (Rezulin) prompted the paradigm “fail early, fail 
cheap”4.

Parallel evaluation of efficacy and biopharmaceutical properties of drug candidates has been standardized, and 
exhaustive studies of ADME processes are nowadays routinely carried out at an early stage of drug discovery to 
reduce the attrition rate5–7. In order to help minimizing failures, computational strategies are still sought by bio-
pharmaceutical researchers to predict the fate of drugs in the organism, and to identify early the risk of toxicity.

For this purpose, ADME-related in silico models are commonly used to provide a fast and preliminary 
screening of ADME properties before compounds are further investigated in vitro. Both private industry and 
academic researchers have extensively studied ADME-related properties, including the inhibition of the trans-
porter P-glycoprotein (ABCB1 or Pgp) or enzymes of the cytochrome P450 (CYP) family, but also membrane 
permeability, volume of distribution or renal clearance8–17.

In our opinion, despite the utility of in silico models to predict ADME properties singularly, the lead optimi-
zation process would benefit of a simultaneous in silico study of several ADME properties, to go beyond the sum 
of the single models. We mean a unique model able to describe a drug pharmacokinetic profile in its whole, before 
in vitro experiments are carried out; it may be a space where molecules lie, and usable to investigate how struc-
tural changes might affect the ADME profile of a set of candidates. A model that can be used in multi-parametric 
optimization processes where ADME is often optimized in parallel to pharmacology.

Several ways to define and navigate (chemical) spaces appeared in the literature in the years, the most impor-
tant being those based on structural descriptors18–21. The complexity of a chemical space needs algorithms for 

1Laboratory of Chemometrics, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce 
di Sotto 8, 06123, Perugia, Italy. 2Technologie Servier, 25-27 rue Eugène Vignat, BP 11749, 45007, Orléans, cedex 1, 
France. Correspondence and requests for materials should be addressed to E.C. (email: emanuele.carosati@gmail.com)  
or P.V. (email: philippe.vayer@servier.com)

Received: 8 March 2017

Accepted: 15 June 2017

Published online: 25 July 2017

OPEN

mailto:emanuele.carosati@gmail.com
mailto:philippe.vayer@servier.com


www.nature.com/scientificreports/

2SCiEntifiC REPORTS | 7: 6359 | DOI:10.1038/s41598-017-06692-0

dimensionality reduction, for a simplified representation of the matrix of descriptors. For this purpose, principal 
component analysis (PCA) or artificial neural networks (ANN) algorithms are used the most often.

Like several chemoinformatic applications, the core concept of chemical space-based approaches is that sim-
ilar molecular structures (i.e. points in the space with short distance between each other) often correspond to 
similar biological profile21. Therefore, new biologically active molecules are expected to lie in close proximity of 
known-actives. Translating to ADME, for any specific property, regions of the space exist where molecules have 
optimal values. However, using for years such chemical space approach we have observed that, when dealing 
with several ADME properties, the molecular description often remains too stuck to structural features, without 
catching the changes in the ADME behaviour. In other words, our major difficulties when using a chemical space 
for ADME where first, to have a common chemical space explaining all ADME properties, and second, to deal 
with activity-cliffs (situations with large changes in potency that correspond to small changes in the molecular 
structures)22, 23. An alternative chemical space, based on BDDCS classes, was proposed using VolSurf based mod-
els and GTM map, but this was limited to ADME properties linked to the BDDCS classes24.

Here, we attempt to change perspective, by modulating how molecules are described. Our proposal consists 
in describing molecules by their predicted ADME properties (derived by in silico QSPR models) rather than by 
structural features (molecular weight, size, flexibility, etc.) or physicochemical properties (logP, logD, pKa, etc.). 
Hence, predictions on twenty accurate QSPR models, derived for important ADME properties, define the new 
space, here called “ADME-Space”. We used the Self-Organising Maps (SOM) algorithm25 to represent the space as 
a 2D map derived from thousands of molecules. We preferred the non-linear method SOM to a linear one because 
it compresses better the descriptors information, particularly in our case where descriptors (QSPR predictions) 
are categorical values. Our aim is a holistic monitoring of the ADME profile, and making the ADME-Space 
tool able to help medicinal chemists in the simultaneous optimization of different ADME properties, leading to 
hypotheses for more targeted in vitro experiments.

In this article, we introduce these new concepts to help navigating the ADME space. We will go through the 
ADME-Space development, from the QSPR models to the final map and its application.

Results
Overview. In our procedure, any given molecule undergoes projection on twenty QSPR models for differ-
ent biological properties: the results of these projections compose the ADME profile, and provide its molecular 
description. From this, we obtain a position onto the SOM map, so that the molecule can be assigned to a node, 
and all the properties previously assigned to that node are valid for the projected molecule, too.

