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Metabolic Biomarkers for 
Prognostic Prediction of 
Pre-diabetes: results from a 
longitudinal cohort study
Hailuan Zeng1, Renchao Tong2, Wenxin Tong1, Qiaoling Yang2,3, Miaoyan Qiu1, Aizhen Xiong2, 
Siming Sun3, Lili Ding2,3, Hongli Zhang1,3, Li Yang2,4 & Jingyan Tian1,3

To investigate the metabolic biomarkers of predicting the transition from pre-diabetes (pre-DM) to 
normal glucose regulation (NGR) and diabetes (DM) in a longitudinal cohort study. 108 participants 
with pre-DM were followed up for ten years and divided into 3 groups according to different glycemic 
outcomes. 20 participants progressed to DM, 20 regressed to NGR, and 68 remained at pre-DM. 
Alterations in plasma metabolites in these groups were evaluated by untargeted ultra-performance 
liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Twenty 
three metabolites related to glycerophospholipid metabolism, oxidation and antioxidation were 
associated with the process from pre-DM to NGR, while twenty two metabolites related to amino acid 
metabolism, glycerophospholipid metabolism and mitochondrial β-oxidation played important roles in 
the progression to DM. Results from stepwise logistic regression analysis showed that five biomarkers 
(20-Hydroxy-leukotriene E4, Lysopc(20:4), 5-methoxytryptamine, Endomorphin-1, Lysopc(20:3)) 
were good prediction for the restoration to NGR, and five biomarkers (Iso-valeraldehyde, linoleic acid, 
Lysopc(18:1), 2-Pyrroloylglycine, Dityrosine) for the development of DM. The findings suggest that the 
combination of these potential metabolites may be used for the prognosis of pre-DM. Targeting the 
pathways that involved in these prognostic biomarkers would be beneficial for the regression to NGR 
and the early prevention of DM among pre-DM.

Pre-diabetes (pre-DM), typically defined as blood glucose levels above normal but below diabetes thresholds, 
has been increasing globally and has a high chance of developing diabetes mellitus (DM)1. It is estimated that 
there were 318 million adults suffering from impaired glucose tolerance in the world by 20152. As to the Chinese 
adult population, a cross-sectional survey in 2010 reported that the estimated prevalence of pre-DM was 50.1%3. 
Previous studies4 have shown that about 5–10% of pre-DM progressed to DM every year, and persistent hypergly-
cemia leads to the complications that are the major source of morbidity, mortality, and cost. Nowadays, There is a 
common conception that this natural history is not inevitable5. Randomized controlled trials showed that lifestyle 
intervention or glucose-lowering medications could delay and even reverse the natural course of pre-DM6–8. The 
American Diabetes Association (ADA) recommends at least annual screening via testing fasting plasma glu-
cose (FPG), 2-hr 75 g oral glucose tolerance test (OGTT), or hemoglobin A1c (HbA1c) in those with pre-DM9. 
However, clinicians are far from satisfied with the presently used method of monitoring glycemic level because of 
its hysteresis. FPG, OGTT and HbA1c are used more as a diagnostic than a predictive marker. Interestingly, mul-
tiple cross-sectional and prospective cohort studies have revealed the metabolism of impaired branched-chain 
amino acid (BCAA), aromatic amino acid (AAA), free fatty acid (FFA), acylcarnitines and glycerophospholipid 
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are associated with insulin resistance, and many metabolites were considered as biomarkers for the prediction 
of pre-DM and DM10–13. However, little is known about the potential metabolic biomarkers of different glycemic 
prognoses among subjects with pre-DM. More importantly, building a metabolic model for predicting the tran-
sition from pre-DM to NGR or DM would be helpful for the early prevention and treatment among individuals 
with pre-DM.

Metabolomics provides a snapshot of the metabolic dynamics that reflects the response of living systems 
to pathophysiological stimuli and/or genetic modifications and surrounding environment. Furthermore, 
in many ways, tanscriptomic, genomic, and proteomic changes are upstream of the final physiology of cells, 
whereas the metabolic profile is likely closer in response to the disease process14. Ultra-performance liquid 
chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) of biofluids can easily detect 
hundreds of individual species in a single clinical sample, reflecting the biochemical fingerprint of the organism15. 
Characterized by sensitivity and high mass accuracy, the technique has been employed in identifying novel bio-
markers for cancers16,17, metabolic disorders18–20, drug toxicity and function21,22, and so on.

With the current study, we characterized the metabolic profiles of fasting plasma samples among the 108 
pre-DM at baseline with different outcomes ten years later utilizing untargeted UPLC-QTOF-MS analysis. 23 and 
22 metabolites were identified as biomarkers for transition to NGR and DM from pre-DM, respectively. And the 
underlying biochemical pathways leading to different prognoses were investigated.

Results
Demographic and Clinical Characteristics. 108 participants with pre-DM from a longitudinal cohort 
study were followed up for ten years and were divided into 3 groups according to different glycemic outcomes. 20 
participants progressed to DM, 20 regressed to NGR, and 68 remained at pre-DM, respectively.

