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Minimum Winfree loop determines 
self-sustained oscillations in 
excitable Erdös-Rényi random 
networks
Yu Qian1, Xiaohua Cui2 & Zhigang Zheng3,4

The investigation of self-sustained oscillations in excitable complex networks is very important in 
understanding various activities in brain systems, among which the exploration of the key determinants 
of oscillations is a challenging task. In this paper, by investigating the influence of system parameters on 
self-sustained oscillations in excitable Erdös-Rényi random networks (EERRNs), the minimum Winfree 
loop (MWL) is revealed to be the key factor in determining the emergence of collective oscillations. 
Specifically, the one-to-one correspondence between the optimal connection probability (OCP) and 
the MWL length is exposed. Moreover, many important quantities such as the lower critical connection 
probability (LCCP), the OCP, and the upper critical connection probability (UCCP) are determined by 
the MWL. Most importantly, they can be approximately predicted by the network structure analysis, 
which have been verified in numerical simulations. Our results will be of great importance to help us in 
understanding the key factors in determining persistent activities in biological systems.

The brain system is composed of a large number of neurons. A single neuron possesses rich dynamical behaviors, 
such as periodic and even chaotic spiking and bursting. Moreover, the brain system can present multiple modes 
of persistent electrical oscillations at different levels1–13. Recent experimental studies have shown that the electro-
encephalography signals detected from the brain system comprise diverse oscillatory electrical activities. These 
oscillations, which can be roughly classified into several categories, such as delta, alpha, beta, and gamma oscil-
lations, exist across a number of functional domains in the brain and are related to some specific and important 
physiological functions14–23. For example, it was found that phase entrainment of human delta oscillations can 
mediate the effects of expectation on reaction speed20. Bollimunta revealed the neuronal mechanisms of cortical 
alpha oscillations in awake-behaving macaques21. Kay exposed a beta oscillation network in the rat olfactory sys-
tem during a 2-alternative choice odor discrimination task22. Palva discovered that the distinct gamma-band can 
evoke the responses to speech and non-speech sounds in humans23.

Since the studies of “small-world”24 networks proposed by Watts and Strogatz and “scale-free”25 networks 
proposed by Albert and Barabási, remarkable advances have been achieved in a lot of fields related to complex 
networks. Recently, the problems of self-sustained oscillations in excitable complex networks have become one 
of the central topics under investigation due to their extensive applications in brain systems. Exploring the key 
determinants of oscillations in these systems is a challenging task. Theoretically, diverse self-sustained oscil-
latory activities and related determining mechanisms are reported in different kinds of excitable complex net-
works26–35. For example, we discovered the one-dimensional (1D) Winfree loops to support self-sustained target 
group patterns in excitable small-world networks31. Liao et al. revealed the center nodes and small skeletons to 
sustain target wave like patterns in excitable homogeneous random networks33. Mi and collaborators exposed the 
mechanism of long-period rhythmic synchronous firings in excitable scale-free networks to explain the temporal 
information processing in neural systems34. Recently, we investigated the emergence of self-sustained oscillations 
in excitable Erdös-Rényi random networks (EERRNs)35. It was discovered that, at specific system parameters, 
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periodical self-sustained oscillations can emerge in EERRNs in an appropriate connection probability interval, 
and there is an optimal connection probability (OCP) for supporting the oscillations. However, whether there 
is intrinsic mechanism in determining the oscillations in EERRNs, especially in determining the connection 
probability interval and the OCP for supporting the oscillations, is still unclear. In this paper, by investigating the 
influence of system parameters on self-sustained oscillations in EERRNs, the MWL is exposed to be the intrinsic 
mechanism in determining the emergence of collective oscillations. Furthermore, the one-to-one relationship 
between the OCP and the MWL length is revealed explicitly. More importantly, the connection probability inter-
val (i.e., the lower critical connection probability (LCCP) and the upper critical connection probability (UCCP)) 
and the OCP for supporting the oscillations in EERRNs are exposed to be determined by the MWL. These three 
important quantities can be approximately predicted by the network structure analysis, and have been verified in 
numerical simulations.