In silico models. Models from public data included the inhibition of membrane proteins responsible for 
drug active transport (efflux: Pgp, BCRP; and influx: OCT2, OATP1B1), as well as the recognition by Pgp and 
BCRP. Two additional properties were modelled starting from public data, the type of clearance (either renal or 
metabolic)10 and the maximum recommended daily dose (MRDD)26. Models for implication or inhibition of 
CYPs were available at Servier (based on in-house data for specific CYP isoforms: implication of 1A2, 2D6, 3A411 
and inhibition of 1A2, 2C9, 2D6, 3A4), in vitro metabolic stability in rat, mouse and human, intestinal absorption 
predictions from Caco2 experiments and brain permeability in rodents. In all these cases, the datasets counted 
hundreds of molecules, whereas larger datasets (thousands of molecules) developed with in-house Servier data, 
complete the list of in silico models.

Models development and validation. We used curated datasets from the scientific literature for all the 
properties (Pgp inhibition13, Pgp recognition27, OCT2 inhibition28, OATP1B1 inhibition29, Clearance10 and 
MRDD26) except for inhibition of and recognition by BCRP, for which we curated the collection by using data 
from several articles. Foundation of QSPR classification studies were the categorical classification of compounds, 
based on experimental measures as suggested by the authors of the curated collections (mostly IC50 or percentage 
of inhibition). From the original collections, we also took the training/test sampling, in order to compare our 
results with those of the authors of the original models (see Methods section and Table 1).

For public datasets, chemical structures were retrieved as SMILES from the original articles or, when not avail-
able, from PubChem30, whereas for private datasets structures are from the internal Servier database. SMILES 
were converted to 3D structures (sdf format) with the software Marvin v6.2.131. Successively, the program 
MoKa32, 33 was used to generate the most abundant tautomer and protomer at pH 7.4 for each structure.

With the software VolSurf+ 31 we imported the molecular structures and created the X-matrix of molecular 
descriptors (detailed elsewhere)34–37, which underwent the supervised classification procedures described below.

For all the models, the response was of the type −1/0/+1 and several classifiers were applied. For public 
datasets, we tested various regression and classification methods, as implemented in scikit-learn (an open-source 
python library for data mining and analysis)38. Different classifiers were combined in a way that only the con-
sensus of the different methods gives the final classification. Data coming from literature collections is always 
affected by problems of reproducibility: comparing data is not so trivial due to different experimental protocols 
used. In this complex arena, the consensus between models is expected to be more robust and more accurate in 
prediction39, 40. In particular, our approach of the consensus of models provides the exclusion (when projecting 
an external molecule) of doubtful cases, for which the prediction of different models disagree. In general, when 
combining different methods, the full agreement or the agreement of 80% of the models (for example, 4 out of 
5) guaranteed a final class assignment as either “−1” or “+1”, whereas incertitude (as mentioned, doubtful cases 
with the agreement of only 3 out of 5 models) led to uncertain predictions (assignment as “0”).

For Pgp and BCRP inhibition and recognition, OCT2 inhibition as well as Clearance and MRDD we used a 
combination of some of the following methods: random forest (RF), support vector machines (SVM), ada boost 
(AB), linear discriminant analysis (LDA), gradient boosting (GB), decision tree (DT) and extra trees classifier 
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(ETC). Instead, in the cases of OATP1B1 inhibition (public data) and brain permeability (private data) models, 
we used PLS, and the comparison of the predicted Y with given thresholds was used for the final class assignment.

All the models developed at Servier were based on internal data from routine experiments that underwent the 
same experimental protocol (see Methods section). We used Knime41 on the descriptors X-matrix obtained with 
VolSurf+, and the most promising methods were selected: RF for Caco2, implication of CYP3A4 and inhibition 
of CYP1A2, and SVM for all the others. For each model, an applicability domain was defined, and those com-
pounds predicted out of the domain were assigned “0” as predicted class. Model performance was evaluated using 
a naïve external dataset and computing the accuracy for balances or Matthew’s coefficient for unbalanced dataset.

The most relevant details of the models (which methods were used for the consensus) are given in Table 1, 
whereas models performance in external validation are shown in Fig. 1 and more technical details on the param-
eters used for each model can be found in Supplementary Information Tables S1–S7. In general, models are 
comparable with those developed in the original papers: if compared with the published performance, our results 
are at least as good in accuracy as the original ones. In several cases, the X-description was the same (VolSurf+) 
and we only changed the statistical treatment of the matrix, by combining classifiers and using the consensus of 
predictions. Thus, the expected good accuracy achieved by our models is not within the highlights of the present 
paper.

ADME-Space development. Here, we introduce a new kind of descriptor: the predicted ADME properties; 
projections on single QSPR models are categorical values, with three values available for each property, high (“1”), 
low (“−1”) or uncertain (“0”). As an example, considering the inhibition model for Pgp, a molecule predicted as 
inhibitor assumes the value of “1”, a molecule predicted as non-inhibitor assumes the value of “−1”, whereas the 
value of “0” stands for those molecules the model was not able to classify, thereby labelled as uncertain. Table 2 
reports the complete list of such classes.