At baseline, there were no significant differences in ages, gender, body mass index, blood glucose, lipid pro-
file, blood pressure as well as general health conditions among these 3 groups (Supplemental Table S1). At the 
end-point of the study, no significant differences in the biochemical characteristics were found among the three 
groups, except for fasting glucose, 2-h glucose and HbA1c (Table 1).

Quality control. The robustness and stability of the method was assessed by repeat analysis of a represent-
ative pooled quality control (QC) sample during sample runs. The overlapped total ion current chromatograms 
of the QC sample demonstrated the repeatability of our UPLC-QTOF-MS system (Supplemental Fig. S1A). The 
principal component analysis (PCA) performed on QC and other groups revealed that QC samples were clus-
tered in the PCA scores plot (Supplemental Fig. S2A). The percentage coefficient of variation (CV%) of peak 

Figure 1. PLS-DA score plots of different groups based on plasma spectral data of UPLC-QTOF-MS positive 
ion mode. One point stands for one subject. (A) PLS-DA score plot of the NGR vs pre-DM vs DM groups. 
(B) PLS-DA score plot of the NGR vs DM groups. (C) PLS-DA score plot of the NGR vs Pre-DM groups. (D) 
PLS-DA score plot of the pre-DM vs DM groups.
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intensity was estimated as 4.1–18.6%. These results collectively indicated good repeatability, reliability, and stabil-
ity of this method for metabolite analysis.

Plasma metabolite profile and makers for NGR and DM. Representative base peak intensity (BPI) 
chromatograms of plasma samples indicated that the sample metabolites attained suitable separation. Typical 
single UPLC-QTOF/MS base peak intensity chromatograms of a healthy control, a patient with pre-DM and 
a patient with DM are presented in Supplemental Fig. S1B. Multivariate statistical analysis was performed to 
determine whether the plasma metabolic profiles were different among participants progressed to DM, regressed 
to NGR and remained at pre-DM. The PCA score plots of the three groups, NGR vs DM, NGR vs pre-DM and 
pre-DM vs DM are presented in Supplemental Fig. S2B–D. The R2X values of PCA analysis were > 0.5 (0.651, 
0.604, 0.631, respectively). Partial least squares discriminant analysis (PLS-DA) results of pair-wise groups indi-
cated separations in the three groups (Fig. 1A) and sub-comparison groups (Fig. 1B–D) with valid model fits 
(R2Y(cum) > 0.7 and Q2(cum) > 0.4)23. Variable importance in projection (VIP) values were obtained from the 
models and pair-wise statistical test for difference was performed. Variables with VIP value > 1.0 and statistical 
p value < 0.05 were selected and verified by loading plots. Finally, a metabolite was annotated according to MS 
information, structure information, accurate mass, retention time, fragmentation pattern and standards.

Based on the above steps, a panel of 23 (Table 2) metabolites distinctively discriminated NGR and DM groups 
as well as NGR and pre-DM groups with a same trend, which were considered to be the potential metabolic 
biomarkers for the prognosis to NGR. Similarly, a panel of 22 (Table 3) metabolites discriminated NGR and DM 
groups as well as DM and pre-DM groups with a same trend were considered to be metabolic markers for the 
prognosis to DM. Compared to the pre-DM group, 18 biomarkers were up-regulated and 5 biomarkers were 
down-regulated in the NGR group, while 5 biomarkers increased and 17 biomarkers declined in the DM group. 
Of the substances that were screened in this study, several substances appear to be unknown. We will attempt to 
identify these unknown substances in future studies.

NGR (n = 20) Pre-DM (n = 68) DM (n = 20)