Model descriptions
In this paper, we adopt the Bär-Eiswirth model36 as node dynamics to construct the EERRN. The evolution of the 
studied network dynamics is described by the following equations:
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Here i = 1, 2, …, N represents excitable nodes in the network. Variables ui and vi describe the activator and the 
inhibitor of the ith node, respectively. The function f(u) takes the following form:

=











<

− . − ≤ ≤

> .

f u

u

u u u

u

( )

0 1
3

,

1 6 75 ( 1) 1
3

1,

1 1 (3)

2

The relaxation parameter ε  1 represents the time ratio between the activator u and the inhibitor v. The 
dimensionless parameters a and b denote the activator kinetics of the local dynamics and can effectively control 
the excitation threshold (the excitation threshold of Bär-Eiswirth model is determined by uT = b/a). D is the cou-
pling strength which decides the interaction intensity between linking nodes. Ai,j is the adjacency matrix element, 
and is defined as Ai,j = Aj,i = 1 if there is a bidirectional connection linking nodes i and j, and Ai,j = Aj,i = 0 other-
wise. The connections between every pair of nodes in the ERRN are linked with a probability P. Consequently, the 
total number of connections is expected to be PN(N − 1)/2. Here we should mention that, by manipulating the 
connection probability P, one can produce a number of EERRNs with the same P. For a given P, there are a lot of 
network realizations. Numerically, eqs (1) and (2) are integrated by the forward Euler integration scheme with 
time step Δt = 0.02. The random initial condition is used in the numerical simulation (i.e., the initial variables 
ui(t = 0) and vi(t = 0) are randomly given between 0 and 1).

In order to reveal the key determinants of self-sustained oscillation, the oscillation proportion pos is intro-
duced as our order parameter to quantitatively investigate the influence of system parameters on self-sustained 
oscillations in EERRNs, which is defined as:

= .p N
N (4)os
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Here NALL is the total number of numerical simulations starting from random initial conditions for each set 
of parameters, and Nos is the number of self-sustained oscillations counted in NALL dynamical processes. To judge 
whether self-sustained oscillation emerges in the EERRN or not, we execute 400 time units for each simulation. 
If one of the nodes in the network executes persistent oscillatory cycles in the last 200 time units, self-sustained 
oscillation is deemed to emerge in EERRN. If nodes in the network are all in the rest state in the last 200 time 
units, no self-sustained oscillation can be observed in this numerical simulation. For each set of parameters, five 
thousand independent numerical simulations are performed (i.e., NALL = 5000). The above criterion is utilized 
to count the number of self-sustained oscillations Nos observed in this NALL = 5000 independent samples. And 
we will use the oscillation proportion as an order parameter to investigate the influence of system parameters on 
self-sustained oscillations in EERRNs and to reveal the key determinants.

Numerical Results and Discussions
In this part, we first perform a systematic investigation of the influence of system parameters on self-sustained 
oscillations in EERRNs. Figure 1(a–d) display the dependence of the oscillation proportion pos on the connection 
probability P at different system parameters a, b, ε and D in EERRNs, respectively. Other parameters are fixed and 
marked in the corresponding panels. The system size is selected as N = 100. It is shown from Fig. 1(a) that, for a 
given a (such as a = 0.75, shown by pink squares), the EERRN can exhibit self-sustained oscillation in an appro-
priate connection probability interval (called as the oscillation parameter region), and will evolve into the homo-
geneous rest state at smaller P or larger P. As connection probability is increased in the oscillation parameter 
region, the oscillation proportion pos first increases, then passes through a maximum, and finally decreases for 
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larger P, which implies an OCP for supporting self-sustained oscillations in EERRNs (indicated by = .P 0 018OCP1
 

in Fig. 1(a)). When a is increased (as shown by pink squares for a = 0.75, green dots for a = 0.80, blue triangles for 
a = 0.85 and red diamonds for a = 0.90), the oscillation proportion curve, which is located in the oscillation 
parameter region, ascends gradually. This means that the number of self-sustained oscillations emerging in 
EERRNs will increase as a is increased. Moreover, all the OCPs obtained for each oscillation proportion curve are 
approximately located at = .P 0 018OCP1

. This implies that the OCP for supporting self-sustained oscillations in 
EERRNs is independent of the system parameter a. From Fig. 1(a) we can find the parameter a can only influence 
the oscillation proportion pos, and has no effect on the OCP. The study of the relation between the oscillation 
proportion pos and the connection probability P for different parameters b is shown in Fig. 1(b). It indicates that 
the parameter b can only influence the oscillation proportion pos too. Specifically, pos in the oscillation parameter 
region decreases as b is increased, and the OCPs obtained for different parameters b are all still located at 

= .P 0 018OCP1
.

