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Percolation-theoretic bounds on 
the cache size of nodes in mobile 
opportunistic networks
Peiyan Yuan   1, Honghai Wu2, Xiaoyan Zhao3 & Zhengnan Dong1

The node buffer size has a large influence on the performance of Mobile Opportunistic Networks 
(MONs). This is mainly because each node should temporarily cache packets to deal with the 
intermittently connected links. In this paper, we study fundamental bounds on node buffer size below 
which the network system can not achieve the expected performance such as the transmission delay 
and packet delivery ratio. Given the condition that each link has the same probability p to be active in 
the next time slot when the link is inactive and q to be inactive when the link is active, there exists a 
critical value pc from a percolation perspective. If p > pc, the network is in the supercritical case, where 
we found that there is an achievable upper bound on the buffer size of nodes, independent of the 
inactive probability q. When p < pc, the network is in the subcritical case, and there exists a closed-form 
solution for buffer occupation, which is independent of the size of the network.

Current portable/wearable devices have been integrated with many sensors and wireless functions, such as WiFi 
and Bluetooth, which confers on them powerful capabilities, especially in sensing, computing and communica-
tion. The more powerful these devices become, the more likely it is that they share contents locally, leading to the 
emergence of mobile opportunistic networks (MONs)1. MONs use node mobility to provide occasional contact 
opportunities for mobile devices to transmit packets. Such a new networking paradigm employs device-to-device 
communication, which is rarely considered in traditional infrastructure-based networks, to alleviate the over-
loading criticality and enhance the coverage areas. On the other hand, in infrastructure-less areas, MONs may 
be the only communication solution. These benefits enable numerous applications, including rural communica-
tions2, wild monitoring3, crowd sensing4 and metropolitan awareness of issues5.

Compared to traditional wireless networks, one of the features of MONs is that the intermittent connectivity 
is mainly caused by broken links due to some external factors varying in different scenarios. For example, in an ad 
hoc mobile vehicle network6, two vehicles are connected when they enter the communication range of each other, 
and the link between them is disconnected when they move outside the transmission range. In7, S. Wang, J. Zhao 
and L. Tong studied a cognitive radio network where the activity of primary users is driven by an ON-OFF pro-
cess such that the secondary users should keep inactive until the primary users switch from the ON to OFF mode.

The factors mentioned above are external in some sense, which implies that link disconnection and inactivity 
can not be eliminated by improving internal conditions such as enhancing the network capacity or node process 
speed. With external constraints, node buffer size can not approach zero even if the network capacity approaches 
infinity, since each node should temporarily cache packets to deal with the broken links. Therefore, there exists a 
performance limit on node buffer occupation. On the other hand, current research communities mainly focus on 
the data forwarding schemes of MONs (e.g., PROPHET8, Bubble9, Spray-Wait10, SMART11 and Hotent12). Some 
analytical results with respect to flooding time13, network diameter14, and delay-capacity tradeoff15 have also been 
obtained, providing valuable insights into data forwarding efficiency and system performance. However, such 
insights may only reflect one aspect of MONs without considering the influence of node buffer size.

In this paper, we study node buffer occupation in MONs, where broken links are caused by node mobility or 
a channel access scheme. We assume that the system capacity can be regarded as infinite, compared to the low 
packet generation rate. By using this assumption, we try to illustrate that even if the system capacity is unlimited, 
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there still exists a lower bound on node buffer size below which the network system cannot achieve the suggested 
performance, such as the transmission delay and packet delivery ratio. We use the edge-Markovian dynamic 
graph to model MONs. This model can reproduce the power law + exponential tail distribution of the pairwise 
node inter-contact time, which has been observed in several real data traces of MONs16. Starting from an arbi-
trary initial probability distribution of links, at every time slot, links change their states (active or inactive) based 
on a two-state Markovian process with probabilities p (active) and q (inactive). If a link is inactive at slot t, it will 
be active at slot t + 1 with probability p. If, instead, the link is active at slot t, it switches to the inactive state at the 
next slot with probability q. From the perspective of percolation theory, there is a critical value pc for p. If p > pc, 
the network is in the supercritical case, and there exists a connected giant cluster, a unique infinite connected 
cluster at any time, with a high probability when the number of nodes becomes infinity. In contrast, when p < pc, 
the network is in the subcritical case, and the giant cluster disappears almost certainly when the number of nodes 
goes to infinity. Fundamental limits on node buffer size are quite different in the two cases. In the supercritical 
case, there is an upper bound on the buffer size of nodes, independent of the inactive probability q, while in the 
subcritical case, there exists a closed-form solution for buffer occupation that is independent of the size of the 
network.