Age, years 57.4 ± 8.8 60.4 ± 8.9 57.9 ± 10.1

Gender, N, male/female 7/13 25/43 7/13

Body mass index, kg/m2 24.0 ± 3.1 24.8 ± 2.9 26.1 ± 3.9

Waist circumference, cm 83.3 ± 7.5 87.1 ± 8.4 88.3 ± 11.9

Waist-hip ratio 0.88 ± 0.04 0.90 ± 0.06 0.92 ± 0.08

Hypertension, % 45.0 57.4 70.0

Family history of DM, % 35.0 33.8 45.0

Current smoker, % 5.0 22.1 15.0

Current drinker, % 15.0 13.2 0.0

Physical activity

Inactive, % 5.0 11.8 10.0

Medium, % 70.0 73.5 75.0

Active, % 25.0 14.7 15.0

SBP, mmHg 132.5 ± 19.4 138.9 ± 14.8 138.7 ± 17.5

DBP, mmHg 77.4 ± 8.8 80.5 ± 9.5 80.4 ± 10.4

Fasting glucose, mmol/L 5.2 ± 0.2* 5.6 ± 0.5 8.0 ± 2.9**#

2-h glucose, mmol/L 6.0 ± 0.8** 7.6 ± 1.8 13.1 ± 4.7**#

HbA1c, % 5.3 ± 0.5** 5.8 ± 0.3 7.2 ± 1.4**#

Fasting insulin, pmol/mL 8.4 ± 3.7 9.2 ± 5.0 11.3 ± 3.8*a

2-h insulin, pmol/mL 38.9 ± 23.5 71.2 ± 65.4 58.7 ± 36.8

HDL, mmol/L 1.4 ± 0.3 1.5 ± 0.4 1.5 ± 0.4

LDL, mmol/L 3.1 ± 0.7 3.0 ± 0.9 3.5 ± 1.1

TC, mmol/L 5.2 ± 1.2 5.5 ± 1.8 6.2 ± 1.3b

TG, mmol/L 1.4 ± 0.7 2.0 ± 2.6 2.8 ± 2.3*#

BUA, umol/L 311.9 ± 69.7 338.7 ± 88.5 321.3 ± 79.4

CR, umol/L 81.1 ± 18.6 72.8 ± 29.0 62.6 ± 25.7

ALT, U/L 20.8 ± 9.0 23.0 ± 16.8 33.1 ± 32.7

AST, U/L 24.5 ± 6.5 27.3 ± 17.8 28.1 ± 16.8

γGT, U/L 24.0 ± 21.4 31.8 ± 30.5 31.8 ± 17.2

Table 1. Characteristics of the study participants at end-point. Values are mean ± SD or %. *p < 0.01, 
**p < 0.001 compared to pre-DM and #p < 0.001 compared to NGR. aExact significance (2-tailed), p = 0.015 
compared to NGR; bp = 0.017 compared to pre-DM. SBP: systolic blood pressure; DBP: diastolic blood pressure; 
HbA1c: hemoglobin A1c; HDL: high density lipoprotein; LDL: low density lipoprotein TC: total cholesterol; 
TG: triglyceride; BUA: blood uric acid; CR: creatinine; ALT: alanine transaminase; AST: aspartate transaminase; 
γGT: γ glutamyl transferase.
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Metabolic pathways. Pathway analysis carried out by IPA software revealed that three metabolic path-
ways including glycerophospholipid metabolism, Lipoate Biosynthesis and Incorporation II, and Melatonin 
Degradation II were found to contribute in the process from pre-DM to NGR (Fig. 2A). While L-carnitine 
Biosynthesis, Superpathway of Methionine Degradation, Mitochondrial L-carnitine Shuttle Pathway, and Choline 
Degradation I were associated with the development of DM (Fig. 2B).

Verification and Optimization of Potential Biomakers. Receiver operating characteristic (ROC) 
curves for each potential biomarker were established to test the probability of ‘single biomarkers’. Area under 
curve (AUCs) and their CV% values in QC samples are showed in Supplemental Tables S2 and S3. To assess how 
multiple metabolites collectively classify the NGR/DM and the Pre-DM groups, we built logistic regression model 
using stepwise selection on the 23/22 metabolites for the samples, respectively.

Figure 2. Biological network and canonical pathways related to the identified metabolites in NGR (A) and DM 
(B). Molecules are represented as nodes, and the biological relationship between two nodes is represented as a 
line. Red symbols represent up-regulated metabolites; green symbols represent down-regulated metabolites. The 
solid lines and dotted lines show direct and indirect functional relationships, respectively.
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From pre-DM to NGR, five metabolites entered the multiple regression model: 20-Hydroxy-leukotriene E4 
(standardized [std] β = 2.135, p = 0.004), Lysopc(20:4) (std β = −1.423, p = 0.027), 5-methoxytryptamine (std 
β = 0.606, p = 0.047), Endomorphin-1 (std β = 4.685, p = 0.018),and Lysopc(20:3) (std β = −19.176, p = 0.002) 
with an overall correct percentage of 86.0%. We calculated the sensitivity and specificity based on estimates of 
the final model built on the samples (logitP1 = −1.847 + 2.135(20-Hydroxy-leukotriene E4) − 1.423(Lysopc(20
:4) + 0.606 (5-methoxytryptamine) + 4.685 (Endomorphin-1) − 19.176 (Lysopc(20:3)), and the model fit very 
well (AUC = 0.910, 95% CI [0.838, 0.983], sensitivity = 84.2%, specificity = 91.0%) with cut-off value −0.08 and 
p value < 0.001.

Meanwhile, five metabolites entered the multiple regression model from pre-DM to DM: Iso-valeraldehyde 
(standardized [std] β = −1.544, p = 0.049), linoleic acid (std β = 2.194, p = 0.019), Lysopc(18:1) (std β = −4.769, 
p = 0.013), 2-Pyrroloylglycine (std β = −2.922, p = 0.044) and Dityrosine (std β = 0.285, p = 0.007) with an 
overall correct percentage of 95.4%. The final model (logitP2 = −1.119–5.144(Iso-valeraldehyde) + 2.194(lin-
oleic acid) − 4.769(Lysopc(18:1) − 2.922(2-Pyrroloylglycine) + 0.285 (Dityrosine)) showed satisfactory fitness 
(AUC = 0.976, 95% CI [0.943, 1.000], sensitivity = 90.0%, specificity = 98.5%) with cut-off value −0.33 and  
p value < 0.001. The ROC curves of the combined biomarkers are shown in Fig. 3. Both of them were statisti-
cally different from single metabolites as they showed a higher lower bound of 95% CI of AUCs than most of the 
upper bounds of 95% CI of single metabolites, and were further validated by comparison of AUCs with MedCalc 
Statistical Software with a statistical p value < 0.0524.