Figure 1(c) reveals the dependence of the oscillation proportion pos on the relaxation parameter ε. It is shown 
that, as ε is increased from 0.03 (shown by blue squares) to 0.07 (shown by pink diamonds) gradually, the oscilla-
tion proportion pos decreases remarkably. Furthermore, the OCP decreases from = .P 0 019OCP0

 (corresponding 
to ε = 0.03) to = .P 0 016OCP3

 (corresponding to ε = 0.07) continuously. This surprising result indicates that the 

Figure 1.  The dependence of the oscillation proportion pos on the connection probability P at different system 
parameters a (a), b (b), ε (c) and D (d) in excitable Erdös-Rényi random networks (EERRNs). Other parameters 
are fixed and marked in the corresponding panels. The system size is selected as N = 100. The oscillation 
proportion is defined as =p N

Nos
os

ALL
. Here NALL is the total number of numerical simulations starting from 

random initial conditions for each set of parameters, and Nos is the number of self-sustained oscillations 
counted in NALL dynamical processes. For each set of parameters, five thousand independent numerical 
simulations are performed (i.e., NALL = 5000). The optimal connection probabilities (OCPs) POCP for supporting 
self-sustained oscillations in EERRNs at different system parameters are indicated.
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relaxation parameter ε can not only influence the number of self-sustained oscillations emerging in EERRNs, but 
also have an impact on the OCP for supporting the oscillations, which is distinct from the relation between pos 
and parameters a and b. Figure 1(d) displays the dependence of the oscillation proportion pos on the coupling 
strength D. Similar to the pos ~ P relation obtained for the relaxation parameter ε, by increasing the coupling 
strength D from 0.7 (shown by blue squares) to 1.3 (shown by pink diamonds), the pos decreases distinctly, and the 
OCP also decreases gradually from = .P 0 019OCP0

 (corresponding to D = 0.7 and D = 0.9) to = .P 0 018OCP1
 (cor-

responding to D = 1.1 and D = 1.3).
To intuitively expose the dependence of the optimal connection probability on system parameters, the rela-

tionships between the POCP and the parameters a, b, ε and D are shown in Fig. 2(a–d), respectively. It is shown 
from Fig. 2(a,b) that the optimal connection probabilities are all fixed at 0.018 for various choices of parameters a 
and b. Figure 2(c) shows the dependence of the optimal connection probability POCP on the relaxation parameter 
ε. As ε is increased from 0.03 to 0.07 continuously, the POCP decreases gradually from 0.019 (corresponding to 
ε = 0.03) to 0.016 (corresponding to ε = 0.07). The relationship between the POCP and the coupling strength D is 
shown in Fig. 2(d). As D is increased from 0.7 to 1.4 gradually, the POCP decreases from 0.019 (for 0.7 ≤ D ≤ 1.0) 
to 0.018 (for 1.1 ≤ D ≤ 1.4) slightly.

The above findings on the emergence of collective self-sustained oscillations and the dependence of collec-
tive oscillations on the parameters of the system indicate non-trivial behaviors exhibited in EERRNs. To explain 
the nonlinear dependence of the oscillation proportion curves on various system parameters shown in Fig. 1 
and the relationship between the POCP and the parameters shown in Fig. 2, one should first clarify the follow-
ing two key points. The first point is the influence of system parameters on the number of self-sustained oscil-
lations emerging in EERRNs (i.e., the variation of pos on system parameters). The second is the influence of 
system parameters on the OCP for supporting the oscillations in EERRNs (i.e., the variation of POCP on system 

Figure 2.  The relationship between the optimal connection probability POCP and the system parameters a (a), b 
(b), ε (c) and D (d). Other parameters are fixed and marked in the corresponding panels.
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parameters). Several conclusions that have been revealed in previous works31, 35, 37 can be applied to the inter-
pretation of these two points. It is well known that the excitable wave propagating unidirectionally along an 
excitable loop can form one-dimensional Winfree loop37. Furthermore, it has been discovered in refs 31, 35 that, 
the formation of 1D Winfree loop, which exists as the oscillation source, is the key mechanism for maintaining 
self-sustained oscillation in excitable complex networks. Moreover, as we know, nodes in the excitable complex 
network must be excited in sequence. As a result, the excitable wave must propagate forward along the shortest 
path in the network. The 1D Winfree loop should also obey this shortest path rule. This means that the length of 
1D Winfree loop should be as short as possible (i.e., the number of nodes in 1D Winfree loop should be as small 
as possible). However, due to the existence of the refractory period of excitable dynamics, the 1D Winfree loop 
cannot self-organize to a too small size topological loop. Therefore, there must be a MWL at a given set of system 
parameters. From the above discussions we can speculate that the MWL will play a key role in determining the 
self-sustained oscillation in EERRNs. Consequently, the relationship between the MWL and the system parame-
ters is the crucial point to explain the results obtained in the above section.

