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Genotype-environment interaction 
on human cognitive function 
conditioned on the status of 
breastfeeding and maternal 
smoking around birth
S. Hong Lee, W. M. Shalanee P. Weerasinghe & Julius H. J. van der Werf

We estimated genotype by environment interaction (G × E) on later cognitive performance and 
educational attainment across four unique environments, i.e. 1) breastfed without maternal smoking, 
2) breastfed with maternal smoking, 3) non-breastfed without maternal smoking and 4) non-
breastfed with maternal smoking, using a novel design and statistical approach that was facilitated 
by the availability of datasets with the genome-wide single nucleotide polymorphisms (SNPs). There 
was significant G × E for both fluid intelligence (p-value = 1.0E-03) and educational attainment 
(p-value = 8.3E-05) when comparing genetic effects in the group of individuals who were breastfed 
without maternal smoking with those not breastfed without maternal smoking. There was also 
significant G × E for fluid intelligence (p-value = 3.9E-05) when comparing the group of individuals who 
were breastfed with maternal smoking with those not breastfed without maternal smoking. Genome-
wide significant SNPs were different between different environmental groups. Genomic prediction 
accuracies were significantly higher when using the target and discovery sample from the same 
environmental group than when using those from the different environmental groups. This finding 
demonstrates G × E has important implications for future studies on the genetic architecture, genome-
wide association studies and genomic predictions.

There has been considerable interest in effects of breastfeeding and maternal smoking around birth on cognitive 
function and later performance such as intelligence, memory and educational attainment. Many studies have 
suggested breastfeeding influences cognitive function and intelligence1–3, e.g. breastfeeding was associated with 
higher cognitive development than was formula feeding. On the other hand, there are reports that breastfeeding 
has little effect on intelligence in children after stringent correction for socio-demographic factors4, 5. There are 
also a number of studies reporting that maternal smoking around birth has negative effects on intelligence and 
later performance6–9 whereas some studies show no such effects after adjusting for confounding effects such as 
socio economic status10, 11. There is an interesting study by Batstra et al. (2003) demonstrating that the adverse 
effects of maternal smoking on children’s cognitive functions and performance were limited to those who had not 
been breastfed12, which is one of few studies accounting for the combined effects of breastfeeding and maternal 
smoking around birth. However, there are no studies into a genotype by environment interaction (G × E) for later 
cognitive performance conditional on the maternal environment as determined by breastfeeding or/and maternal 
smoking around birth. Hence, it is unknown whether the genetic expression for these traits differs between these 
maternal environments.

Genes have the ability to react and produce alternative phenotypes in response to the environment. Genetic 
variation in response to environmental conditions has been described as phenotypic plasticity, reaction norms or 
G × E. The phenomenon is widespread and one of the fundamental factors in biology and evolution13–16. G × E 
can be estimated in an experiment where individual or relatives’ phenotypes can be measured in different envi-
ronments. However, measurement of relatives across environments is not feasible in human populations as family 
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sizes are small and often confounded with environments and limited data exists on genetically related individuals 
measured across environments. The limited focus on G × E in human genetic studies is therefore unsurprising. 
However, when using genomic information it becomes much easier to obtain information about the same geno-
types measured in different environments. Therefore, genomic data provides opportunities to estimate G × E in 
human data.

In this study, we estimate G × E on later cognitive performance and educational attainment across the mater-
nal environments for breastfeeding and smoking using a novel statistical approach that is facilitated by the avail-
ability of datasets with the genome-wide single nucleotide polymorphisms (SNPs). The use of genome-wide SNP 
data on unrelated individuals to determine genotype effects across environments presents a paradigm-shifting 
approach to dissect the genetic architecture of complex traits17–20. In the approach, two individuals who are not 
related in the conventional sense can be compared experimentally, because they share part of their genome by 
descent and this information can be derived from genome wide SNP genotypes. Since the unrelated individuals 
do not share common environments, any covariance between their shared genome and their phenotype is most 
likely genetic and not environmental. Genetic data create links between individuals in the population so that the 
estimation of G × E and testing of related hypotheses do not require measures of relatives in different environ-
ments, or longitudinal data on the same individuals. The proposed approach can be applied whenever phenotypes 
are recorded and genotype data are collected across known environmental conditions, in this case, breastfeeding 
and maternal smoking status. We use a multivariate linear mixed model21, 22 to estimate genetic variance and 
covariance based on relatedness derived from genome-wide SNP genotypes. A genetic correlation (i.e. scaled 
genetic covariance) between the phenotypic expression of genotypes in different environments, which is signifi-
cantly different from 1, indicates evidence of G × E23, 24.

