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Parameter determination and 
transformation for the focusing of 
dielectric microspheres illuminated 
by optical needle
Tongnan Xia, Hanming Guo, Jinbing Hu   & Songlin Zhuang

By eliminating the spherical aberrations of microsphere we derived a simple but useful formula on 
the focusing of dielectric microsphere. On basis of this formula, not only can researchers determine 
the parameters of an optical microsphere system with super-resolution, but they can also perform 
parameter transformation. In order to facilitate the application, the principle of parameter 
transformation was summarized into three kinds of case listed in Table 1, which were all demonstrated 
numerically with concrete examples by finite-difference time-domain method. This formula will 
be conducive to the development of applications based on microsphere, such as photonic nano-jet 
lithography, microsphere nano-scope.

Microspheres have recently attracted numerous attentions in the field of super-resolution due to its sub-diffraction 
focusing size and magnification of objects ahead of it1–7, and have been used in nano-scale imaging8, 9, nano-scale 
lithography10, 11 etc. The physical mechanism of sub-diffraction focusing size of microsphere is that microspheres 
have naturally negligible spherical aberrations (SAs) and high numerical aperture (NA) when the refractive index 
ratio (RIR) between the microsphere and its surrounding medium and the radius of microsphere are designed 
properly12. Before wide-ranging applications in practice, however, two significant issues still should be resolved:

 (i) How to determine the set of parameter of an optical microsphere system to focus the incident beam at the 
shadow side of microsphere;

 (ii) How to obtain the same resolution (normalized to the wavelength in surrounding medium) as before if one 
or more parameters are altered, i.e., performing parameter transformation without changing the resolution 
of microsphere system.

As for these issues above, few literatures concern about them. The super-resolutions by means of microspheres 
reported were mostly obtained with either fixed wavelength (e.g., the resolution of λ/17 in ref. 9 with the illu-
mination wavelength of 408 nm) or specific surrounding medium (e.g., the resolution of λ/7 in the ref. 13 with 
the microsphere immersed in isopropyl alcohol). Authors did not show whether the same resolution could be 
achieved if other light source was used or the microsphere was immersed in other liquid, and how to make it.

Here, the present article aims to resolve the above issues. According to the imaging theory, low SAs and high 
numerical aperture (NA) are two preconditions of high resolution of microsphere14, 15. In our model, the focusing 
property of microsphere with radius in the range from n1 * λ0 to 1.4 * n1 * λ0 (n1 and λ0 are the refractive index of 
surrounding medium and illumination wavelength in free space, respectively) mainly depend on SAs; NA only 
makes a small effect to the focusing property of microsphere, because NA is very small (<0.1n1). Thus, the only 
approach obtaining high resolution in our model is eliminating SAs of microsphere. As reported in ref. 12, micro-
spheres possess positive and negative SAs; the positive SAs is inversely proportional to RIR, while the negative 
SAs is closely related to the wavelength-scale dimension of microsphere; hence, we offset SAs by adjusting RIR 
and the radius of microsphere. Once SAs are well eliminated the incident beam will be focused at the shadow side 
of microsphere, and the highest resolution is achieved for the microsphere system. More importantly, a simple 
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but useful formula among the refractive index of surrounding medium, the illumination wavelength, the radius 
and refractive index of microsphere was derived. On the basis of this formula, not only can researchers design 
an optical system of microsphere with high resolution, but they can also perform parameter transformation to 
the existing microsphere system, which will be conducive to applications based on microspheres, such as micro-
sphere nano-scope8, photonic nano-jet lithography11.

Results
In this paper, ray tracing method and finite-difference time-domain (FDTD) method are used. First, it is neces-
sary to indicate that the validity of ray tracing method in dealing with the imaging of small-Fresnel-number sys-
tem with radius λ < r < 10λ has been proved theoretically16, 17 and experimentally18. As reported in ref. 16 that for 
nonconventional system, defined as with characteristic dimension λ < r < 10λ, the results obtained by ray tracing 
approach are in excellent agreement with electromagnetic theory (see Table 1 in ref. 16), and the same thesis was 
obtained by ref. 18 in the experimental investigation of imaging of circular aperture with wavelength-scale radius.