The rest of this paper are organized as follows. We first review related works and introduce the preliminaries. 
Then, we analyze the node buffer occupation in the supercritical case and present the results in the subcritical 
case. After that, we conduct the experiment and analyze the results, followed by a short conclusion.

Related Works
MONs is a natural evolution from traditional mobile ad hoc networks. In MONs, the links are intermittently 
connected due to node mobility and power on/off, mobile nodes communicate with each other opportunistically 
and route packets in a store-carry-and-forward style. In the past several years, much effort has been expended 
to improve the performance of opportunistic routing algorithms in terms of reducing the forwarding delay or 
increasing the packet delivery ratio. Some valuable results have been achieved that provide theoretical guidance 
for performance optimization. We introduce them in detail.

Cache-aware Opportunistic Routing Algorithms.  Considering the limited buffer size of portable 
devices, cache-aware solutions become very important in MONs. A. Balasubramanian et al. take MONs routing 
as a resource allocation problem and turn the forwarding metric into per-packet utilities that incorporate two 
factors: one is the expected contribution of a packet if it were replicated, and the other is the packet size. The 
utility, then, is the ratio of the former factor over the latter, which determines how a packet should be replicated 
in the system17. To deal with the short contacts and fragmented bundles, M. J. Pitkanen and J. Ott18 integrated 
application level erasure coding on top of existing protocols. They used Reed Solomon codes to divide single 
bundles into multiple blocks and observed that the block redundancy increased the catch hit rate and reduced 
the response latency.

S. Kaveevivitchai and H. Esaki proposed a message deletion strategy for a multi-copy routing scheme19. They 
employed extra nodes deployed at the system’s hot regions to relay the acknowledgement (ACK) messages, and 
copies matching the ID of ACK messages are dropped from the buffer. A. T. Prodhan et al. proposed TBR20, which 
ranks messages with their TTL, hop count and number of copies. A node will delete the copy of a message if it 
receives a higher priority message and its buffer is full. Recently, D. Pan et al.21 developed a comprehensive cache 
schedule algorithm that integrates different aspects of storage managements including queue strategy, buffer 
replacement and redundancy deletion.

Performance Analysis of Cache-aware Opportunistic Routing Algorithms.  Some analytical results 
mainly focus on metrics such as the flooding time13, 22, 23, network diameter14 and delay-capacity tradeoff15, in 
which the buffer size of nodes is usually assumed to be unlimited. Several works discuss the congestion issue 
with the epidemic algorithm. For example, A. Krifa et al.24 proposed an efficient buffer management policy by 
modeling the relationship between the number of copies and the mean delivery delay/rate. When a new packet 
copy arrives at a node and the node finds its buffer full, it drops the packets with the minimal marginal utility 
value. G. Zhang and Y. Liu employed revenue management and dynamic programming to study the congestion 
management strategy of MONs25. Given a class of utility functions, they showed that one arrived packet should 
be accepted and that the solution is optimal if and only if the value of the benefit function is greater than that of 
the cost function.

The authors of26 evaluated the impact of buffer size on the efficiency of four kinds of routing algorithms. 
They observed that these protocols reacted differently to the increase of buffer size in mobile vehicle networks. 
Generally speaking, both the Epidemic and MaxProp benefit from the increased buffer size on all nodes (i.e., 
the mobile and terminal nodes). PROPHET and SprayWait instead have no significant improvement when only 
the buffer size of terminal nodes increases. X. Zhuo et al.27 explored the influence of contact duration on data 
forwarding performance. To maximize the delivery rate, they modeled the data replication problem with mixed 
integer programming technology, subject to the storage constraint.