The schematic diagram of the way we calculate the MWL length Lmin is exhibited in Fig. 3. System parameters 
are chosen as a = 0.90, b = 0.04, ε = 0.04, and D = 1.1. An artificial 1D periodic excitable ring containing 10 nodes 
is constructed and is shown in Fig. 3(a). Figure 3(b) displays the wave form on this 1D periodic excitable ring, and 
this will be used as the initial condition for Fig. 3(a). When the wave form shown in Fig. 3(b) is applied, a unidi-
rectional wave propagation is formed along the pathway 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 1 to form a 
1D Winfree loop to support the oscillation (indicated by the outside black arrowed lines in Fig. 3(a)). We try to 
shorten the original loop by removing nodes in the loop in order to obtain a minimum loop with the shortest 
length that are able to support a stable self-sustained oscillation. For the present 10 node loop, we take the follow-
ing procedure. When the peak of excitable wave passes through node 1, node 10 in Fig. 3(a) is discarded from the 
1D excitable ring, i.e., we discard all the connections to node 10 (denoted by the two red short lines), and a con-
nection between nodes 1 and 9 is added (denoted by the red long line). The operation is executed at some 
moment, e.g., t1 = 45.90. Then, a new shorter 1D Winfree loop composed by 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 
9 → 1 is formed and re-organizes to support the self-sustained oscillation (indicated by the inner red arrowed 
lines). Figure  3(c,d) show the spatiotemporal pattern and the trajectory of the collective variable 

= ∑ =
=u t u t( ) ( )
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N

i
1

1
10  as the above operations are executed successively at t1 = 45.90, t2 = 87.52, t3 = 126.88, 

t4 = 163.96 and t5 = 198.66, respectively, when each time one more node in the loop is removed. When five nodes 
in the original loop are discarded, 〈u(t)〉 is found to damp to zero quickly and the system evolves into a homoge-
neous rest state. This indicates that the MWL length, that are able to self-organize to support a global 
self-sustained oscillation, is Lmin = 6 for the present system parameters a = 0.90, b = 0.04, ε = 0.04, and D = 1.1. 
The above procedure of seeking for the MWL length can be applied to general cases with different parameters and 
different node dynamics.

Figure 4(a–d) display the relationship between the MWL length Lmin and the system parameters a, b, ε and D,  
respectively. Other parameters are fixed and marked in the corresponding panels. The MWL length Lmin is cal-
culated according to the schematic diagram illustrated in Fig. 3. By comparing the results shown in Figs 2(a–d) 
and 4(a–d), the dependence of the OCP POCP on the MWL length Lmin can be obtained, and is shown in Fig. 4(e). 
It can be surprisingly found that, for a given Lmin, no matter what the specific parameters are, there is only one 
corresponding POCP. Furthermore, the corresponding POCP decreases with increasing the MWL length Lmin. This 
means that the OCP for supporting self-sustained oscillations in EERRNs is determined by the MWL. Based on 
the results revealed in Fig. 4, now we can explain the influence of system parameters on self-sustained oscillations 
in EERRNs, especially in interpreting the variation of pos and POCP on system parameters (shown by Figs 1 and 2).

For parameters a and b, the MWL lengths obtained are all fixed at Lmin = 6 (shown in Fig. 4(a,b), respectively). 
As all Lmin are the same for different a and b, it will result in a unique POCP corresponding to them. This is the 
reason why the OCP obtained for different parameters a and b are the same (located at = .P 0 018OCP1

, as shown 
in Fig. 1(a,b) or Fig. 2(a,b), respectively). Furthermore, as mentioned above, the excitation threshold of the 
Bär-Eiswirth model is determined by uT = b/a. By increasing the parameter a or decreasing the parameter b, the 
excitation threshold of the local excitable dynamics will decrease, which improves the excitability of local excita-
ble node and the wave propagation in excitable complex networks. This will result in the increase of the number 
of self-sustained oscillations in EERRNs. Consequently, the oscillation proportion pos will increase as the excita-
tion threshold is decreased, and the oscillation proportion curves shown in Fig. 1(a,b) can be observed.

Let us further discuss the oscillation proportion curves obtained for the relaxation parameter ε and the cou-
pling strength D. These relations can be understood by the property of wave propagation in excitable media. As 
we know, the length of a given 1D Winfree loop L can be approximately calculated by the formula L ≈ T *V, where 
T is the oscillation period of the local excitable node and V is the propagating speed of the excitable wave along 
the 1D Winfree loop. Due to the existence of the refractory period of excitable dynamics, there is a minimum 
oscillation period Tmin, which approximately equals to the refractory period Tf. Consequently, the length of MWL 
can be estimated approximately by the formula Lmin ≈ Tmin*V ≈ Tf*V. This indicates that the length of MWL is 
related to the refractory period of the local excitable node Tf and the propagating speed of the excitable wave V.