In our model, the optical needle with width of 0.43λ0, which is generated by tightly focusing of a radially polar-
ized Bessel-Gaussian (BG) beam with a combination of a binary-phase element and a high-numerical-aperture 
lens19–21, was used as illumination source. As shown in left panel of Fig. 1, the optical needle is incident on micro-
sphere from left to right, i.e., along x axis. The radius and refractive index of microsphere are r and n2, respec-
tively. θ1, θ2 are incident angle and refraction angle, respectively, satisfying Snell’s law: n1∙sinθ1 = n2∙sinθ2. The 
surrounding medium has refractive index of n1. Obeying the ray tracing process, to focus the incident ray at the 
shadow-side point B, the following relationship can be extracted:

λ= .n n r2 cos(0 215 /2 ) (1)2 1 0

where the value in bracket is in radian unit. Equation (1) reveals that, to focus the incident optical needle at the 
shadow-side point B, the refractive index ratio between the microsphere and its surrounding medium should not 
be larger than 222.

In vector diffraction theories, the focal shift occurs in the optical system with small Fresnel number (FN) 
and the shift cannot be predicted by the classical vector diffraction theory of Richards and Wolf23 because of the 
invalidation of Debye approximation for small-Fresnel-number optical system24, and so does the optical system in 
the present article. Here, we defined the numerical aperture of microsphere as NA = n1 * sinα (see right panel of 
Fig. 1) just like ref. 12. Taking advantage of simple geometrical relationship presented in right panel of Fig. 1, we 
had α = 2 (θ1 − θ2), and NAmax = n1 * sinαmax for focusing at shadow side of microsphere. For legible illustration, 
we took a microsphere with radius r = 1.5 μm immerged in water (i.e., n1 = 1.34) as an example. Substituting r, 
n1 and λ0 ( =0.69 μm) into eq. (1), the refractive index of microsphere can be figured out as n2 = 2.67. Then, we 
had sinθ1 = 0.215λ0/r = 0.0989, sinθ2 = n1 * sinθ1/n2 = 0.0496, NAmax = 0.133. The electric intensity distribution 

Figure 1. Schematic of a microsphere illuminated by optical needle with width of 0.43λ0.

Figure 2. The electric intensity distribution (a,b) before and (c,d) after compensation of SAs. (b,d) are the 
electric intensities along the center line (i.e., y = 0) in (a,c), respectively. The parameters for calculation are: 
n1 = 1.34, n2 = 2.67 (a,b), n2 = 1.57 (c,d), r = 1.5 μm and λ0 = 0.69 μm. White curves indicate the front and rear 
edge of microsphere. Note that the electric intensity is normalized to unity.



www.nature.com/scientificreports/

3Scientific RepoRts | 7: 5712  | DOI:10.1038/s41598-017-06146-7

in xy plane is plot in Fig. 2(a), and for better visualization we also plot the electric intensity along the center line, 
i.e., y = 0, in Fig. 2(b), from which it can be seen that the focus of incident needle is clearly shifted into the micro-
sphere, about 0.843 μm away from the shadow side of microsphere, i.e., geometric focus.

To compensate the negative SAs, positive SAs should be enhanced. According to ref. 12, microsphere with 
smaller RIR has larger positive SAs (see Fig. 2 in ref. 12); we expect that properly small RIR will compensate the 
negative SAs. Therefore, the refractive index of microsphere should be reduced; eq. (1) can be modified as follow:

Figure 3. Electric intensity distribution around the microsphere immerged in (a) deionized water, (b) air, 
(c) cedar wood oil. The radii in (a–c) are 1 μm, 1 μm and 1.5 μm, respectively, and the electric intensity is 
normalized respectively to unity. (d) The transverse curves at the maximum value of electric intensity for (a–c). 
The horizontal axis is normalized respectively to the wavelength in surrounding medium, the same for the 
following.