Results
We used the UK Biobank database (http://www.ukbiobank.ac.uk)25 where there were genotyped individuals 
measured for cognitive traits and environmental variables (see Methods). We preliminarily analysed the pheno-
typic data using a multi-trait genomic residual maximum likelihood (GREML) to dissect shared genetic architec-
ture between the cognitive traits. Then, it was primarily focused to estimate G × E explained by the genome-wide 
SNPs using a whole genome approach. In the approach, we used a multi-variate GREML to estimate genetic var-
iance and covariance explained by the genome-wide SNPs for each cognitive trait across different environmental 
conditions of breastfeeding and maternal smoking status (see Methods). We carried out the analyses on the four 
unique environmental groups, i.e. 1) breastfed without maternal smoking, 2) breastfed with maternal smoking, 
3) non-breastfed without maternal smoking and 4) non-breastfed with maternal smoking. The rationale for such 
grouping is that the environmental effects of breastfeeding and maternal smoking are not likely to be additive12. 
Therefore, the combination of breastfeeding and maternal smoking status would generate four distinct environ-
ments that could be used to test our hypothesis with a novel approach to estimate G × E.

After data quality control (QC), a sample of 25,445, 78,283, 77,919 and 77,750 genotyped and phenotyped 
individuals was available for respective analysis of fluid intelligence, memory, reaction time and educational 
attainment. The distribution of samples classified by breastfeeding and maternal smoking status is shown in 
Table 1.

In a preliminary analysis, we estimated the proportion of the phenotypic variance and the genetic correla-
tion explained by genome-wide SNPs for fluid intelligence, memory, reaction time and educational attainment 
(Table 2). We used a four-trait GREML21 that explicitly modelled the genetic as well as residual covariance struc-
ture, as there were multiple phenotypes for each individual (see Methods). Adjusted phenotypes controlled for 
non-genetic confounders were used (see Methods). All of the estimates were significantly different from zero, 
indicating that there were significant genetic factors underlying those traits. The estimated SNP-heritability 
ranged from 0.067 to 0.219, and the estimated genetic correlations ranged from −0.338 to 0.674. The estimates 
agreed approximately with those in Davies et al.26 although we used a different subsets of the sample of pheno-
types, different SNPs, and a different model for analysis (see Methods).

We further partitioned the genetic variance and covariance into three functional categories; SNPs in genes that 
were differentially expressed in the central nervous system (CNS); SNPs in the other genes; and the remaining 
SNPs (see Methods). Figure 1 shows that the proportion of the genetic variance for fluid intelligence explained 
by the CNS SNPs was significantly higher than expected for the same number of random SNPs (ratio = 0.289, 
p-value = 3.3E-02), reaction time (0.352, 3.4E-05) and educational attainment (0.269, 2.7E-03). Figure 1 also 
shows that the proportion of the genetic covariance between fluid intelligence and memory explained by the CNS 

Fluid 
intelligence Memory

Reaction 
time

Educational 
attainment

B&NS 13204 39687 39531 39422

B&S 5311 16093 16021 15990

NB&NS 4362 14015 13937 13919

NB&S 2568 8488 8430 8419

Sum 25445 78283 77919 77750

Table 1. The number of samples for the status of breastfeeding and maternal smoking around birth. B&NS: 
breastfed and not exposed to maternal smoking around birth, B&S: breastfed and exposed to maternal smoking 
around birth, NB&NS: not breastfed and not exposed to maternal smoking around birth, and NB&S: not 
breastfed and exposed to maternal smoking around birth.

http://www.ukbiobank.ac.uk


www.nature.com/scientificreports/

3Scientific REPoRtS | 7: 6087 | DOI:10.1038/s41598-017-06214-y

SNPs was significantly greater than expected based on SNP number (ratio = 0.382, p-value = 2.8E-02), and simi-
larly for the genetic covariance between fluid intelligence and educational attainment (0.291, 4.0E-03).

Next, we stratified the individuals according to the status of breastfeeding and maternal smoking around 
birth, i.e. breastfeeding and non-smoking (B&NS), breastfeeding and smoking (B&S), non-breastfeeding and 
non-smoking (NB&NS), non-breastfeeding and smoking (NB&S) as in Table 1. Trait means and range (95% 
CI) are shown in Figs 2–5. The patterns show clearly that the cognitive function or educational performance is 
increased when individuals were breastfed, and decreased when there was maternal smoking around birth for all 
traits except reaction time.