Figure 4(c) displays the dependence of the MWL length Lmin on the relaxation parameter ε. It can be found 
that Lmin increases as ε is increased. In Bär-Eiswirth model, ε  1 is the relaxation parameter scale, which repre-
sents the time ratio between the activator u and the inhibitor v. It can be used to regulate the local excitable 
dynamics, especially in regulating the refractory period Tf. Therefore, when the relaxation parameter ε is 
increased from 0.03 to 0.07 gradually, the refractory period Tf increases, which results in the increase of Lmin from 
5 (corresponding to ε = 0.03) to 8 (corresponding to ε = 0.07). On the other hand, a larger MWL length Lmin 
means a more difficult formation of the 1D Winfree loop to support a stable self-sustained oscillation in the net-
work. Consequently, the oscillation proportion pos decreases remarkably, and the corresponding OCP also 
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Figure 3.  The schematic diagram of calculating the minimum Winfree loop (MWL) length Lmin. System 
parameters are chosen as a = 0.90, b = 0.04, ε = 0.04, and D = 1.1. (a) An artificial one-dimensional (1D) 
periodic excitable ring containing 10 nodes is constructed and the removal procedure (see below). (b) The wave 
form on this 1D periodic excitable ring, which is used as the initial condition for (a). When the wave form 
shown in (b) is applied, the excitable wave can propagate unidirectional along the pathway 
1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 1 to form a 1D Winfree loop in (a) (indicated by the outside black 
arrowed lines). This original loop is shortened by removing nodes in the loop in order to obtain a loop with the 
shortest length that are able to support a stable self-sustained oscillation. For the present 10 node loop, we take 
the following procedure: when the peak of the wave passes through node 1 at t1 = 45.90, node 10 in (a) is 
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decreases from = .P 0 019OCP0
 (corresponding to Lmin = 5) to = .P 0 016OCP3

 (corresponding to Lmin = 8) continu-
ously (shown in Fig. 1(c) or Fig. 2(c)). Figure 4(d) exhibits the relationship between the MWL length Lmin and the 
coupling strength D. Similar to the dependence on the relaxation parameter ε, Lmin increases slightly as D is 
increased. In excitable media, the coupling strength D is related to the propagation speed V of the excitable wave. 
Hence, as the coupling strength D is increased gradually, the propagation speed V of the excitable wave increases. 
This will lead to the increase of the MWL length Lmin from 5 (for 0.7 ≤ D ≤ 1.0) to 6 (for 1.1 ≤ D ≤ 1.4) slightly, as 
shown in Fig. 4(d), which hinders the formation of the 1D Winfree loop for supporting self-sustained oscillations 
in EERRNs too. Consequently, the oscillation proportion pos and the corresponding OCP decreases gradually, as 
shown in Fig. 1(d) or Fig. 2(d).

The above explorations reveal the intrinsic mechanism relating to the influence of system parameters on 
self-sustained oscillations in EERRNs. Phenomenally, the self-sustained oscillation in the EERRN seems to be 
decided by the system parameters. However, the one-to-one correspondence between the OCP and the MWL 
length given by Fig. 4(e) indicates that the emergence of collective oscillations in EERRNs is essentially deter-
mined by the MWL, which is hidden behind the system parameters. Therefore, the MWL is the key factor in 
determining the self-sustained oscillations in EERRNs.

The existence of the MWL is a key factor in leading to the self-sustained oscillation in EERRNs is manifested 
in the one-to-one relationship between the OCP and the MWL length. The underlying mechanism behind this 
one-to-one correspondence, or say, the existence of such MWL and its dominant role, however, is still unclear and 
needs to be further excavated. To solve this problem, the following two criteria, which are proposed in ref. 35 are 
adopted. (1) For a given set of system parameters, the network must contain a topological loop with a length that 
is not shorter than the MWL, i.e., L ≥ Lmin. (2) The average path length (APL) of a given network should satisfy 
dAPL ≥ Lmin − 1.

Here we briefly interpret the main idea of these two criteria. Due to the existence of the refractory period 
of excitable dynamics, the 1D Winfree loop cannot self-organize to a too small size topological loop. This 
implies that there must be a MWL for a given set of system parameters (see the results shown in Fig. 4(a–d)). 
Consequently, criterion (1) (i.e., for the existence of a topological loop with L ≥ Lmin) is the necessary condition 
for the formation of 1D Winfree loop supporting self-sustained oscillations in EERRNs. When the connection 
probability P is small, the EERRN is largely sparse, criterion (1) can be used as the condition to expose the LCCP, 
beyond which self-sustained oscillations can emerge in EERRNs.