Relative concentrations of these metabolites in the logistic regression equations are presented in Fig. 4. These 
data strongly support the robustness of UPLC-QTOF-MS to identify metabolic differences in the plasma samples 
of pre-DM patients with different prognoses (NGR or DM).

Discussion
Early diagnosis in hyperglycemia, prior to developing into diabetes, can improve the living quality of those suf-
fering from pre-DM. The rapid rise in pre-DM worldwide raises urgent needs to develop effective prognostic 
biomarkers and prognosis evaluation methods based on the easily accessible materials, such as blood and urine.

Using UPLC-QTOF-MS based metabolic profiling combined with pattern recognition techniques on plasma 
samples, we identified molecular markers that discriminate the prognoses to NGR and to DM in 108 pre-diabetic 
patients in a longitudinal study with more than ten years of follow-up. In this study, a total of 23 metabolites 
involved in different biochemical metabolic pathways with high statistical significance were associated with the 
outcome of NGR, while 22 metabolites with the outcome of DM.

Metabolites
Measured 
mass, Da

Calculated 
mass, Da

Mass 
accuracy, 
ppm

Quasi-molecular 
ion VIP* FC‡ p† Identification

2,3-Epoxymenaquinone 347.1612 347.1618 −1.7283 M + Na 1.36 1.50 0.0005 HMDB

Pc(14:1/16:1) 740.4650 740.4633 2.2959 M + K 1.52 1.32 0.0152 STD

5-methoxytryptamine 213.1025 213.1009 7.5081 M + Na 1.46 3.56 0.0041 STD

N(6)-(octanoyl)lysine 311.1732 311.1737 −1.6068 M + K 1.31 1.31 0.0204 STD

3-Phenylbutyric acid 356.1910 356.1906 1.1230 2 M + 3H2O + 2 H 1.31 1.29 0.0337 HMDB

Lysyl-Tyrosine 327.2046 327.2028 5.5011 M + NH4 1.29 1.22 0.0401 HMDB

N6-Acetyl-L-lysine 399.2205 399.2214 −2.2544 2 M + Na 1.30 1.23 0.0468 STD

Pantetheine 301.1185 301.1198 −4.3172 M + Na 1.35 1.46 0.0013 HMDB

S-(hydroxymethyl)glutathione 355.1262 355.1287 −7.0398 M + NH4 1.28 1.52 0.0042 STD

3-Ethylphenol 283.1110 283.1095 5.2983 2 M + K 1.11 1.34 0.0085 HMDB

LysoPE(20:5/0:0) 532.2992 532.3034 −7.8490 M + CH3OH + H 1.26 1.18 0.0437 HMDB

Delta 8,14 -Sterol 487.2746 487.2739 1.4366 M +  + 2 K + H 1.26 1.23 0.0488 HMDB

Caprylic acid 306.2666 306.2639 8.8158 M + NH4 1.08 1.15 0.0319 HMDB

1-Stearoylglycerophosphoglycerol 576.3257 576.3272 −2.5767 M + ACN + Na 1.33 1.63 0.0028 HMDB

Endomorphin-1 649.2475 649.2535 −9.2415 M + K 1.57 1.73 0.0026 HMDB

20-Hydroxy-leukotriene E4 473.2654 473.2680 −5.4937 M + NH4 1.28 1.28 0.0004 HMDB

Lysopc(18:3) 518.3237 518.3241 −0.8007 M + H 1.86 0.29 0.0020 STD

Lysopc(20:5) 542.3238 542.3241 −0.5808 M + H 1.73 0.11 0.0000 STD

cis-13,16-Docosadienoic acid 354.3349 354.3372 −6.4910 M + NH4 1.54 1.60 0.0029 HMDB

Lysopc(20:4) 544.3356 544.3398 −7.6515 M + H 1.60 0.70 0.0397 STD

L-palmitoylcarnitine 400.3410 400.3421 −2.8351 M + H 2.11 2.25 0.0075 STD

Pc(18:3/20:3) 806.5683 806.5694 −1.4022 M + H 1.09 0.38 0.0336 HMDB

LysoPC(20:3) 546.3487 546.3554 −12.2925 M + H 1.62 0.14 0.0013 STD

Table 2. Discriminative metabolites between NGR and pre-DM (ESI+ mode). *Variable importance in the 
projection (VIP) was obtained from PLS-DA with a threshold of 1.0. †p values were calculated from tests of 
statistical difference. Difference was considered statistically significant when p < 0.05. ‡Fold change (FC) was 
calculated from the arithmetic mean values of NGR and pre-DM groups. Fold change with a positive value 
indicates a relatively higher concentration present in NGR patients while negative indicates lower.
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Of these perturbed metabolic pathways, particular importance should be given to glycerophospholipid metab-
olism. Earlier studies have demonstrated that diabetes is intimately associated with metabolic disorders of lipids, 
especially phospholipids25,26. Phosphocholine metabolites, including PC and LysoPC, are key components of the 
biomembranes of cells, as well as participating in various biological pathways27,28, especially in cellular signaling 
and metabolism. Correspondingly, significant changes in phosphatidylcholine metabolism were observed in our 
study. PC (16:0/14:0) and PC (18:0/18:2) showed a reduction in level from pre-DM to DM, while PC (14:1/16:1) 
increased and PC (18:3/20:3) decreased from pre-DM to NGR. This is in line with a previous prospective cohort 
study based on 866 participants with seven years’ follow-up that a series of PC such as C32:1, C36:1, C38:3, and 
C40:5 were independently associated with increased risk of T2D and C34:3, C40:6, C42:5, C44:4, and C44:5 with 
decreased risk29. However, it was also demonstrated that the type of linkage between phospholipid core and fatty 
acid residue may be the key factor contributing to the antithetical association between two phosphatidylcho-
line subclasses and T2DM risk29. Therefore, the specific structural formula of the PCs detected needs further 
validation.