Model
Dataset 
(all) Class “+1” Class “−1”

Dataset (training/test, 
%training) Algorithm Source

PGP INHIB 1272 664 Inhibitorsa 608 Non-inhibitorsa 772/503, 61% Consensus (RF,SVM,AB,ETC,LDA) Public

PGP RECOG 925 444 Substratesa 481 Non-substratesa 805/120, 87% Consensus (RF,SVM,AB,ETC,LDA,DT) Public

BCRP INHIB 935 418 Inhibitorsb 517 Non-inhibitorsb 668/267, 71% Consensus (RF,SVM,AB,ETC,GB) Public

BCRP RECOG 385 193 Substratesc 192 Non-substratesc 288/97, 75% Consensus (RF,SVM,ETC) Public

OCT2 INHIB 392 196 Inhibitorsa 287 Non-inhibitorsa 312/80, 80% Consensus (RF,SVM,AB,ETC,GB) Public

OATP INHIB 911 194 Inhibitorsa 717 Non-inhibitorsa 685/226, 75% PLS Public

CLEAR 469 286 Hepatic clearancea 183 Renal clearancea Internal 5-fold cross 
validation Consensus (RF,SVM,AB,ETC,LDA,DT) Public

MRDD 1191 591 Low MRDDa 600 High MRDDa 1046/145, 88% Consensus (RF,SVM,ETC,LDA) Public

CACO2 PERM 10,109 8374 Permeabled 1735 Non-permeabled 6741/3368, 67% RF Private

BRAIN PERM 307 208 Permeablee 99 Non-permeablee 78/282, 25% PLS Private

CYP1A2 PERC 465 82 High implicationf 383 Low implicationf 310/155, 67% SVM Private

CYP2D6 PERC 448 89 High implicationf 359 Low implicationf 299/149, 67% SVM Private

CYP3A4 PERC 1442 1366 High 
implicationf 76 Low implicationf 961/481, 67% RF Private

CYP1A2 INHIB 922 144 Inhibitorsg 778 Non-inhibitorsg 615/307, 67% RF Private

CYP2C9 INHIB 715 233 Inhibitorsh 482 Non-inhibitorsh 476/239, 67% SVM Private

CYP2D6 INHIB 479 161 Inhibitorsi 318 Non-inhibitorsi 319/160, 67% SVM Private

CYP3A4 INHIB 913 375 Inhibitorsi 538 Non-inhibitorsi 609/304, 67% SVM Private

METASTAB human 10,056 3774 Stablej 6282 Unstablej 6705/3351, 67% SVM Private

METASTAB rat 10,056 2892 Stablej 7164 Unstablej 6705/3351, 67% SVM Private

METASTAB mouse 7026 2671 Stablej 4355 Unstablej 4684/2342, 67% SVM Private

Table 1. In silico models information. aCompound categories are the same originally assigned by the authors of 
the works where data come from. bCompound categories thresholds for BCRP INHIB model are IC50 ≤ 15 µM 
or inhibition ≥50% for inhibitors and IC50 > 50 µM or inhibition <30% for non-inhibitors. cCompound 
categories for BCRP RECOG model were assigned based on experimental transport proved for substrates 
and experimental lack of transport proved for non-substrates. dFraction absorbed >90% for permeable 
compounds and fraction absorbed <40% for non-permeable compounds. eIn silico prediction of the Blood 
Brain Barrier (BBB) permeability in vivo in rodent is based on experimental measurement of brain to plasma 
ratio of concentrations (Kp) in vivo at 2 time points after compound administration in rodents (Kp > 0,8 
for permeable compounds and Kp < 0,2 for non-permeable compounds). fCYP implication >70% for high 
implication compounds and CYP implication <10% for low implication compounds. gIC50 < 2 µM for inhibitors 
and IC50 > 15 µM for non-inhibitors hIC50 < 2 µM for inhibitors and IC50 > 8 µM for non-inhibitors iIC50 < 1 µM 
for inhibitors and IC50 > 10 µM for non-inhibitors. jStable when metabolic stability >60% and unstable when 
metabolic stability <30%.

http://S1
http://S7
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To create the ADME-Space we used the self-organizing map (SOM) approach25. SOM is a type of artificial 
neural network that condenses the information contained in an n-dimensional matrix into a two-dimensional 
map where objects are clustered differently, based on their X-description. The SOM algorithm has been recently 
applied (by some of us) to define an applicability domain for UPLC-MS retention time prediction42, but also to 
several (and different) research fields, including structural sub-cluster analysis28, ligand-based virtual screening43 
and docking-binding cavity analysis44.