To estimate genome-wide G × E we used a four-variate GREML to estimate genetic variance and covari-
ance between the four environmental groups, i.e. B&NS, B&S, NB&NS and NB&S. We found that there was 

Figure 1. The ratio of the genetic variance and covariance explained by CNS SNPs over the total genetic 
variance and covariance from the annotation analyses. Vertical error bar is 95% confidence interval. The ratio 
of SNPs attributed to genes in the CNS is also shown (red). FI: Fluid intelligence. M: Memory RT: Reaction time 
EA: Educational attainment.

Figure 2. Mean trait value of fluid intelligence for each group classified by breastfeeding and maternal smoking 
status. Vertical bar is 95% confidence interval. The phenotypes of fluid intelligence were adjusted for birth year, 
age at recruitment, sex, assessment centre, genotype measurement batch and 15 principal components.

Fluid intelligence Memory Reaction time Educational attainment

Fluid intelligence (N = 25445) 0.219 (0.013) −0.338 (0.043) −0.198 (0.042) 0.674 (0.027)

Memory (N = 78283) −0.125 (0.006) 0.067 (0.004) 0.129 (0.044) −0.320 (0.032)

Reaction time (N = 77919) −0.118 (0.006) 0.064 (0.003) 0.080 (0.005) −0.084 (0.031)

Educational attainment (N = 77750) 0.395 (0.005) −0.115 (0.003) −0.083 (0.003) 0.177 (0.005)

Table 2. The proportion of the phenotypic variance (diagonal) and genetic correlation (upper diagonal) 
explained by genome-wide SNPs and phenotypic correlation (lower diagonal).



www.nature.com/scientificreports/

4Scientific REPoRtS | 7: 6087 | DOI:10.1038/s41598-017-06214-y

significant G × E between B&NS and NB&NS for both fluid intelligence (p-value = 1.0E-03) and educational 
attainment (p-value = 8.3E-05) (Tables 3 and 4). The genetic correlation between two environments (B&NS and 
NB&NS) was 0.597 (SE 0.123) and 0.748 (SE 0.064) for fluid intelligence and educational attainment, respectively 
(Tables 3 and 4). There was also significant G × E between B&S and NB&NS for fluid intelligence (p-value = 3.9E-
05) with a genetic correlation of 0.345 (SE 0.159) (Table 3). Even after correcting for multiple testing (4 traits 
each with 6 contrasts between environments where the corrected threshold is p = 0.05/24 = 0.002), these inter-
actions remained significant (Tables 3 and 4). We also used permutation tests and confirmed the level of sig-
nificance (Supplementary Figures 1, 2 and 3). There was no evidence of G × E for memory and reaction time 
(Supplementary Tables 1 and 2), which was probably due to the fact that the genetic variance was low (Table 2) 
such that the power to detect G × E is reduced.

For fluid intelligence and educational attainment that showed a significant G × E signal, we further estimated 
genome-wide G × E in a sex-stratified analyses to see if there was any significant sex difference in each environ-
ment, i.e. to test if genetic correlation between males and females was significantly different from 1. We found 
no significant difference between males and females in the same environment for all cases except that there was 
a weak signal of difference between male and female for NB&S group for fluid intelligence (p-value = 3.3E-02) 
(Supplementary Tables 3 and 4). After correcting for multiple testing, there was no evidence for sex difference 
(Supplementary Tables 3 and 4).

We compared genome-wide association studies (GWAS) based on the different environmental groups for 
fluid intelligence or educational attainment between which there was significant G × E. In the GWAS based on 
B&NS, there were no genome-wide significant SNP whereas GWAS based on NB&NS detected a significant locus 

Figure 3. Mean trait value of memory (number of incorrect matches) for each group classified by breastfeeding 
and maternal smoking status. Vertical bar is 95% confidence interval. The phenotypes of memory were adjusted 
for birth year, age at recruitment, sex, assessment centre, genotype measurement batch and 15 principal 
components.

Figure 4. Mean trait value of reaction time for each group classified by breastfeeding and maternal smoking 
status. Vertical bar is 95% confidence interval. The phenotypes of reaction time were adjusted for birth year, age 
at recruitment, sex, assessment centre, genotype measurement batch and 15 principal components.
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Figure 5. Mean trait value of educational attainment for each group classified by breastfeeding and maternal 
smoking status. Vertical bar is 95% confidence interval. The phenotypes of educational attainment were 
adjusted for birth year, age at recruitment, sex, assessment centre, genotype measurement batch and 15 principal 
components.