What’s more, some studies have reported that changed concentrations of lysoPCs are associated with the risk 
of T2DM, especially lysoPC(18:2), which was significantly altered in patients with impaired glucose tolerance 
(IGT) and was identified as an IGT-specific biomarker30. LysoPCs can mediate many cell-signaling pathways in 
monocytes/macrophages29,31 and specific receptors32, and therefore participate in the inflammatory response. In 
our results, several lysoPC species (LPC C20:4, LPC C18:3, LPC C20:5, LPC C20:3) were down-regulated from 
pre-DM to NGR group, while the plasma level of LPC C18:1 were higher and LPC C18:0 were lower in DM than 
pre-DM patients, possibly owing to altered activity of phospholipase A2 which catalyzes PC hydrolysis to lys-
oPC33. In mouse models, Yea, K et al. have reported that the blood glucose lowering effect of LPC were found to 
be sensitive to variations in LPC acyl chain length34, which may elucidate the divisive findings mentioned above.

In recent years, 5-methoxytryptamine (5-MT) has been revealed to play a pivotal role in the alternative mela-
tonin synthetic pathway, in which serotonin is first O-methylated to 5-MT and, thereafter, 5-MT is N-acetylated 
to melatonin (N-acetyl-5-methoxytryptamine)35. Melatonin was reported as a free radical scavenger and an anti-
oxidant for protection from the oxidative stress36–38, especially reducing oxidative damage to lipids, which is 
important for the maintenance of mitochondrial homeostasis. Letra-Vilela, R. et al. observed that removal of the 
N-acetyl group enhances the antioxidant and neuroprotective properties of the maletonin39. The elevated level of 
plasma 5-MT concentrations contributed to scavenge radicals and radical products and functioned as antioxidant 
against reaction oxygen species (ROS). Meanwhile, an increased level of plasma S-(hydroxymethyl)glutathione 
concentration was observed in patients regressed to NGR. S-(hydroxymethyl)glutathione interconverts with 

Metabolites
Measured 
mass, Da

Calculated 
mass, Da

Mass 
accuracy, 
ppm

Quasi-molecular 
ion VIP* FC‡ p†

Identifi-
cation

Pc(16:0/14:0) 782.4430 782.4499 −8.8121 M + 2 K + H 1.16 0.82 0.0351 HMDB

2-Pyrroloylglycine 191.0420 191.0427 −3.7165 M + Na 1.19 0.84 0.0070 STD

Dityrosine 383.1181 383.1219 −9.9186 M + Na 2.43 1.23 0.0188 STD

Kynuramine 203.0561 203.0581 −9.9529 M + K 3.11 1.25 0.0007 HMDB

L-lysine 188.1400 188.1394 3.4496 M + ACN + H 1.27 0.74 0.0025 STD

L-threonine 164.0296 164.0294 1.2010 M + 2Na-H 2.33 0.59 0.0002 STD

5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1h-imidazole-5-carboxylate 220.0656 220.0676 −9.2791 M + NH4 1.85 0.69 0.0002 HMDB

1,3,7-trimethyluric acid 274.0925 274.0911 5.2719 M + ACN + Na 1.98 1.52 0.0071 STD

Betaine 118.0858 118.0863 −3.8531 M + H 1.28 0.71 0.0006 HMDB

Iso-valeraldehyde 104.1077 104.1075 1.9211 M + NH4 2.16 0.74 0.0000 HMDB

L-carnitine 162.1132 162.1130 1.2337 M + H 1.19 0.73 0.0005 STD

2-ketobutyric acid 103.0397 103.0395 1.9410 M + H 1.39 0.72 0.0003 HMDB

3,5-dihydroxybenzoic acid 187.0605 187.0601 2.1490 M + CH3OH + H 1.77 0.61 0.0010 HMDB