Now let us discuss criterion (2). If a MWL with a length Lmin is formed, the diameter of this unidirectional 1D 
Winfree loop (along the wave propagation direction) is Lmin − 1. This can be understood by resorting to the 1D 
Winfree loop shown in Fig. 3(a). For the artificial 1D periodic excitable ring with 10 nodes shown in Fig. 3(a), 
as a wave shown in Fig. 3(b) is applied, a unidirectional wave propagation is formed along the pathway 1 → 2 
→ 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 1, which forms a 1D Winfree loop to support the global oscillation. The 
diameter of this unidirectional 1D Winfree loop is 9. Moreover, it is well known that the APL of a network dAPL 
denotes the average shortest path between any two nodes in the network, which therefore can be approximately 
considered as the distance between the initially excited node to its corresponding driving node along the wave 
propagation path in the Winfree loop. If dAPL ≥ Lmin − 1, the initially excited nodes in the network have enough 
time to response to the next excitation from their driving nodes. This may eventually form the 1D Winfree loop, 
and the self-sustained oscillation can emerge in the network. On the other hand, if dAPL < Lmin − 1, the initially 
excited nodes are all in the refractory period. In this case, the 1D Winfree loop can not self-organize, and no 
oscillation can emerge in the network. Therefore, criterion (2) can be used as the condition to disclose the UCCP, 
below which self-sustained oscillations can emerge in EERRNs.

Figure 5(a–c) illustrate the schematic diagram of the way that we analyze the network structure in terms of the 
above two criteria to approximately predict some important quantities such as the LCCP, the OCP and the UCCP 
for specific MWL. The MWL with the length Lmin = 6 is used as our example here. The insets display the local 
enlargement of the areas indicated by the grey dashed rectangles in Fig. 5(a–c). The two blue dash lines in 
Fig. 5(a,b) are the critical values, which can help us approximately predict the LCCP and the UCCP. Figure 5(a) 
displays the dependence of the proportion of network structures satisfying L ≥ Lmin (that is defined as 

=≥
≥pL L

N

N
L L

min

min

ALL
) on the connection probability P in ERRNs, here NALL is the total number of random network 

realizations performed for each connection probability P, and ≥NL Lmin
 is the number of network structures that 

possess a loop with the length L ≥ Lmin in NALL independent samples. In our simulations NALL = 5000 independent 
ERRNs are performed for each connection probability P. It is shown that the 

≥pL Lmin
 increases from 0 to 1 as the 

connection probability P is increased. More importantly, from the inset shown in the Fig. 5(a), we can find that 
the 

≥pL Lmin
 can be larger than 0 as the connection probability P reaches 0.004. This means that the network struc-

ture in ERRNs can satisfy criterion (1) when the connection probability P ≥ 0.004. This naturally gives the LCCP 
PLCCP = 0.004, beyond which self-sustained oscillations can emerge in EERRNs. Figure 5(b) shows the depend-
ence of the proportion of network structures with an APL dAPL ≥  Lmin −  1 (that is defined as 

discarded from the 1D excitable ring (indicated by the two red short lines), and a connection between nodes 1 
and 9 is added (indicated by the red long line). Then, a new shorter 1D Winfree loop composed by 
1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 1 is formed and re-organizes to support the self-sustained oscillation 
(indicated by the inner red arrowed lines). (c,d) The spatiotemporal pattern (c) and the trajectory of the 
collective variable = ∑ =

=u t u t( ) ( )
N i

N
i

1
1

10  (d) as the above operations are executed successively at t1 = 45.90, 
t2 = 87.52, t3 = 126.88, t4 = 163.96 and t5 = 198.66, respectively, when each time one more node in the loop is 
removed.
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=≥ −
≥ −

≥
pd L

N

N1
d L

L LAPL min

APL min 1

min

) on the connection probability P in ERRNs. Here ≥ −Nd L 1APL min
 is the number of net-

work structures satisfying dAPL ≥ Lmin − 1 counted in ≥NL Lmin
 samples. It is shown that the 

≥ −pd L 1APL min
 decreases 

from 1 to 0 as the connection probability P is increased. More importantly, from the inset shown in the Fig. 5(b), 
we can find that the 

≥ −pd L 1APL min
 approaches 0 as the connection probability P is greater than 0.034. This means 