Estimate SE P-value

h2 for B&NS 0.219 0.025 6.5E-19a ***

h2 for B&S 0.260 0.059 9.9E-06a ***

h2 for NB&NS 0.366 0.073 5.9E-07a ***

h2 for NB&S 0.139 0.117 2.3E-01a

rG (B&S, B&NS) 0.931 0.149 6.4E-01b

rG (NB&NS, B&NS) 0.597 0.123 1.0E-03b **

rG (NB&NS, B&S) 0.345 0.159 3.9E-05b ***

rG (NB&S, B&NS) 1.213 0.546 7.0E-01b

rG (NB&S, B&S) 1.202 0.577 7.3E-01b

rG (NB&S, NB&NS) 1.060 0.526 9.1E-01b

Table 3. The proportion of the phenotypic variance and genetic correlation between the status of breastfeeding 
and maternal smoking around birth for fluid intelligence. aTesting if the estimate is different from 0. bTesting 
if the estimate is different from 1; The genetic correlations (rG) between NB&NS and B&NS, and NB&NS and 
B&S are significantly different from 1 as an evidence of G × E. Even after a multiple testing correction (p-value 
threshold = 0.05/24 = 0.002), these interactions remained significant. ***P-value < 0.001; **P-value < 0.01; 
*P-value < 0.05.

Estimate SE P-value

h2 for B&NS 0.184 0.009 4.0E-87a ***

h2 for B&S 0.169 0.020 4.2E-17a ***

h2 for NB&NS 0.212 0.023 3.9E-20a ***

h2 for NB&S 0.163 0.037 8.4E-06a ***

rG (B&S, B&NS) 0.912 0.073 2.3E-01b

rG (NB&NS, B&NS) 0.748 0.064 8.3E-05b ***

rG (NB&NS, B&S) 0.866 0.099 1.8E-01b

rG (NB&S, B&NS) 1.013 0.129 9.2E-01b

rG (NB&S, B&S) 1.090 0.167 5.9E-01b

rG (NB&S, NB&NS) 0.929 0.153 6.4E-01b

Table 4. The proportion of the phenotypic variance and genetic correlation between the status of breastfeeding 
and maternal smoking around birth for educational attainment. aTesting if the estimate is different from 0.  
bTesting if the estimate is different from 1; The genetic correlation (rG) between NB&NS and B&NS is 
significantly different from 1 as an evidence of G × E. Even after a multiple testing correction (p-value 
threshold = 0.05/24 = 0.002), the interaction remained significant. ***P-value < 0.001; **P-value < 0.01; 
*P-value < 0.05.
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in chromosome 22 for fluid intelligence (Supplementary Figure 4). For educational attainment, the GWAS based 
on B&NS detected no genome-wide significant SNP on chromosome 17 whereas significant SNPs were found in 
data from the NB&NS (Supplementary Figure 5).

Finally, we assessed the effect of genome-wide G × E in the accuracy of genomic prediction, i.e. precision 
medicine27. We randomly selected 1000 target samples within a particular environmental group, and predicted 
their phenotypes using genome-wide SNP effects estimated in two different discovery data sets, one sampled from 
the same environmental group and the other sampled from a different environmental group. The two discovery 
sets had the same sample size, and there was no overlap between the target and any of the discovery data sets. 
The analyses between B&NS and NB&NS for fluid intelligence (Supplementary Figure 6) or educational attain-
ment (Supplementary Figure 7) and the analysis between B&S and NB&NS for fluid intelligence (Supplementary 
Figure 8) showed that the prediction accuracies were significantly higher when using the target and discovery 
sample from the same environmental group than when using the target and discovery sample from different envi-
ronmental groups. These results supported our finding of genome-wide G × E, and has an important implication 
for genomic prediction strategies.

Discussion
We reported significant genome-wide G × E of fluid intelligence and educational attainment conditional on 
breastfeeding and maternal smoking status. To our knowledge, this is the first study to explore whether genetic 
effects of later cognitive performance interact with maternal environments using independent unrelated samples 
and based on genomic data. There have been a number of studies that investigated the environmental effect of 
breastfeeding or maternal smoking status on cognitive performance1–3, 5, 10–12, which was, however, limited to find 
out simple additive effects and their difference between environments. In this study, we investigated G × E of 
later cognitive performance and educational attainment using a novel design and a statistical approach based on 
genomic data that enables to link the same genotypes across different environments.

The analyses of the four traits (Table 2) or those of the four environmental groups within each trait (Tables 3 
and 4) could be done efficiently in a four-trait or four-variate GREML analysis using MTG2 software21. The 
four-variate linear mixed model, which can fit four response variables simultaneously, is computationally faster 
and has higher accuracy and power, compared to a number of separate analyses of bi-variate models. For the 
analyses of the four traits (Table 2), we explicitly modelled a residual covariance structure as each individual has 
multiple phenotypes measured for the four traits. In the four-trait analyses, we were interested in testing whether 
the different traits had shared genetic effects (i.e. testing if rG is significantly different from 0). For the analyses 
of G × E for each trait, we tested if the different environment groups were heterogeneous (i.e. testing if rG is sig-
nificantly different from 1, hence G × E). In our G × E analyses, there was no need to model residual covariance 
structure because it was not possible for the same individual to have multiple measures across the environments.