Preliminaries
External Factors and Broken Links.  In this paper, we study the general influence of external factors on 
the network connectivity rather than focusing on a specific type of external constraint. At each time slot, each 
link switches between the inactive state and active state. Two endpoints of a link can transmit or receive packets 
only if the link is active.

We model the external factors in the network with the edge-Markovian dynamic graph (EMDG), which 
implies that: (1) States of each link vary from one time slot to another, and are i.i.d. among time slot t + 1 and the 
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time slots before t. (2) The probabilities of being active or inactive are two constants p and q for all links, respec-
tively. Mathematically, let n denote the number of nodes and 0 ≤ p, q ≤ 1. The EMDG can be denoted by 

n p q L t( , , , ( ))  if

= ∈ ={ }( )L t l n X l( ) 2 : ( ) 1t

where ∈{ }( )X l l n( ) : 2t  are independent Markov chains with the transition matrix and l is the edge of EMDG. As 
shown in Fig. 1, the transition matrix indicates the transition of the link state in the next time slot, where 0 and 1 
denote that the link is inactive or active, respectively. For example, the element a12 means the link is inactive and 
will become active in the next time slot with probability p.

Percolation of Connected Links.  Considering the possibility of link activity, we can not guarantee a con-
nected path for each source-destination pair at all times. However, since the states of links are i.i.d, there exists a 
critical probability =p cc

n
n

log  such that (please refer to property 3.5 of ref. 28):

Supercritical case.  If ≥ >p c c( 1)n
n

log , then w.h.p.  n p q L t( , , , ( )) is in the supercritical case and there exists a 
connected giant cluster.

Subcritical case.  There is a constant c ≤ 1/2 such that for ≤p c n
n

log ,  n p q L t( , , , ( )) is in the subcritical case and 
the giant cluster disappears.

Bounds on Node Buffer Size in the Supercritical Case.  In this section, we study the bounds on buffer 
size of nodes in n p q L t( , , , ( ))  when ≥p c n

n
log . The main result is that the expected buffer size of nodes can be 

bounded within a certain range as stated in Theorem 1.
Theorem 1  For a randomly selected node u of n p q L t( , , , ( ))  if ≥p c n

n
log , at the end of a time slot t,

≥
+E B t rT p q
q

( ( ))
(1)u d

And in some forwarding schemes, it is 

≤E B t c rT n
pM

( ( )) log
(2)u d1

where the E(Bu(t)) is a random variable that denotes the expectation of the node buffer size, r is the packet gener-
ation rate per node, Td is the duration of one time slot, c1 is a constant and M is the number of nodes in the giant 
cluster.

Proof of Inequality (1).  Here, we take the node u as an example. Suppose it belongs to the giant cluster, 
it does not need to buffer packets when the links connecting it are active. This is mainly because there exists a 
connected path with a high probability between the node u and other nodes; the transmission delay hence tends 
to zero. Instead, it at least needs to store packets generated by itself when links are inactive. The expected waiting 
time before links become active is 1/π1, where π1 belongs to the stationary distribution π, which is a special distri-
bution for a Markov chain such that if the chain starts with its stationary distribution, the marginal distribution of 
all states at any time will always be the stationary distribution. The variables i and j denote the rows and columns 
in the transition matrix above, so as to compute the transition probability of the link stage in the next time slot. πj 
refers to π1 and π2, which denotes the value of the stationary distribution of a Markov chain. With the transition 
matrix A, we have:

= −
−

Figure 1.  Transition matrix.
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where aij denotes elements of A. We obtain π =
+
q

p q1 . Applying Little’s Law,

≥
+E B t rT p q
q

( ( ))u d

According to Little’s Law, the long-term average number of customers in a stable system is equal to the 
long-term average effective arrival rate multiplied by the average time a customer spends in the system. Note that 

+p q
q

 is the expected number of time slots before links become active, +Td
p q

q
 is the average time a customer spends 

in the system, and r is the arrival rate. Hence, we obtain the number of packets generated by u with equation (1).
In the following subsections, we first design an optimal forwarding scheme, and then prove that with this 

scheme, the buffer occupation specified in equation (2) can be achieved.