Figure 4.  The relationship between the MWL length Lmin and the system parameters a (a), b (b), ε (c) and D 
(d). Other parameters are fixed and marked in the corresponding panels. The MWL length Lmin is calculated 
according to the schematic diagram illustrated in Fig. 3. (e) The dependence of the OCP POCP on the MWL 
length Lmin. It is obtained by comparing the results shown in Figs 2(a–d) and 4(a–d).
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that the network structure in ERRNs fails to satisfy criterion (2) when the connection probability P > 0.034. This 
naturally gives the UCCP PUCCP = 0.034, below which self-sustained oscillations can emerge in EERRNs. 
Figure 5(c) exhibits the dependence of the joint probability (JP) (that is defined as = ≥ ≥ −⁎p p pL L d LJP 1min APL min

) on 
the connection probability P. The physical meaning of joint probability pJP is the proportion of network structures 
satisfying both criterion (1) and criterion (2). It is shown that the joint probability pJP first increases with increas-
ing the connection probability P, and then decreases after passing a maximum. As we know, the more the network 
structure meets the above two criteria, the more the oscillation can emerge in EERRNs. That’s the reason why 

Figure 5.  (a–c) The schematic diagram of analyzing the network structure in terms of the above two criteria to 
approximately predict the lower critical connection probability (LCCP), the OCP, and the upper critical 
connection probability (UCCP) for specific MWL. The MWL with the length Lmin = 6 is used as example here. 
The insets is (a–c) display the local enlargement of the areas indicated by the grey dashed rectangles, 
respectively. The two blue dash lines in (a,b) are the critical values, which can help us approximately predict the 
LCCP and the UCCP. (a) The dependence of the proportion of network structures satisfying L ≥ Lmin (that is 
defined as =≥

≥pL L
N

N
L L

min

min

ALL
) on the connection probability P in ERRNs, here NALL is the total number of 

random network realizations performed for each connection probability P, and ≥NL Lmin
 is the number of 

network structures satisfys that possess a loop with the length L ≥ Lmin in NALL independent samples. 
NALL = 5000 independent samples are performed for each connection probability P. (b) The dependence of the 
proportion of network structures with an APL dAPL ≥ Lmin − 1 (that is defined as =≥ −

≥ −

≥
pd L

N

N1
d L

L LAPL min

APL min 1

min

) on 

the connection probability P in ERRNs. Here ≥ −Nd L 1APL min
 is the number of network structures satisfying 

dAPL ≥ Lmin − 1 counted in ≥NL Lmin
 samples. (c) The dependence of the joint probability (JP) (that is defined as 

= ≥ ≥ −⁎p p pL L d LJP 1min APL min
) on the connection probability P. (d) The dependence of the theoretical predictions 

(shown by large coloured symbols) and the numerical results (shown by small black symbols) of PLCCP, POCP and 
PUCCP on the MWL length Lmin.
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similar oscillation proportion curves shown in Fig. 1 can be obversed. More importantly, the peak of the JP curve 
locates at P = 0.019 (see the inset in Fig. 5(c)). This indicates that the number of network structures in ERRNs 
simultaneously satisfying criterion (1) and criterion (2) are the most at this connection probability. It can be used 
as the indicator to reveal the OCP (i.e., POCP = 0.019), at which most self-sustained oscillations can emerge in 
EERRNs.

Figure 5(d) reveals the dependence of the theoretical predictions (shown by large coloured symbols) and the 
numerical results (shown by small black symbols) of PLCCP, POCP and PUCCP respectively on the MWL length Lmin. 
The theoretical predictions are performed according to the schematic diagram illustrated in Fig. 5(a–c). It is 
shown that numerical results are coincident with theoretical predictions very well. Here we should mention that, 
in our numerical simulation, we have observed multiple approximate values of PLCCP and PUCCP for a specific Lmin 
(shown by numerical results in Fig. 5(d)). The reason is as follow: As shown by the two insets in Fig. 5(a,b), the 

≥pL Lmin
 and the 

≥ −pd L 1APL min
 obtained around the critical connection probabilities are very small (such as 