Approximately 26,000 Servier molecules were extracted from an internal database, after filtering out com-
pounds by molecular weight (retaining only if 100 < MW < 1000) and chemical composition (excluding those 
with elements other than C, H, N, O, P, S and halogens). A 50 × 50 map (2500 nodes) was built using the software 
“MaTCh” (Map The Chemicals), which is a Servier in-house implementation of the SOM algorithm. Though the 
low number of descriptors used, the high dimension (2500 possible positions) of the map is justified by the high 
number of molecules used for training. However, only 60% of the nodes of the ADME-Space were active (1498 
nodes are labelled ON, because populated, i.e. contained at least one molecule) so carrying some information 
within. Vice versa, empty nodes (labelled OFF) do not contain information. Empty nodes are those having a 
vector too dissimilar from any molecule descriptors vector. Hence, they define portions of the space where mol-
ecules similar to those used to build it will never be found. Consequently, the ADME-Space applicability domain 
comprises the ensemble of nodes that are populated (ON nodes).

Given that we used 20 ADME properties to build the space, if considering two potential activity levels for any 
property (hence omitting the grey zone defined by the level ‘0’), an exhaustive set of all the possible combinations 

Figure 1. Accuracy values achieved by each model with external validation sets. For CACO2 PERM model, the 
reported value corresponds to the Matthew’s correlation coefficient.

Model Predicted property value: “+1” Predicted property value: “−1”

BCRP INHIB Inhibitor Non-inhibitor

BCRP RECOG Substrate Non-substrate

BRAIN PERM Permeable Non-permeable

CACO2 PERM Permeable Non-permeable

CLEAR Metabolic Renal

CYP1A2 PERC High implication Low implication

CYP1A2 INHIB Inhibitor Non-inhibitor

CYP2C9 INHIB Inhibitor Non-inhibitor

CYP2D6 PERC High implication Low implication

CYP2D6 INHIB Inhibitor Non-inhibitor

CYP3A4 PERC High implication Low implication

CYP3A4 INHIB Inhibitor Non-inhibitor

METASTAB human Stable Unstable

METASTAB mouse Stable Unstable

METASTAB rat Stable Unstable

MRDD Low High

OATP INHIB Inhibitor Non-inhibitor

OCT2 INHIB Inhibitor Non-inhibitor

PGP INHIB Inhibitor Non-inhibitor

PGP RECOG Substrate Non-substrate

Table 2. Prediction assigned arbitrary to each model categorical output. If the output is “0”, the model was not 
able to classify the molecule, and the predicted class is “uncertain”.
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would count 220, that is more than one million of different ADME fingerprints. With this perspective, the SOM 
map of ADME-Space is a powerful simplification, because 2500 nodes account for all the possibilities. Of course, 
there will exist molecules with ADME profile far from all the nodes: they will anyway be associated to a node, but 
the distance molecule-node would be big enough to force the method not to provide predictions for that mole-
cule. These molecules can be seen as outliers compared to the set used to build the map. As well, nodes exist that 
are impossible to fill, because their vector is unrealistic (OFF nodes). They are “transition” nodes between realistic 
areas. A view of ADME-Space is as an ensemble of layers (see Fig. 2), with each layer being the distribution on the 
map for a specific ADME property. In all the layers, the nodes are colour-coded according to predicted property, 
and areas with defined borders are evident, where green nodes contain molecules with positive values, red nodes 
molecules with negative values, and yellow nodes represent areas of uncertainty (for the complete set of properties 
distribution plots, see Supplementary Information Figure S1). Given the perfect overlap of the layers, the vector 
that perpendicularly goes through all the layers defines the profile of each node. Figure 2 reports a graphical rep-
resentation of the ADME fingerprint for the node “44_28”. For a given node, it is possible to know the number of 
molecules within the node (189 in this case) and to extract their profile. In this example, molecules are predicted 
with low metabolic stability in all the three species considered (human, rat and mouse), mainly due to CYP3A4 

Figure 2. ADME fingerprint for the node 44_28. The multilayer representation of the ADME-Space (top) 
allows the comparison of the maps for more properties. The ADME fingerprint of a single node is the vector 
that goes through the maps for all the properties. It can be represented with a unique diagram (bottom), because 
for the given node the three values allowed correspond to the external circle (+1), the internal circle (0), and the 
central point (−1).

http://S1
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rather than other CYP isoforms, and the clearance is metabolic rather than renal. Other information concerns the 
high permeability in both Caco2 and brain, and low MRDD. Finally, there are two warnings for possible adverse 
drug reactions (ADRs) due to Pgp and OCT2 inhibition. Therefore, compounds predicted in this node should be 
further studied in vitro with Pgp and OCT2 inhibition assays, in order to verify the potential ADRs.