Figure 4. (a) Electric intensity distribution around the microsphere immerged in deionized water. The system 
parameters are: λ0 = 0.405 μm, r = 0.587 μm, n1 = 1.34, n2 = 1.56. (b) The transverse curves at the maximum 
value of electric intensity in Fig. 3(a) (blue) and in Fig. 4(a) (magenta).
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λ= . − ∆n n r2 cos(0 215 /2 ) (2)2 1 0

where ∆ is the corrected value for enhancing positive SAs. Here, we determine the corrected value Δ by using 
FDTD method, which can represent the real physical scene as long as the space and time steps are fine enough 
and the simulation area is not too large. In FDTD Solutions (a commercial software), we determined the rela-
tionship between focal shift S and n2 by setting zero spherical aberration as target value and the refractive index 
of microsphere (i.e., n2) as variable, finding that when the refractive index of microsphere n2 equals to 1.57 the 
system possesses the smallest focal shift, near zero. That is, it is 1.57 the refractive index of microsphere n2 gets 
that the incident optical needle is actually focused at the shadow-side point B. Thus, the corrected value is found 
to be 1.1 for above example (i.e., microsphere with radius r = 1.5 μm immerged in water) when SAs are well elimi-
nated. The electric intensity distribution in xy plane after SAs compensation is shown in Fig. 2(c), and the electric 
intensity along the center line in Fig. 2(d). In fact, the underlying physical mechanism for compensating SAs by 
reducing RIR is understandable from Snell’s law: for microsphere with fixed radius and surrounding medium 
(i.e., θ1 and n1 are unchangeable), the smaller n2 is, the larger θ2 is, i.e., the nearer the focus to the shadow side of 
microsphere is. Note we use the same definition of spherical aberration for microsphere as did in ref. 12.

By comprehensive analysis we found that if we define h = λ0/r as the relative aperture of microsphere eq. (2) 
can be written as follow:

= . − . − .n h1 34(2 (0 215 /2) 0 825) (3)2
2

where ≈ −x xcos 1 /22  was used for small value x. In eq. (3) the first two terms are the contribution of negative 
SAs that is an even function of relative aperture h and the last term is the contribution of positive SAs. Note that 
only primary SAs is taken into account for negative SAs. Another important fact is that the corrected value ∆ is 
proportional to the refractive index of surrounding medium (e.g., 1.34 in above example), and the scaling factor 
is 0.825. That is, eq. (3) could be generalized to any surrounding medium by replacing 1.34 with the refractive 
index of surrounding medium n1, such as free space, cedar wood oil, and deionized water and so on, i.e., the gen-
eralized formula can be expressed as:

= − . − .n n h(2 (0 215 /2) 0 825) (4)2 1
2

The physical mechanism behind the generality is that if the refractive index of surrounding medium is scaled 
by η (i.e., n1 → ηn1), the refractive index and radius of microsphere should be scaled by the same factor η (i.e., 
n2 → ηn2, r → ηr). Thus, the corrected value should be scaled by the same factor η to ensure that the relative 

Notes
Laser 
wavelength

Surrounding 
index

Microsphere 
index

Microsphere 
radius

Original parameters λ0 n1 n2 r

I ηλ0
a n1 n2 ηr

II λ0 ηn1
a ηn2 ηr

III σλ0
a ηn1

a ηn2 σηr

Table 1. Principles of parameter transformation by eq. (4). aDenotes active parameter, others are passive 
parameters.

Figure 5. (a) Electric intensity distribution around the microsphere immerged in deionized water. The system 
parameters are: λ0 = 0.690 μm, r = 1.34 μm, n1 = 1.34, n2 = 1.57. (b) The transverse curves at the maximum value 
of electric intensity in Fig. 3(b) (magenta) and in Fig. 5(a) (blue).



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 5712  | DOI:10.1038/s41598-017-06146-7

aperture h and RIR remain unchanged, keeping the balance between the positive and the negative SAs. More 
detailed explanation will be given in parameter transformation of the Discussion section. we would like to point 
out that the eq. (4) is effective with the microsphere radius in the range from n1 * λ0 to 1.4 * n1 * λ0, larger radius 
will break the balance between the positive and negative SAs and the corrected value Δ is no longer constant but 
a function of radius.

Discussion
In practical application, if one or more parameters are changed due to some restricted condition, how to deter-
mine the values of the remaining parameters without changing the system resolution. Here, eq. (4) will tell us the 
answer. To better illustrate the function of parameters transformation of eq. (4) Table 1 is given below. Normally, 
the issue of parameter transformation can be divided into three kinds case: I the illumination source and micro-
sphere radius are altered while the surrounding medium remains unchanged; II the surrounding medium, the 
refractive index and radius of microsphere are changed while the illumination source remains unchanged; III all 
four parameters in eq. (4) are altered.