Optimal Forwarding Scheme (OFS).  Nodes in the supercritical case can be classified into two types based 
on whether they belong to the giant cluster. One type is connected nodes, which are in the giant cluster, and the 
other type is disconnected nodes. The former constitutes a connected component and the packets can be trans-
mitted fast. In contrast, the disconnected nodes need larger buffer sizes than the connected nodes since they have 
to store packets before the links turn active. The worst case is that both the source s and the destination d are 
disconnected nodes and are just separated by the giant cluster, as shown in Fig. 2. There exist three stages in the 
optimal forwarding scheme: the source flooding stage, the shortest path stage and the destination flooding stage. 
We first introduce the source flooding stage.

	(1)	 The source flooding stage. In general, the flooding scheme achieves the highest packet delivery ratio and the 
lowest transmission delay, but it requires the largest storage space, which is necessary for our study, since we 
focus on the fundamental bounds on node buffer size especially in the worst case. Considering that source s 
and its neighbors are disconnected nodes, it needs to flood packets generated by itself and received from its 
neighbors. In the flooding scheme, if there is a packet at node u at time slot t − 1, node u will send the packet 
to all the nodes that are connected to u at time slot t if the link between them is active. To characterize the 
flooding process, we use an infectious disease-diffusion algorithm29 and further classify nodes into a suscepti-
ble state and an infected state. We call a node infected, if it carries a packet and the node is susceptible if it does 
not carry the packet. Then, there exist four kinds of nodes: disconnected and susceptible (DS), disconnected 
and infected (DI), connected and susceptible (CS), and connected and infected (CI), as shown in Fig. 3.

Figure 2.  Three stages in the optimal forwarding scheme.

Figure 3.  Four types of nodes.
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With the disease-diffusion algorithm, node s first sends copies of a packet m to its neighbors. The newly 
infected neighbors then repeat the same process until any node that belongs to the giant cluster receives m, as 
shown in Fig. 2(a). At the end of this stage, the infected nodes (i.e., several disconnected nodes and one connected 
node) constitute the source expanding tree, SET.

	(2)	 The shortest path stage. Since there exists a connected path for each source-destination pair with a high 
probability in the giant cluster, we use the shortest path to transmit packets in this stage. Suppose a node u 
in the SET belongs to the giant cluster. It sends m to node v along the shortest path as shown in Fig. 2(b). In 
other words, if there is a packet at time slot t − 1 at node u, at time slot t node u instantaneously sends the 
packet to the next hop in the shortest path if the link is active.

	(3)	 The destination flooding stage. After the node v receives the message m, it diffuses m among the discon-
nected nodes until m reaches the destination node d. Finally, nodes having a copy of m form the destina-
tion expanding tree, DET.

With OFS, it can be intuitively inferred that the buffer occupation of disconnected nodes is limited. This is 
mainly because in each time slot, the giant cluster exists, and the size of SET and DET are finite. Therefore, the 
disconnected nodes only need to buffer messages coming from nearby sources or going to nearby destinations.

Contact Probability between disconnected and connected nodes.  Let C(n, p, q, L(t)) denote the set 
of connected nodes and D(n, p, q, L(t)) the set of disconnected nodes (i.e., a node is a connected node if it belongs 
to the giant component; otherwise, it is a disconnected node). Let w1 ∈ D(n, p, q, L(t)), w2 ∈ C(n, p, q, L(t)) and 

∈l Lw w1 2
. For any t0, t (t > t0), define the set of nodes in D that have been connected to C in at least one time step 

i ∈ {t0 + 1, …, t0 + t}

= ∈ = ∈{ }H w D C X l w C\ : ( ) 1,t t i w w1 20 1 2

where =l i( ) 1w w1 2
 denotes that the link between w1 and w2 is active at moment i.