ADME-Space validation. The comparison between the distributions of predicted versus effective properties 
for the in silico models used can provide a fist idea of the space reliability. Real structures for which experimental 
data were known were projected in the map. Then they were coloured either by the in silico value predicted by 
the models or by the corresponding experimental value. As illustrated in Fig. 3 with metabolic stability in human 
and 3A4 inhibition, the shapes for predicted and experimental data are quite similar. This is due to the quality of 
models and it confirms the accuracy of descriptors as well. Furthermore, it suggests how experimental properties 
are wells distributed in the same map. Similar shapes of distributions were observed also for other properties.

ADME-Space applications. Given the multilayer structure of the SOM, two or more ADME properties are 
easily comparable: this helps the simultaneous monitoring, necessary to guide the ADME optimization projects, 
in which we may focus on areas of the map characterized by no inhibition of cytochromes and transporters, along 
with low metabolism or high permeability, to mention a few.

Below we provide some examples to highlight how the ADME-Space can be used in drug development to 
decide which in vitro key ADME experiments may be carried out next. Routine ADME experiments often include 
metabolic stability, clearance and permeability, and give an overall idea of the most relevant processes. Besides 
these experiments, other important information may be necessary (implication of different cytochromes, mech-
anisms of absorption, influence of transport proteins), but the execution of the complete panel would increase 
the costs too much. Thus, warnings from the ADME-Space can guide the choice of additional experiments to 
perform, to minimize the research costs while optimizing the ADME profile of NMEs.

Finally, we used the ADME-Space to project external compounds, a small series of analogues designed to 
inhibit the bacterial efflux pump NorA, and a set of compounds having measured experimental solubility (soluble 
and not-soluble molecules). The results obtained are discussed below.

Application 1: focus on permeability and active transport. Efflux proteins can modulate the drug 
intestinal absorption, estimated in vitro by using Caco-2 cells. Figure 4 compares the maps of Caco-2 permeability 
and transport mediated by Pgp and BCRP. Noteworthy, we observed a similar profile of the maps for low perme-
ability (red) and high transport (green) by Pgp. The profile of BCRP is different, but some intersecting regions 
exist. Thus, we identified three main areas (circled in black and marked as A, B and C), that correspond to low 

Figure 3. Comparison between predicted and experimental distributions for CYP3A4 INHIB and METASTAB 
human. Uncertain nodes are coloured in yellow.
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permeability regions, coloured by the efflux protein involved. As example, three public molecules, taken from 
DrugBank45, projected on the space and located in these three regions are reported. For the molecule DB01203, 
DrugBank reports low absorption and Pgp transport in accordance to our findings. The other two are experimen-
tal drugs for which no further ADME information is available. According to the maps, Pgp can be hypothesized 
as the major cause for the low permeability of compounds of the A region (purple cells), and the same can be 
hypothesized for BCRP (orange cells) for compounds of the C region. On the other hand, the low permeability 
of compounds from region B may be seen as a mixed effect of both transporters (black cells). In general, this 
result is in agreement with the experimental finding whereby low permeability molecules in Caco-2 experiments 
could be effectively transported by transport proteins46. Common output of Caco-2 experiments is whether active 
transport is involved, but not which protein is responsible. Thus, the maps can guide to run experiments toward 
Pgp, BCRP, both proteins or even none of them. Further evidence from the maps is the only partial overlapping of 
Pgp and BCRP maps that reflects a substrates diversity47. We also observed, in minor extent, mismatching regions 
(not shown), where the low permeability of molecules is not a consequence of efflux proteins, but could be due to 
other factors (such as, simply, high polarity).

Figure 4. The first row of diagrams represent the SOM distribution for Caco2 permeability (green: permeable; 
red non-permeable), PGP recognition (green: substrate; red: non-substrate), and BCRP recognition (green: 
substrate; red non-substrate), whereas yellow nodes indicate where the property could not be defined 
(uncertain). Diagrams in the second row were obtained by filtering those of the first row: we kept only the nodes 
with low permeability (red) or high active transport (green, PGP and BCRP substrates). The content of the maps 
is merged, and we report in the final diagram three regions, marked with the codes (A–C). These contain nodes 
that match Caco2 low permeability and PGP/BCRP high transport, and different colours allow seeing which 
proteins are involved: purple nodes for Pgp transport only, orange nodes for BCRP transport only, black nodes 
for both proteins.
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Application 2: focus on metabolism. Drug metabolism is regulated by several enzymes, with cytochrome 
P450 often playing a key role. However, to know which CYP isoform is involved is as much important as it is to 
know whether CYP is involved or not. Figure 5 condenses the map of human metabolic stability with those of 
different CYP isoforms (1A2, 2D6 and 3A4, contribution to the metabolism). As in the previous example, only 
some regions are highlighted: those where molecules are predicted as unstable and with at least one CYP iso-
form “highly implicated”. Unsurprisingly, CYP3A4 (cyan nodes) is spread over a large part of the map, whereas 
CYP1A2 (orange nodes) is responsible for the metabolism of compounds that lie in the top-right region of the 
map. Black nodes correspond to the case of two or more isoforms involved, whereas very few pink nodes are 
specific for CYP2D6.