For case I, if the illumination wavelength is scaled by η (i.e., λ0 → ηλ0), the microsphere radius has to be scaled 
by the same factor η (i.e., r → ηr) to ensure that the incident beam is still focused at the shadow side. For instance, 
the illumination wavelength in above example is not 0.690 μm but 0.405 μm (i.e., η = 0.587), and this is often the 
case for fluorescence microscope. Here, we call the illumination wavelength λ0 as active parameter, which has to 
be changed due to some restricted condition, and the microsphere radius r as passive parameter. The underlying 
physical mechanism is understandable according to eq. (4) that if the illumination wavelength λ0 and the micro-
sphere radius r are scaled by the same factor η, then the relative aperture h in eq. (4) remains unchanged and so 
does RIR (i.e., n2/n1); the negative and positive SAs are not changed because they are related to relative aperture h 
and RIR, respectively; the SAs of microsphere after transformation is still well compensated and eq. (4) is satisfied. 
Thus, the incident beam will be focused at the shadow side.

Figure 6. (a) Electric intensity distribution around the microsphere immerged in water. The system parameters 
are: λ0 = 0.405 μm, r = 0.786 μm, n1 = 1.34, n2 = 1.57. (b) The transverse curves at the maximum value of electric 
intensity in Fig. 3(b) (magenta) and in Fig. 6(a) (blue).

Figure 7. (a) Electric intensity distribution around the microsphere immerged in water. The system parameters 
are: λ0 = 0.69 μm, r = 1.515 μm, n1 = 1.515, n2 = 1.77. (b) The transverse curves at the maximum value of electric 
intensity in Fig. 3(b) (magenta) and in Fig. 7(a) (blue).
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Here, we explain case II in detail as it is a bit puzzling. In case II if the refractive index of surrounding medium 
is scaled by η (i.e., n1 → ηn1), then the illumination wavelength in surrounding medium is scaled by 1/η (i.e., 
λ0 → λ0/η). We know that the width of incident beam is 0.43λ, λ is the wavelength in surrounding medium. In 
the case after transformation the width of incident beam should had be 0.43λ0/η. However, the width of incident 
needle is actual 0.43λ0 due to the normal incidence at the interface between air and the surrounding medium. 
In other words, the width of incident beam is expanded by η times. In order to keep the relative aperture h 
unchanged, the microsphere radius r should also be scaled by η times (i.e., r → ηr). At the same time, if we scale 
the refractive index of microsphere by the same factor η (i.e., n2 → ηn2), then the relative index RIR and relative 
aperture h are both unchanged, the negative SAs and positive SAs remain well compensated. Thus, the incident 
beam will be focused at the shadow side of microsphere.

As for case III, it is just the combination of cases I and II. In this case there are two active parameters, the pro-
cess of parameter transformation can be divided into two steps: First, the illumination wavelength is scaled by σ 
(i.e., λ0 → σλ0) the microsphere radius should be scaled by the same factor σ (i.e., r → σr). Second, the refractive 
index of surrounding medium is scaled by η (i.e., n1 → ηn1) the refractive index and radius of microsphere should 
also be scaled by the factor η (i.e., n2 → λn2, r → σηr). Note that the order of these two steps has no effect on the 
performance of parameter transformation.

On the basis of eq. (4), not only can researchers setup an optical system of microsphere to focus the incident 
needle at the shadow side of microsphere with super-resolution, but they can also perform parameter transfor-
mation. Now we combine some concrete examples to demonstrate the above theory and illustrate the parame-
ter transformation by eq. (4). All simulations were based on the FDTD Solutions (a commercial software). The 
Auto-uniform meshing with mesh accuracy 8, minimum mesh step of 0.25 nm and perfectly matched layer were 
used. For simplicity but not lose generality, the electric intensity in each case was normalized to unity.