For fluid intelligence and educational attainment, although we found evidence for G × E between B&NS and 
NB&NS, and B&S and NB&NS, there was no signal for that between B&NS and NB & S, even though these 
environments showed the highest contrast in mean effects (Figs 2–5). This was probably due to the fact that 
the samples size for NB & S was low (Table 1) therefore there might be less power for the group. Indeed, the 
SNP-heritability of fluid intelligence for the NB & S group was not significantly different from 0.

We carried out the analyses on the four environments classified by the combined effects of breastfeeding and 
maternal smoking status (Tables 3 and 4). We also explored G × E analyses with each exposure of the main effects 
separately (Supplementary Tables 5 and 6). There was a significant evidence of G × E for fluid intelligence and 
educational attainment when comparing the group with and without breastfeeding (p-value = 0.0048 and 0.042 
in Supplementary Table 5) although there was no evidence when using maternal smoking status. In those analyses 
considering each exposure separately (breastfeeding or maternal smoking), there was a possibility of confounded 
environmental factors (i.e. the effects of maternal smoking and breastfeeding were partially confounded) could 
dilute G × E effects (compare Table 3 and Supplementary Table 5). For this reason it is important to assess G × E 
on the four unique environmental conditions. We should also emphasise that the availability of genomic data 
allowed a much more flexible statistical approach for investigating G × E across various environmental groupings.

To ensure that socio-economic status were not affecting our results, we also undertook the analyses with 
phenotypes additionally adjusted for average total household income. Supplementary Tables 7–9 shows that the 
signals for G x E were still significant even though a less significant signal was expected partly because the sample 
size was reduced due to missing information on income (Supplementary Table 7). This indicates that the effects of 
breastfeeding and maternal smoking cannot be fully explained by socio economic status.

We showed that the accuracy of genomic prediction, which is an emerging tool in the personalised or pre-
cision medicine27, could be significantly decreased if there was G × E and the discovery and target samples had 
different environmental conditions (Supplementary Figures 6–8). To increase the accuracy, environment con-
ditions for sample should be carefully considered, i.e. recorded where possible and considered in the statistical 
analysis. The same holds for GWAS where the effects of causal genetic variants could be environment-specific 
(Supplementary Figures 4 and 5).

Except for one trait (memory), all of the cognitive phenotypes in the UK Biobank data have been reported to 
have a reasonable reliability from re-test data28. Intraclass correlation between the first and second wave of re-test 
data was 0.65, 0.16 and 0.57 for fluid intelligence, memory and reaction time, respectively28. In order to check the 
quality of environmental measures, we obtained a coefficient of determination (R2) using a regression with the 
sex or year-of-birth information as a dependent variable and the ‘known’ and ‘unknown’ answer as an explana-
tory variable. Supplementary Table 10 shows that little variance is explained by the sex or age difference for the 
‘unknown’ answer. In fact, for all the analyses in our study, the effects of sex, year-of-birth and age-at-recruitment 
were appropriately adjusted in the models. Moreover, we explicitly checked our results with sex stratified analyses 
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and found negligible sex difference (Supplementary Tables 3 and 4). Furthermore, we checked whether the 
breastfeeding responses by age are consistent with broader UK trends at the time (and the same for maternal 
smoking, i.e. rates of female smoking). The breastfeeding rate was decreased over the 1950–60 period and it was 
51% in 1975 in UK29, 30, which approximately conform with the pattern of the rate from the UK Biobank data 
(Supplementary Table 11). Female smoking rate was ~40%31 between 1940 and 1970, which was not too dissimilar 
to the maternal smoking rate in the UK Biobank data (Supplementary Table 11). It should be noted that maternal 
smoking would be lower than average female smoking rate.