Hence, this comparison informs on the overall rate of metabolism (high rate in this case) and on the num-
ber of enzymes involved (which colour). In the case of only one enzyme is involved in metabolism the risk of 
drug-drug interactions (by decreased exposure due to metabolism inhibition) is more relevant. On the other 
hand, the DDIs risk is lower when two or more enzymes are involved. Finally, when more than one enzyme is 
involved, SAR for in silico prediction of metabolites is much more hazarded. Of course, what Fig. 5 shows is a 
simplification of the problem, whereas the number of possible isoforms involved is higher and, even in this case, 
there are regions of mismatch. In particular, regions of the space exist where nodes are described by low metabo-
lism but also high implication of one of the isoforms, 1A2, 2D6 or 3A4 (data not shown). This is not unexpected, 
given the kind of data used for the CYP implication models (percentage of clearance of a single isoform divided 
by the overall microsomal clearance). Considering time consuming experiments, our approach provides an alter-
native to speed up some solutions proposals.

Application 3: focus on bioavailability and drug-drug interactions risk. The example reported in 
Fig. 6 concerns the detection in the space of regions with optimal (green) and non-optimal (red) ADME and 
DDI risk. To simplify, we considered only four features: Caco-2 permeability, human metabolic stability, Pgp 
recognition and the number of enzymes involved in metabolism, but the procedure can be repeated with even 
more properties. After combining the maps, we observe “risky” nodes (low absorption, low metabolic stabil-
ity, implication of only one cytochrome and Pgp recognition), as well as “safe” nodes (high absorption, high 
metabolic stability, implication of more than one cytochrome and no Pgp recognition). The first two properties 
suggest the bioavailability of drugs, whilst the others can anticipate the risk of drug-drug interactions. Part of 
drug-drug interaction is due to the inhibition of drug metabolism by a co-administrated compound. Usually, the 
risk decreases when the number of enzymes involved in the metabolism of the drug increases. The probability of a 
complete blockage of the drug metabolism decreases when at least two or more metabolism enzymes are involved. 

Figure 5. Combined map coloured by CYP implication. Only unstable nodes in the METASTAB human 
distribution are reported.
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If one of them is inhibited, the drug have a chance to be metabolized by the other. Whereas, when just one enzyme 
is involved, and it is inhibited, the drug-drug interaction risk may be important. Similarly, Pgp inhibition by a 
co-administrated compound increase the organism exposure to its substrates and, consequently, the risk of DDIs.

Concerning the just described case, in Fig. 6, two DrugBank molecules having these opposite features are 
reported. The information reported on DrugBank for DB01254 is that it is extensively metabolized, mainly by 
CYP3A4 and it is a Pgp substrate. For DB00487 the only information provided is the high intestinal absorption. 
Such information are in accordance with the ADME-Space maps.

Hence, a potential use of this kind of maps would be in screening, to guide the choice of molecular candidates: 
those predicted in red regions would be less preferred to those predicted in green regions, for either the expected 
low bioavailability or potentially higher drug-drug interaction risk.

Application 4: Projecting Chemical Series. In order to study how the ADME-Space arranges structural 
analogues (molecules with minimal structural differences), 13 in dole-based molecules, recently objects of a SAR 
study48, were projected. After projection, 5 molecules (out of 13) were predicted in OFF cells, and were no further 
considered.

The disposition of the others is reported in Fig. 7. The top-left part of the ADME-Space allocates the four 
indoles with a ring moiety at the terminus of the side chain, whereas the derivatives without the ring moiety are 
located in the right-bottom part of the map. Furthermore, Fig. 7 shows how very similar molecules (based on 
the chemical structures), but with very different human metabolic stability will be grouped by their metabolic 
stability and not by their structure. This is the reason why two groups of molecules are emerging in very different 
regions of the space, one for low metabolic stability (red nodes) one for high metabolic stability (green nodes).

This means that In general, the model seems to consider similar, in terms of ADME, molecules with minor 
modifications (just one or two atoms are different). On the other hand, more relevant structural differences (like 
the addition of an aliphatic ring at the chain) cause important ADME-cliffs. As a result, molecules with approx-
imately 80% of the structure in common, that in a fingerprint-based or VolSurf+-like based PCA would lie very 
closely, belong to nodes of the space that are far from each other. The fact that different chemical moieties may 
significantly alter the ADME profile of molecules is not new; what is noteworthy is that the space detected this 
alteration without any experimental check, confirming this method a useful tool in drug design.

Application 5: Analysis of a new ADME property. We demonstrated here the ability of the ADME-Space 
to describe a naïve ADME property (which is not included in the ADME property used to create the map). We 
take the example of solubility experiments, measured on internal compounds by reprecipitation from DMSO 
stock solutions in buffer. The reported map shows clearly region of low solubility (red) and high solubility (green) 
(see Fig. 8).