= .≥p 0 0008L Lmin
 for P = 0.004, = .≥p 0 0012L Lmin

 for P = 0.005, = .≥p 0 0058L Lmin
 for P = 0.006 in Fig. 5(a), and 

= .≥ −p 0 0006d L 1APL min
 for P = 0.034, = .≥ −p 0 0006d L 1APL min

 for P = 0.033, = .≥ −p 0 0022d L 1APL min
 for P = 0.032 in 

Fig. 5(b)). This means that the number of network structures in ERRNs satisfying the criterion (1) or the criterion 
(2) (i.e., the number of network structures, which satisfy the conditions for supporting the self-sustained oscilla-
tion in ERRNs) around the critical connection probabilities are very few. Furthermore, besides the existence of 
the network structure satisfying the conditions for supporting the self-sustained oscillation, the proper initial 
condition is another key point to form self-sustained oscillation. As the random initial condition is used in this 
paper, the randomness of initial condition can not ensure the emergence of self-sustained oscillation in these few 
network structures around these two critical connection probabilities, which are predicted by the criterion (1) 
and the criterion (2). This may result in the numerical results of PLCCP and PUCCP different (such as PLCCP = 0.004, 
PLCCP = 0.005, or even PLCCP = 0.006 for the LCCP; PUCCP = 0.034, PUCCP = 0.033, or even PUCCP = 0.032 for the 
UCCP). Consequently, for a given set of system parameters, a pair of PLCCP and PUCCP, which are approximate to 
the predicted values, can be detected in numerical simulation. As a specific Lmin can correspond to several sets of 
system parameters, we can observe multiple approximate values of PLCCP and PUCCP corresponding to a specific 
Lmin in numerical simulation.

System size is also an important ingredient in determining the spatiotemporal dynamics in EERRNs. 
Figure 6(a) presents the dependence of the oscillation proportion pos on the connection probability P for different 
system sizes N in EERRNs (as shown by red squares for N = 100, green dots for N = 200, blue triangles for 
N = 300, pink diamonds for N = 400 and yellow stars for N = 500). Here other parameters are chosen as a = 0.90, 
b = 0.04, ε = 0.04, and D = 1.1. NALL = 5000 independent randomly constructed excitable Erdös-Rényi networks 
are performed for each set of parameters. The OCPs POCP for each oscillation proportion curve are indicated. It is 
shown that, when the system size N is increased gradually from 100 (shown by red squares) to 500 (shown by 
yellow stars), the oscillation proportion pos significantly increases. Simultaneously, the OCP decreases from 

= .P 0 018OCP1
 to = .P 0 003OCP5

. This reveals that the system size N can not only affect the number of self-sustained 
oscillations emerging in EERRNs, but also impact on the OCP for supporting the oscillations. Figure 6(b) exhibits 
the dependence of theoretical predictions (shown by large coloured symbols) and numerical results (shown by 

Figure 6.  (a) The dependence of the oscillation proportion pos on the connection probability P for different 
system sizes N in EERRNs. Here other parameters are chosen as a = 0.90, b = 0.04, ε = 0.04, and D = 1.1. 
NALL = 5000 independent randomly constructed excitable Erdös-Rényi networks are performed for each 
set of parameters. The OCPs POCP for each oscillation proportion curve are indicated. (b) The dependence 
of theoretical predictions (shown by large coloured symbols) and numerical results (shown by small black 
symbols) of PLCCP, POCP and PUCCP on system size N.
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small black symbols) of PLCCP, POCP and PUCCP on system size N. It is shown that numerical results are in good 
agreement with theoretical predictions, which indicates that the analysis of the mechanism and consequent pre-
dictions revealed in this paper are independent of system size.

Conclusion
In this paper, we explore the mechanism of self-sustained oscillation in EERRNs. To do this, we extensively inves-
tigated the influence of system parameters on self-sustained oscillations in EERRNs. An intuitive judgement is 
that the system parameters can not only influence the number of self-sustained oscillations emerging in EERRNs, 
but also impact the connection probability interval (i.e., the LCCP and the UCCP) and the OCP for supporting 
the oscillations. However, our investigation reveals that these phenomena are essentially determined by the MWL, 
which is deeply hidden behind the system parameters. The dependence of self-sustained oscillations emerging 
in EERRNs on system parameters can be interpreted by the MWL. Furthermore, the one-to-one correspondence 
between the OCP and the MWL length is revealed. Most importantly, the LCCP and the UCCP (i.e., the connec-
tion probability interval) and the OCP for supporting the oscillations in EERRNs are exposed to be determined 
by the MWL, and these three important quantities can be well predicted by network structure analysis, which 
have been verified in numerical simulations. The above explorations reveal the intrinsic mechanism relating to 
the influence of system parameters on self-sustained oscillations in EERRNs, and indicate that the MWL is the 
key factor in determining the collective oscillations in EERRNs. Finally, we disclose that the results revealed in 
this paper are independent of the system size.

Studies on issues related to self-sustained oscillations in excitable complex networks are very important, 
among which exploring the key determinants of oscillations is a challenging task. A systematic investigation 
of the MWL determined self-sustained oscillations in excitable Erdös-Rényi random networks and the related 
mechanism are expected to be useful both for theoretical understandings and practical applications. We hope our 
results can help us shed light on understanding the key factors in determining persistent activities in biological 
systems.
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