Uric acid 169.0358 169.0356 1.0885 M + H 1.97 0.20 0.0001 STD

Lysope(16:0/0:0) 454.2908 454.2928 −4.4355 M + H 2.07 0.24 0.0006 HMDB

Pantetheine 301.1181 301.1198 −5.6456 M + Na 1.15 0.74 0.0336 HMDB

Palmitic amide 256.2629 256.2635 −2.3062 M + H 1.42 0.41 0.0279 HMDB

3-dehydroxycarnitine 184.0736 184.0740 −2.1730 M + K 1.63 1.30 0.0061 STD

Lysopc(18:1) 544.3363 544.3403 −7.3484 M + H 1.06 0.71 0.0184 STD

Linoleic acid 341.3053 341.3050 0.8174 M + H 1.14 1.19 0.0212 HMDB

Lysopc(18:0) 524.3706 524.3711 −0.8887 M + H 1.34 0.42 0.0398 STD

Pc(18:0/18:2) 786.5968 786.6007 −4.9975 M + H 1.29 0.09 0.0054 HMDB

Table 3. Discriminative metabolites between DM and pre-DM (ESI+ mode). *Variable importance in the 
projection (VIP) was obtained from PLS-DA with a threshold of 1.0. †p values were calculated from tests of 
statistical difference. Difference was considered statistically significant when p < 0.05. ‡Fold change (FC) was 
calculated from the arithmetic mean values of DM and pre-DM groups. Fold change with a positive value 
indicates a relatively higher concentration present in DM patients while negative indicates lower.
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glutathione (GSH), later of which is a key antioxidant and marker for conditions with oxidative stress40. Therefore, 
we can conclude that a balance between oxidation and antioxidation was achieved in patients regressed to NGR.

Caprylic acid, also named octanoic acid, is a medium-chain fatty acid which down-regulates a number of 
key adipogenic genes including peroxisome proliferator activated receptor (PPAR), CCAAT/enhancer binding 
protein alpha. Rats fed on diet rich in medium-chain fatty acids had smaller fat pads, reduced adipose tissue lipo-
protein lipase activity and improved insulin sensitivity and glucose tolerance41. Thus the elevated level of caprylic 
acid may be another contributor to glucose tolerance recovery.

In this study, a major alteration observed in patients progressed to DM was amino acid metabolism with a 
decreased level of L-lysine, L-threonine, Betaine, Iso-valeraldehyde, 2-ketobutyric acid, and 2-Pyrroloylglycine. 
2-Ketobutyric acid is a substance that is involved in the metabolism of many amino acids, such as glycine, methio-
nine, valine, leucine, serine, threonine and isoleucine. It is also one of the degradation products of threonine, 
which can be converted to propionyl-CoA (and subsequently methylmalonyl CoA, which can be converted to 
succinyl CoA, a citric acid cycle intermediate), and thus enter the citric acid cycle. Our research is consistent with 
the report that 2-ketobutyric acid is associated with both prevalent diabetes (OR: 1.43, 95% CI (1.06,1.92)) and 
incident diabetes (OR: 1.81, 95% CI (1.35, 2.42)42 while glycine is found inversely associated with diabetes risk43,44. 
This suggest that increased activity in the L-threonine-2-ketobutyric acid-citric acid cycle and decreased glycine, 
which plays an important role in metabolic regulation and anti-oxidative reactions45 may account for diabetes 
risk.

Betaine, also glycine betaine, has been reported to be disturbed in diabetes and it is regarded as a marker 
of diabetes in plasma and urine samples46–48. It is inversely associated with several components of metabolic 
syndrome including obesity, hypertension, and hyperlipemia49. Mouse model studies suggest increased betaine 
metabolism in diabetes, which could be expected to lower plasma betaine50. In agreement with these findings, a 
reduction of betaine level is an important contribution to DM development.

A decreased level of L-carnitine and an increased level of dityrosine and 3-dehydroxycarnitine were detected 
in patients progressed to DM. These results are consistent with an interesting study investigating the relationship 
between the consumption of red meat and the development of associated diseases51. L-carnitine is known to be a 
long-chain fatty acid transporter in the “Mitocondrial L-carnitine Shuttle Pathway”52, and 3-dehydroxycarnitine 
has been identified as an intermediate metabolite in the intestinal bacterial catabolism of L-carnitine53, which may 
give a hint the involvement of gut microbiota in DM development. Dityrosine has been proposed as a biomarker 
of oxidative stress under a variety of conditions and biological systems including aging, exposure to oxygen free 
radicals, nitrogen dioxide, and lipid hydroperoxides54. Increases in dityrosine levels have been associated with 
pathologies such as atherosclerosis, Alzheimer’s Disease, and so on55,56. Together, these findings reflect impaired 
mitochondrial β-oxidation and perturbed fatty acid metabolism in the development of insulin resistance.

To make it better to apply the identified biomarkers for prediction of pre-DM prognosis in the long run in 
clinical setting, the key of this study was to select and combine several specific biomarkers for establishing a 
noninvasive and accurate predict method for prognosis of pre-DM. The candidate biomarker selection rationale 
was as follows: first, the biomarkers must be confirmed by standards; second, the biomarkers with high VIPs 
in the pattern recognition analysis and significant discrepancy between groups; and last, the biomarkers in the 
logistic regression equation with higher AUCs and predictive sensibility and specificity. As a result, five biomark-
ers (20-Hydroxy-leukotriene E4, Lysopc(20:4), 5-methoxytryptamine, Endomorphin-1, Lysopc(20:3)) and five 
biomarkers (Iso-valeraldehyde, linoleic acid, Lysopc(18:1), 2-Pyrroloylglycine, Dityrosine) were included in the 
predictive equation of NGR and DM, respectively.