This demonstrates the links between different ADME properties. Although solubility was not used, absorp-
tion, metabolism and transport properties are linked to solubility. This is the basis of the Biopharmaceutical 
Classification System (BCS) and Biopharmaceutics Drug Disposition Classification System (BDDCS) classifi-
cation49, 50. When creating the map, compounds are grouped based on these ADME similarities. It is obvious 
that naive ADME properties linked to those used in the map building will appear as clear areas in the map. Our 
approach is a visual demonstration of these links through the ADME-Space. This ability of ADME-Space to 
anticipate naïve ADME properties, based on the ADME property similarity, is highly realistic and can be more 

Figure 6. Regions of the ADME-Space with optimal (green) and non-optimal (red) ADME features.
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effective if compared to classical pure chemical description used in classical chemical spaces. In our opinion, the 
use of ADME-Space as a support for compound ADME properties is a very powerful tool in visual data analysis 
of large datasets.

Discussion and Conclusions
A big challenge for medicinal chemists is to design drugs with the desired biological properties (including 
expected activity and ADME profile), and to achieve it with the least number of attempts. In this perspective, 

Figure 7. Spatial disposition of structurally similar molecules over the ADME-Space. Nodes are coloured by 
human metabolic stability (green: stable; red: unstable).

Figure 8. Region of the ADME-Space coloured by solubility.
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predicting the ADME profile of drug candidates before their synthesis, in the early stage of drug discovery, could 
help in selecting candidates with the less critical ADME profile.

We propose here a computational tool approach, that we called ADME-Space: we wriggled form any structural 
description of the molecule, by focusing on its behaviour instead. By applying the SOM algorithm on approxi-
mately 26,000 molecules, each described by twenty predicted ADME properties, we obtained a two dimensional 
map where molecules are arranged according to their ADME behaviour. In other words, the novel procedure 
allows, for the first time to our knowledge, to project a molecule onto a space based on ADME properties. From 
the position on the map (the node), we get a trend on its ADME profile, because each node is associated to a spe-
cific ADME fingerprint. Moreover, the space developed is sensible to small structural modifications and it can be 
enriched with additional ADME properties.

In the ADME-Space, optimal regions can be defined for several ADME properties at the same time. In this 
way, the medicinal chemist can identify where optimum structures are supposed to be (this is not possible with 
chemical structure or fingerprint based spaces). Successively, it is possible to project the designed compounds and 
see where they are located compared to the expected optimal region (i.e. optimal compound). In addition, it is 
also possible to project libraries of compounds, see where there are located, and realize which structural modifi-
cation could get closer to the optimal compound.

In conclusion, the ADME-Space opens a new framework for the multi-parametric data analysis in drug dis-
covery. Projecting NMEs on this map is a new way to explain their behaviour, to explore the space, to look for 
the most suitable ADME profile, to get warnings on potential ADME problems, and even to choose the proper 
in vitro experiments to carry out. A perspective of this work can be the addition of the pharmacological dimen-
sion, which is an essential aspect in the research of new drugs. Moreover, the same identical procedure could be 
applied to public data (for example to DrugBank molecules) to develop an ADME-Space with public molecules 
and descriptors.

Methods
Experimental data curation: datasets from scientific literature. For P-glycoprotein inhibition, we 
used the dataset published by Broccatelli et al.13, who collected data for 1272 molecules from 61 articles. We used 
the data as originally conceived, with a training set of 772 molecules and a large test set of 503 molecules. The 
original model was based on a sequence of different “blocks”, composed by the molecular description obtained 
with the software VolSurf+ and Flap, as well as PLS and LDA as regression/classification methods. Here, we 
simplified the description (we used only VolSurf+ over the entire training set) but we treated the descriptors 
X-matrix by combining several classifiers.

For P-glycoprotein recognition, we used a dataset presented by Levatic et al.27, who classified compounds as 
P-glycoprotein substrates or nonsubstrates based on high-throughput data on different cancer cell lines. We used 
their dataset for modelling, composed of 934 molecules.

For the clearance model, we used the data collected by Lombardo F. and colleagues10, whose aim was to 
develop a computational model to predict the primary clearance mechanism, in order to guide further PK stud-
ies either in vitro or in vivo. They collected clearance data for 1028 molecules, but modelled a dataset of 469 
with “clear quantitative data” for renal or metabolic clearance. They used a selection of VolSurf+ descriptors 
in combination with structural fragments, multivariate methods such as PCA and PLS, and an internal 5-fold 
cross-validation. We also limited the model to renal and metabolic pathways, but we used only VolSurf+ as 
descriptors and several supervised classifiers to build a composite model.