We showed that for fluid intelligence, memory and educational attainment, the mean score of the individu-
als who were breastfed and not exposed to maternal smoking around birth was significantly higher than those 
who were not breastfed and exposed to maternal smoking around birth (Figs 2–5), which agrees with previous 
studies1–3, 6–9. A limitation of our study was that we did not explicitly adjust for maternal intelligence due to 
lack of information. A number of studies reported that significant effects of breastfeeding or maternal smoking 
disappeared after adjusting maternal intelligence4, 5, 10, 11. However, it is also possible that a stringent adjustment 
of confounding effects such as maternal intelligence can over-correct the true effects of breastfeeding or mater-
nal smoking. Indeed, breastfeeding effects on cognitive function or brain development have been evidenced in 
experimental species32 and brain image analyses33, 34 using experiments without such confounding. Some studies 
reported significant breastfeeding effects even after correcting for confounding35, 36. Maternal smoking effects on 
cognitive function or brain development have also been demonstrated in experimental species37 and brain image 
analyses38 that were without confounding effects. Another limitation was that we did not consider gestational age 
in the analyses because the information was not available. There are a number of studies reporting gestational age 
is a risk factor for later cognitive development39, 40. A further study is required to confirm the combined effects of 
breastfeeding and maternal smoking around birth after an appropriate adjustment of confounding effects such as 
maternal intelligence and gestational age. Nevertheless, our primary aim was to estimate G × E based on the four 
groups stratified according to breastfeeding and maternal smoking status in the variance component approach. 
Even when the dependent variable within each of the four stratified groups is standardised, i.e. a mean of zero and 
a variance of one, which can correct the mean difference for confounding effects, it would not affect the resulting 
estimated genetic correlation between environments.

In summary, breastfeeding and maternal smoking status are important environmental factors in fluid intel-
ligence, memory and educational attainment. More importantly, we showed that the genetic expression of fluid 
intelligence and educational attainment differs for different maternal environments, implying that these environ-
ments interact with gene action. In the presence of G × E, genome-wide significant SNPs were different between 
different environmental groups. Genomic prediction accuracies were significantly higher when using the target 
and discovery sample from the same environmental group than when using those from different environmental 
groups. This finding has important implications in future studies of the genetic architecture, genomic prediction 
and GWAS for later cognitive performances.

Methods
Data. We used the UK Biobank database (http://www.ukbiobank.ac.uk)25. UK Biobank Research Ethics 
Committee (REC) approval number is 11/NW/0382. Our reference number approved by UK Biobank is 14575 
and we confirm that all experiments were performed in accordance with relevant guidelines and regulations. 
There are 502,648 participants, who were aged from 40–69 years and recruited between 2006 and 2010, measured 
for various complex traits and variables including cognitive functions and environmental factors. We used three 
cognitive traits, fluid intelligence, memory ability and reaction time, and educational attainment for which the 
participants were grouped into four classes according to the status of breastfeeding and maternal smoking around 
birth, i.e. breastfed and non-smoking (B&NS), breastfed and smoking (B&S), non-breastfed and non-smoking 
(NB&NS) and non-breastfed and smoking (NB&S).

Fluid intelligence. This measure included data on questions designed to assess the cognitive function to 
solve problems that require logic and reasoning ability (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20016). 
The participant had a limited time (2 minutes) to complete as many questions as possible from the test presented 
in a touchscreen computer. There were 184,487 participants measured for the trait.

Memory. Memory test included data on ‘pairs’ matching task on a touchscreen computer (http://biobank.
ctsu.ox.ac.uk/crystal/field.cgi?id=399). Participants were asked to remember the location of six matching pairs 
of cards. Then, the cards were then turned face down on the screen and the participant had to select correct cards 
that match the original pairs in the fewest tries. Number of incorrect matches was recorded. There were 498,545 
participants measured for the trait.

Reaction time. Reaction time test involved data on a test to assess reaction time and was based on 12 rounds 
of the card-game ‘Snap’ (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20023). The computer screen showed 
two cards at a time; if both cards were the same, the participants were asked to press a button-box that was on the 
table in front of them as quickly as possible. This reaction time was recorded. There were 496,902 participants 
measured for the trait.

Educational attainment. The educational categories were divided into 7 groups: College or University 
degree; A-levels/AS-levels; O-levels; CSEs or equivalent; NVQ or HND or HNC or equivalent; other professional 
qualifications, e.g. nursing, teaching; none (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6138). Following 
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Guggenheim et al.41, we reduced to 4 categories to consider approximately equal years of academic education, that 
is (1) None; (2) O-levels or CSEs; (3) A-levels, NVQ, HND, HNC or other professional qualification; (4) College 
or University degree. There were 498,528 participants measured for the trait.

Breastfed as a baby and maternal smoking around birth. As early life environmental factors, 
self-reported breastfed and maternal smoking status were available. Breastfeeding status was available for 501,748 
participants (294,708 for yes, 111,381 for no, 125,114 for unknown and 471 for no answer). By touch screen inter-
view, breastfeeding status was recorded in response to the question “Were you breastfed when you were a baby?”. 
There was no detailed measure for the amount of breast-milk intake.

Maternal smoking status around birth was available for 494,400 participants (134,141 for yes, 324,894 for no, 
64,596 for unknown and 255 for no answer). Through a screen touch interview, maternal smoking status was 
recorded in response to the question “Did your mother smoke regularly around the time when you were born?”. 
There was no detailed measure for the amount of smoking.