Figure 3. (A) ROC analysis for discrimination of pre-DM and NGR groups by logistic regression model 
combining 20-Hydroxy-leukotriene E4, Lysopc(20:4), 5-methoxytryptamine, Endomorphin-1, Lysopc(20:3). 
(B) ROC analysis for discrimination of pre-DM and DM groups by logistic regression model combining Iso-
valeraldehyde, linoleic acid, Lysopc(18:1), 2-Pyrroloylglycine, Dityrosine.



www.nature.com/scientificreports/

8Scientific RepoRts | 7: 6575  | DOI:10.1038/s41598-017-06309-6

In summary, our study comprehensively captured alterations in the human metabolome associated with dif-
ferent glucose tolerance outcomes of pre-DM in a longitudinal cohort study. A decreased glycerophosphoslipid 
metabolism and balanced oxidation and antioxidation contributed to the transition to NGR, while impaired 
amino acid metabolism and perturbed mitochondrial β-oxidation were associated with the development of DM. 
Targeting the pathways that involve in these newly prognosis biomarkers would be beneficial for the regression to 
NGR and the early prevention of DM among participants with pre-DM.

Subjects and Methods
Ethics Statement. This study was approved by Ruijin Hospital Ethics Committee (approval no. 2014–114).

Written informed consent signed by each of participants was provided before blood samples were taken. All 
methods were carried out in accordance with the relevant guidelines and regulations.

Study design and Subjects. This study was from a population-based prospective cohort study of 2132 
men and women aged 18–76 years, from November 2002 to January 2003, among whom 778 participants were 
pre-DM at baseline. The follow-up visit was conducted from July 2013 to October 2014 and 526 participants 
who were pre-DM at baseline were followed, among whom 334 individuals both answered questionnaires and 
had plasma glucose measurement during an oral glucose tolerance test (OGTT). Serum lipid profile and liver 
function were also assayed. After excluded the individuals on anti-diabetes medication or with serious liver, renal 
dysfunction and cancer, the remaining 108 individuals were included in our final analysis. This study design has 
been described previously57–59.

According to different glycemic outcomes at follow up, the 108 participants were divided into 3 groups. 20 
participants progressed to diabetes DM, 20 regressed to NGR, and 68 remained at pre-DM. Details of the study 
population are presented in Supplemental Fig. S3.

Venous blood samples were collected at baseline and follow-up. The glucose level was measured by means 
of glucose oxidase method. Pre-DM and diabetes were diagnosed according to American Diabetes Association 
(ADA) 2010 Guidelines60. Pre-DM refers to subjects with impaired fasting glucose (fasting glucose ranging 
from 5.6 to < 7.0 mmol/L, as well as 2-hour glucose < 7.8 mmol/L) and subjects with impaired glucose tolerance 
(2-hour glucose ranging from 7.8 to < 11.1 mmol/L). Both impaired fasting glucose and impaired glucose tol-
erance were confined to non-diabetic fasting and 2-hour concentrations. Fasting plasma samples were used to 
analyze biochemical indexes and metabolomics.

Sample collection and preparation. Fasting blood samples were drawn under sterile conditions from 
an antecubital vein of all the study participants between 6:30 and 9:30 after a 12-hour overnight fast, and were 
collected directly into heparinized tubes. The tubes were centrifuged at 12000 g for 10 min and the supernatant 
(plasma sample) was aspirated and stored at −80 °C until analysis.

The plasma sample (100 μl) was thawed at 4 °C. 100 μl of plasma was spiked with 300 μl mixed solution (meth-
anol: acetonitrile = 3:2) and vigorously vortexed for 30 seconds. The sample solution was centrifuged at 12000 × g 
for 10 min at 4 °C, and the supernatant was analyzed using UPLC-QTOF-MS. Study samples were analyzed in 
random order using a random-number generator in Excel 2015 (Microsoft, Redmond, Washington). QC samples 
were prepared by mixing equal volumes (10 μl) of different individual plasma samples and one QC sample was 
run after every ten study sample injections throughout the analytical workflow.

UPLC-QTOF-MS conditions. In this study, a Waters ACQUITYTM ultra performance liquid chromatog-
raphy system (Waters Corp., Milford, USA) coupled with aSynaptG2 quadrupole time-of-flight (Q/TOF) tan-
dem mass spectrometer (Waters, Milford, MA) was used to perform the analysis of plasma samples. The set-up 

Figure 4. Box plots of mean intensity of ten representative metabolites in plasma samples of NGR, pre-DM and 
DM patients.

http://S3
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parameters for the UPLC-QTOF-MS analysis were as follows: A T3 C18 chromatographic column (Waters, 
2.1 mm × 100 mm, 1.7 μm) was used to separate metabolites contained in plasma with column temperature set 
at 45 °C. The eluted solution was 0.1% formic acid combined with 5 mM ammonium acetate in water (A) and 
acetonitrile (B) with a flow rate of 300 μl/min. The gradient elution program for analysis of plasma samples was as 
follows: 0–1 min, A: 98%; 1–3 min, A: 98–50%; 3–8 min, A: 50–45%; 8–12 min, A: 45%; 12–17 min, A: 45%−10%; 
17–20 min, A: 10–98%.