Contrera et al. from US Food and Drug Administration (FDA) compiled a database for the maximum rec-
ommended daily dose (MRDD) of 1309 pharmaceuticals and proposed some QSAR modelling based on MDL 
2D-descriptors26. We downloaded the dataset from the FDA website, and developed a classification model by 
using only compounds with clear information on low/high MRDD (with low MRDD considered as potential 
toxic compounds and high MRDD as nontoxic compounds).

For the OCT2 inhibition model, we used the dataset proposed by Kido et al.28, who screened a library of 
910 prescription drugs and drug-like compounds by using a high-throughput assay. Successively, they detected 
sub-clusters (i.e. substructures) of OCT2 inhibitors by means of the SOM algorithm applied to structural 
descriptors.

De Bruyn et al. presented an in vitro OATP1B inhibition high-throughput assay, to assess the inhibitory poten-
tial of drug candidates for the OATP1B protein29. They published data for 2000 molecules, for both 1B1 and 1B3 
isoforms; after careful analysis (we observed a large overlap of the datasets), we decided to limit our modelling 
efforts to the isoform 1B1.

Concerning the BCRP datasets (inhibition and recognition), checking more than 100 publications led to the 
collection of 935 and 385 molecules, respectively. We kept only proved BCRP-binders, and we tuned the activity 
thresholds for compound categories comparing data for the same molecules, when available in two or more 
papers. Finally, both BCRP datasets were randomly split into training and test set (see details in Table 1). Details 
for BCRP-categories thresholds (based on IC50 and percentage of inhibition), as well as the collected data for 
BCRP recognition and BCRP inhibition is available as Supplementary Information Tables S8 and S9, whereas for 
the other datasets we refer to the original publications.

Experimental data curation: private in-house datasets. In silico prediction of the Blood Brain 
Barrier (BRAIN PERM) permeability in vivo in rodent is based on experimental measurement of brain to plasma 
ratio of concentrations (Kp) in vivo at 2 time points after compound administration in rodents.

In silico prediction of Caco-2 Permeability (CACO2 PERM) was based on Caco-2 permeability assay which 
uses an established method for predicting the in vivo absorption of drugs across the gut wall by measuring the 
rate of transport of a compound across the Caco-2 cell line. The Caco-2 cell line is derived from a human colon 

http://S8
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carcinoma. The cells have characteristics that resemble intestinal epithelial cells such as the formation of a polar-
ised monolayer, well-defined brush border on the apical surface and intercellular junctions. The absorbed fraction 
(Fabs) is the parameter that is modelled here.

In silico implication of human cytochrome P450 3A4 in the metabolism of drugs (CYP3A4 PERC) is based on 
experimental characterisation of the implication of Cyp 3A4 measured as the part of 3A4 in the Cyp P450 metab-
olism of drug (%Cyp3A4) compared to other Cyp metabolism in human (in vitro experiments based on incuba-
tion with bactosomes (transfection with human CYPs gene). The same is valid also for the isoforms 1A2 and 2D6.

In silico inhibition potential model is based on experimental measurements of IC50 of CYP2D6 
enzyme. (CYP2D6 INHIB). A superzome is used to realise a competition between AMMC (3-[2-(N,N-Die
thyl-N-methylammonium)ethyl]-7-methoxy-4methylcoumarin, a P450 activity probe) and a chemical (an inhib-
itor). The fluorescent metabolite of AMMC is measured by spectrofluometry at 3 concentrations of inhibitor: 
25/2.5/0.25 µM. IC50 of the chemical is derived from the detection of fluorescence of the metabolite on blank, 
control and the 3 concentrations.

In silico inhibition potential model is based on experimental measurements of IC50 of CYP3A4 enzyme. A 
superzome is used to realise a competition between DBF (Dibenzylfluorescein, a P450 activity probe) and a 
chemical (an inhibitor). The fluorescent metabolite of DBF is measured by spectrofluometry at 3 concentrations 
of inhibitor: 25/2.5/0.25 µM. IC50 of the chemical is derived from the detection of fluorescence of the metabolite 
on blank, control and the 3 concentrations (CYP3A4 INHIB). The same procedure has been applied also for the 
isoforms 1A2 and 2C9.

In silico metabolic stability (METASTAB human, METASTAB rat, METASTAB mouse) is based on experi-
mental metabolic bioavailability characterised in vitro in presence of corresponding species (human, rat, mouse) 
hepatic microsomes (10−7 M kinetic incubation up to 60 min with 0.33 mg prot/ml microsomal proteins).

Datasets were randomly divided in training and test sets and, wherever possible, the test set was split in an 
internal validation set (used for tuning the parameters) and an external (blind) validation set. The model for 
blood-brain ratio was the only exception: a robust PLS regression model was based on partition data between 
brain and plasma for a well-balanced training set (only 78 compounds).

Data availability statement. Corporate datasets used and/or analysed during the current study are not 
publicly available due to non-patented research compounds. Public data used during this study are included in 
this published article (and its Supplementary Information files).
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