First of all, we demonstrate the effectiveness of the theory compensating SAs, i.e., eq. (4). Here, we let the 
optical needle incident on microspheres with radii 1 μm, 1 μm and 1.5 μm, which were immerged in deionized 
water, air and cedar wood oil, respectively, as shown in Fig. 3(a–c), respectively. The illumination wavelength 
in free space is 0.69 μm. The refractive indices of microspheres were calculated by eq. (4). As expected the inci-
dent optical needles are all focused at the shadow-side surface in these three situations, where the full width at 
half-maximum (FWHM) of the focusing in these three situations are far below Abbe diffraction limit, and the 

Figure 8. (a) Electric intensity distribution around the microsphere immerged in water. The system parameters 
are: λ0 = 0.69 μm, r = 1.515 μm, n1 = 1.515, n2 = 1.77. (b) The transverse curves at the maximum value of electric 
intensity in Fig. 3(b) (magenta) and in Fig. 7(a) (blue).

Notes λ0 ( μm) n1 n2

r 
( μm)

A
before 0.69 1.34 1.56 1

after 0.405a 1.34 1.56 0.587

B
before 0.69 1 1.17 1

after 0.69 1.34a 1.57 1.34

C
before 0.69 1 1.17 1

after 0.405a 1.34a 1.57 0.786

D
before 0.69 1 1.17 1

after 0.69 1.515a 1.77 1.515

E
before 0.405 1 1.17 0.752

after 0.69a 1.515a 1.77 1.5

Table 2. Parameters before and after transformation for Figs 4–8. aDenotes active parameter, others are passive 
parameters.



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 5712  | DOI:10.1038/s41598-017-06146-7

FWHM in the case of deionized water is about 185.2 nm, even approximating 1/3 of the wavelength in water (i.e., 
λ0/3n1 = 171.6 nm). Above examples indicate that eq. (4) can be used to determine the parameters of microsphere 
system with high resolution.

Now, to demonstrate that eq. (4) can be used to perform parameter transformation, we gave five examples for 
cases A–E, and the results are presented in Figs 4–8, respectively. For better understanding, the parameters before 
and after transformation for cases A–E are listed in Table 2. From Figs 4–8, it can be seen that according to the 
principles in Table 1 parameter transformation can be performed without changing the system resolution. Note 
the resolution in this paper is defined as to wavelength in surrounding medium.

In conclusion we derived a simple but useful formula on the focusing of dielectric microsphere by eliminating 
the spherical aberrations of microsphere. On the basis of this formula, not only can researchers setup an optical 
system of microsphere with super-resolution to focus the incident needle at the shadow side of microsphere, but 
they can also perform parameter transformation. In order to facilitate the application, the principle of parameter 
transformation was summarized in Table 1. We would also like to point out that the formula in the present article 
is suitable for narrow incident beam, e.g., optical needle19, 20. For narrow incident beam, the performance of focus-
ing of microsphere depends mainly on spherical aberration and rarely on numerical aperture of microsphere. 
While for wide incident beam, for instance plane wave, the effect of numerical aperture on the performance of 
focusing of microsphere should be taken into account. Our next step is trying to determine the similar formula 
for the illumination of plane wave or wide Gaussian beam and investigate the parameter transformation on the 
basis of that formula.

Methods
All simulations were based on commercial software FDTD Solutions of Lumerical Solutions, Inc. In our model, 
the illumination source propagated along +x axis, and the source plane was located x = −2λ0 (λ0 is the illu-
mination wavelength) and the focal plane was at x = 0. The simulation region was 8λ0 * 16λ0 * 16λ0, and the 
auto-uniform meshing with mesh accuracy 8 and minimum mesh step of 0.25 nm were used. The distance 
between source plane and the leftmost point of microsphere is the sum of illumination wavelength and micro-
sphere radius. The whole simulation region was surrounded by a perfectly matched layer. Due to the absence of 
the optical needle in FDTD Solutions, we first calculated the six components of electric field (Ex, Ey, Ez) and mag-
netic field (Hx, Hy, Hz) at the transverse plane 2λ0 (i.e., x = −2λ0 in the formulas) ahead of the focal plane (i.e., 
x = 0 in the formulas) of 0.95-NA lens according to the formulas in ref. 20. To ensure the accuracy the transverse 
area for calculation was 16λ0 * 16λ0 that was divided into 800 * 800 meshes. Then, we imported the six compo-
nents (Ex, Ey, Ez, Hx, Hy, Hz) into FDTD Solutions as illumination source.
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