The MS parameters were set up as follows: the electrospray ionization source (ESI) interface operated with a 
positive mode, capillary voltage of 3000 V, sample cone voltage of 40 V, extraction cone voltage of 4.0 V, desolva-
tion gas flow of 650 L/h at 450 °C, source temperature of 120 °C, and cone gas flow of 50 L/h. Centroid data were 
collected under a scan time of 0.25 s and an inter scan delay of 0.02 s condition in continuum mode which ranged 
from m/z 100 to m/z 1200 Da.

To avoid possible contamination and keep the signal stable, the Q-TOF mass spectrometer system was tuned 
for optimum accuracy and reproducibility using leucine-enkephalin (m/z 556.2771) as the lock mass in all anal-
yses at a concentration of 0.5 μg/mL. The lock spray frequency was set at 5 s and the lock mass data were averaged 
over 10 scans. MSE was applied for the MS2 analysis with the low collision energy of 5 eV and the high collision 
energy of 30 eV.

Data extraction and multivariate statistics. The raw data produced by UPLC-QTOF-MS were initially 
processed using MarkerLynx Applications Manager version 4.1 (Waters Corp., Manchester, UK). The data were 
peak-detected and noise-reduced so that only true peaks are further processed by the software. The data were 
presented with the ion intensities corresponding the retention time and m/z for each peak. The main parame-
ters were set as follows: retention time window 0.5–16.5 min, mass range 100–1200 Da, XIC window 0.02 min, 
automatically calculate peak width and peak-peak baseline noise, use the raw data during the deconvolution 
procedure, marker intensity threshold (count) 1000, mass window 0.02 Da, retention time windows 0.2 min, noise 
elimination level 6.0, and retain the isotopic peaks. The internal standard was used for data quality control and 
data normalization (reproducibility). The ion peaks generated by the internal standard were removed and the 
metabolites were filtered by the QC samples.

Figure 5. Schematic flow chart of the metabolomics analysis in the study. NGR: normal glucose regulation; 
Pre-DM: pre-diabetes; DM: diabetes; UPLC-QTOF-MS: Ultra-performance liquid chromatography-quadrupole 
time-of-flight mass spectrometry; VIP: variable importance in the projection; ROC: receiver operating 
characteristic curve; AUC: area under the curve.
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The 80% rule was applied to treat the missing values61 and a data matrix that consisted of the ion intensities 
corresponding the retention time and m/z for each peak was generated and then exported to Simca-P software 
(v13.0, Umetrics, Umea, Sweden) followed by a series of pattern recognition (PR) methods. Multivariate statis-
tical analyses, including principal component analysis (PCA) and a partial least squares discriminant analysis 
(PLS-DA) were carried out using SIMCA-P 13.0 software. The score plots from PLS-DA showed the differenti-
ation of metabolic profiles of different groups. In addition, loading plots indicated the variables contributing to 
the classification. The quality of the model was described by the cross-validation parameter Q2 (cum), and R2Y, 
which represents the total explained variation for the X matrix. After the analysis of the three groups, pair-wise 
analysis (NGR vs pre-DM, DM vs pre-DM and NGR vs DM) was conducted to searching for the discrepant 
metabolites between groups.

Identification of potential biomarkers and metabolic pathway analysis. The metabolites respon-
sible for the separation of metabolic profiles of the pair-wise groups were obtained based on a variable impor-
tance in projection (VIP) threshold (VIP > 1 represented higher influence on the classification)17 from PLS-DA 
models accompanied with loading plots and a statistical test for difference (p < 0.05 was considered significant). 
A two-tailed t test or a nonparametric Mann-Whitney test was used for significance evaluation following data 
normality test with Shapiro-Wilk tests, which was performed with the R statistical software 3.3.2 for Windows.

A metabolite was detected and identified based on accurate mass, retention time, MS information and metab-
olite structure information from related databases: METLIN (https://metlin.scripps.edu/index.php) and HMDB 
(http://www.hmdb.ca/). Some of the metabolites were confirmed by comparison of retention time and fragmen-
tation pattern with authentic standards.

The pathway analysis and network of potential biomarkers contributing to the classification between groups 
was carried out by IPA software (IPA, Ingenuitys Systems, http://www.ingenuity.com).

The schematic flow chart of the metabolic profiling and biomarker identification and optimization strategy 
used in the study is shown in Fig. 5.

Statistical analysis. Demographic and biochemical characteristics were presented as the mean (±SD) for 
continuous variables and % for categorical variables. Data normality and homogeneity of continuous variables 
were confirmed with Shapiro-Wilk tests and Levene tests, respectively. If data were normally distributed and 
variances were equal, data were analyzed by means of one-way analysis of variance (ANOVA) with LSD test; 
Otherwise, Kruskal-Wallis test with a nonparametric two-tailed Mann-Whitney test was used (alpha was adjusted 
to 0.05/3 here). And categorical variables were analyzed by χ2 test or Fisher’s exact test. Difference was consid-
ered statistically significant when p < 0.05.

Multiple logistic regression analysis of the potential metabolites was performed and receiver operating char-
acteristics (ROC) analysis was used to evaluate predictive ability of potential metabolic biomarkers. Area under 
the curve (AUC), best cut-off point, sensitivity and specificity were determined using the maximum value of the 
Youden index. The analyses were performed using SPSS software version 23.0 (IBM Corp., USA).
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