Genotypic information. For 502,648 participants, 152,249 individuals were genotyped and available for 
~70 millions SNPs after a standard imputation process (for more details, see http://biobank.ctsu.ox.ac.uk/crys-
tal/refer.cgi?id=157020). We further applied stringent quality control (QC) with an imputation r-squared > 0.6, 
MAF > 0.01, H-W test p-value < 0.0001, SNP missingness > 0.05 and individual missingness > 0.05. 
Furthermore, we selected high quality HapMap3 SNPs that were reliable in estimating genetic variance and covar-
iance at the genome-wide level, feasible for more complicated analyses and there was no substantial difference 
between estimated genetic variances from HapMap3 and 1000 genome SNPs17, 42–44. After QC, 931,295 HapMap3 
SNPs were remained for the analyses.

Individual QC. To make sure there was no biased estimate in genetic covariance due to confounders, we 
excluded non-British ancestry within self-identified British according to genetic principal components, and 
used individuals defined as Caucasian in the genetic ethnic grouping data. We further excluded high relatedness 
(pair-wise relationship > 0.05). After QC and matching breastfeeding and maternal smoking status, a sample of 
25,445, 78,283, 77,919 and 77,750 genotyped and phenotyped individuals was remained for analysing fluid intel-
ligence, memory, reaction time and educational attainment (Table 1).

All phenotypes were adjusted for birth year, age at recruitment, sex, assessment centre, genotype measurement 
batch and 15 principal components to control for confounding non-genetic effects before all analyses using a lin-
ear regression. Inverse normal transformation was further applied to the adjusted phenotypes for memory, reac-
tion time and educational attainment of which distribution was skewed or non-normal (Supplementary Table 12) 
to satisfy a normality assumption for the multi-variate GREML analyses.

G×E model using multi-variate GREML for each trait. We propose a statistical approach that inte-
grates a novel design of unrelated subjects across different environmental conditions in which repeated meas-
ures of the same individual are typically unavailable (such as breastfeeding and maternal smoking status). In the 
approach, we estimate genetic variance and covariance for a trait of interest across multiple environmental con-
ditions that are tagged by SNPs to provide estimate of genome-wide G × E, i.e. in presence of G × E, the genetic 
correlation between traits measured in different environments is significantly lower than one23. Covariance struc-
ture between unrelated subjects can be constructed based on genome-wide SNPs18, 45. The model can be written as

= + +

= + +

= + +

= + +

y X b Z g e
y X b Z g e
y X b Z g e
y X b Z g e

for B&NS group
for B&S group
for NB&NS group
for NB&S group

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

where y are four column vectors of phenotypic observation, each vector belongs to each environmental condition, 
b are four vectors of fixed effects, g are four vectors of additive genetic effects and e are four vectors of residuals. 
The random effects (g and e) are assumed to be normally distributed with mean zero. X and Z are incidence 
matrices for the effects b and g, respectively. The variance covariance matrix is defined as

σ σ σ

σ σ σ
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where A is the genomic similarity matrix based on genome-wide SNPs18, 45, and I is an identity matrix. The terms, 
σg

2
i
 and σe

2
i
 denote the genetic and residual variance in the ith environment, and σgi j,

 the genetic covariance of the 
environment i and j. It is assumed that there is no residual covariance because individual has no repeated meas-
ures. The variance and covariance components were estimated by a multi-trait or multivariate GREML. The 
genetic correlation was the ratio of the covariance scaled by the square root of the product of the variances 
between two environmental groups. The variance of the ratio was obtained by the Delta method using the infor-
mation matrix24, and used to assess the significance of the estimate being different from 1, an evidence of G × E.

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=157020
http://12
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Unbiased estimation of the genetic correlation between two groups with truncated selec-
tions. Assuming that a random variable y is distributed as N (0, 1), a linear model can be written as

= +y g e

where g is random genetic effects, which are distributed as N (0, h2), and e is random residuals, which are from N 
(0, 1-h2). When the phenotype y is selected such that values less than a threshold t1 and more than another thresh-
old t2 are selected. Then, the variables after the selection can be written as

= +y g es s s

Following quantitative genetic theory23, the mean and variance for the selected variable are

= − −E y K i K i K K( ) ( )/( ),s 2 2 1 1 2 1
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2

2 1
2

The mean and variance for the genetic values after the selection are
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The heritability after the selection is
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From Eq. (1), the genetic values after the selection can be defined as20, 46

= +g c bg (2)s

where c is a constant and = − + − + − −
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From Eq. (2), the genetic covariance between two sets of selected sample can be written as

=g g b b g gcov( , ) cov( , ),s s1 2 1 2 1 2

and the genetic correlation is

= =g g
b b g g

b g b g
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cov( , )
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cor( , )
(3)s s1 2

1 2 1 2

1 1 2 2
1 2

Therefore, from equation (3), it is clear that even when samples are ascertained with a truncated selection, the 
genetic correlation is unbiased, and there is no spurious estimation of G × E.

For estimation of genetic correlation between two groups classified by an environmental variable (yE) that is 
correlated with a trait of interest, the mean and variance for the selected variable for the trait are

= − −E y r K i K i K K( ) ( )/( ),s 2 2 1 1 2 1

where r is phenotypic correlation between the trait and environmental variable,
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The mean and variance for the genetic values after the selection based on correlated environmental variable 
are
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where gE is genetic effects for the environmental variable, which should be zero,
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The heritability after the selection is
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From Eq. (4), the genetic values after the selection based on correlated environmental variable can be defined 
as20, 46

= +g c bg (5)s

where c is a constant and = − + − +
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Therefore, as the same as in Eq. (3), it is clear that the genetic correlation is unbiased because of the selection 
based on correlated environmental variable. We also confirm this with a simulation (result not shown).

Permutation p-value. We obtained a p-value using the Wald test; assuming that the distribution of esti-
mated genetic correlation was normal. We also carried out permutation tests to infer an empirical distribution 
of estimated genetic correlation, and estimated permutation p-value for the case of significant G × E found by 
the Wald test. In the permutation test, the environmental status was randomly shuffled, and genetic correlation 
between two environments was estimated. It was noted that the number of phenotypic records for the first and 
second environment in the permutation test was kept as the same as in the original data structure. The number of 
permutation tests was 1000 for each case.

Sex-stratified analyses. For the case of significant G × E, it was of interest to see if there was any signifi-
cant sex interaction. We used eight-variate GREML for each trait that could fit eight groups, i.e. B&NSM, B&NSF, 
B&SM, B&SF, NB&NSM, NB&NSF, NB&SM and NB&NSF.

Genomic prediction. For the case of significant G × E, we carried out predicting phenotypes in a subset of 
sample from an environment group using the genome-wide SNP effects estimated in another subset of sample 
either from the same or from different environmental group. For the target sample (to be predicted for their 
phenotypes), we randomly selected 1000 individuals for both fluid intelligence and educational attainment. For 
the discovery sample (to estimate the genome-wide SNP effects), we used 3362 individuals for fluid intelligence 
and 12919 for educational attainment that were randomly selected either from the same environmental group as 
the target sample or from a different environmental group. In estimating the genome-wide SNP effects, we used 
GBLUP21. There was no overlapped sample between the target and discovery sample. The prediction accuracy was 
obtained from the correlation between predicted and true phenotypes in the target data.

Genome-wide association study. We compared genome-wide significant SNPs based on different envi-
ronmental groups between which there was significant G × E. We used plink software47 to obtain GWAS p-values 
that were plotted using qqman software48.

Estimation of genetic variance and covariance between the four traits. While our primary inter-
est was to estimate G × E, it was of interest to dissect shared genetic architecture between the cognitive traits as 
preliminary analyses. We used a multi-trait GREML that fitted four traits simultaneously to estimate the genetic 
and residual variances and covariance between the four traits. It is noted that because individuals had multiple 
phenotypes, residual covariance was explicitly modelled, otherwise the genetic covariance would be inflated. The 
details of model can be found elsewhere21, 22. Briefly, the model is very similar to the G × E model above except 
that y are four column vectors of phenotypic observation, each vector belongs to each trait, and the variance 
covariance matrix has an additional term of residual covariance as,

σ σ σ σ
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where the other terms are defined as above and σei j,
 the residual covariance of the trait i and j.

We were also interested in finding if the central nervous system (CNS) explained a significantly larger propor-
tion of genetic variance, compared to other genic or non-genic regions, for the cognitive traits. In the annotation 
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analysis, we divided the genome-wide SNPs into three groups; those located within ± 50 kb from the 5’ and 3’ 
UTR of 2,772 genes that were differentially expressed in CNS49; those located within the other genes except the 
CNS genes; and the rest of the SNPs. We partitioned the genetic variance and covariance between the four cogni-
tive traits using a three component model fitting genomic relations matrices constructed based on the CNS, genic 
and non-genic SNPs.

Software. The models and methods used in this study have been fully implemented in publicly available 
software, MTG2. The source code, executive binary file, manual and examples are readily available to use, and can 
be downloaded from https://sites.google.com/site/honglee0707/mtg2.
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