The following lemma is a key component in proving equation (2). Roughly speaking, it states that the prob-
ability that one disconnected node does not have contact with one connected node during [0, t] (i.e., the link 
between them remains inactive within time step t) decreases exponentially in t.
Lemma 1  Let w1 ∈ D\C, for any t0 ≥ 0 and t ≥ 1. It holds that

∉ ≤ −P w H e( ) (3)t t
ptM

1 0

where M is the size of C.
Proof:  For any node w2 ∈ C, the event ∉w Ht t1 0

 indicates that there is no active link between w1 and w2 during 
[ 0 ,  t ] .  From  t h e  E M D G ,  t h e  l i n k  i n a c t i v i t y  pro b abi l i t y  i s  ( 1  −  p ) ,  an d  we  o bt a i n 

= − = = −P(l (i) 0 l (i 1) 0) 1 pw w w w1 2 1 2
.

Therefore,

∩ ∩
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Since Markov chains of different links are independent, it holds that

∉ = − ≤ −( )P w H p e(1 )t t
tM ptM

1 0

Finite Transmission Time. 
Lemma 2  Let ts → u denote the transmission time from node s to node u, which represents the time when the package 
is first transmitted from the source node into nodes belonging to the giant cluster. It satisfies




 ≥






≤→P t n
pM n

log 1
(4)

s u

Proof:  Recall that in stage 1 of the OFS, the flood process will stop if one DI node encounters any CS node. 
Assume there are k DI nodes and all of them will encounter the CS node u. The elapsed times are t1,u, …, tk,u. 
Hence, = …→t t tmin( , , )s u u k u1, , . On the other hand, from lemma 1, we know that there exists one node j ∈ D(n, 
p, q, L(t)). It will contact the node u after n

pM
log  steps with at least probability 1 − O(1/n). This is mainly because

∈ ≥ − ≥ − = −− −( )P j H e e n1 1 1 1/t t
ptM nlog

0

when ≥t n
pM

log .
Since ts → u is the minimum of k elapsed time, ≤ts u

n
pM,

log . We then obtain:
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


 ≥






= −



 ≤






≤P t n
pM

P t n
pM n

log 1 log 1
s u s u, ,

Proof of Inequality (2).  Let E(Bs(t)) denote the expectation of buffer occupation in stage 1. We have:

≤E B t rT S n
pM

( ( )) log
s d n

For the buffer occupation in stage 3, we correspondingly have

≤E B t rT D n
pM

( ( )) log
d d n

where Sn is the size of SET and Dn represents that of DET. Finally, the buffer occupation of node u with the OFS is 
the sum of the above two parts, ≤ + =E B t rT S D c rT( ( )) ( )u d n n

n
pM d

n
pM

log
1

log , where c1 is determined by Sn and Dn. We 
will discuss the value of Sn and Dn in the evaluation section.

Bound on Node Buffer Size in the Subcritical Case.  If ≤ ≤p c c( 1/2)n
n

log , the network is in the sub-
critical case, and the giant cluster does not exist. The main result is that there is a closed form for buffer occupa-
tion of nodes as shown in Theorem 2.
Theorem 2  For a randomly selected node u of  n p q L t( , , , ( )) if ≤ ≤p c c( 1/2)n

n
log , at the end of a time slot t,

=E B t rT
p

( ( ))
2 (5)u

d

Similar to stages (1) and (3) of the OFS, we still use the infectious disease-diffusion algorithm to distribute 
copies, but this time the shortest path stage disappears. The flooding scheme therefore dominates the forwarding 
process.

The Number of Average Copies of a Packet When It Is Delivered.  Let S(t) denote the number of sus-
ceptible nodes at a moment t and I(t) denote the number of infected nodes. From the infectious disease-diffusion 
process, we obtain the varying rate of I(t):

′ = −I t n pSIp( ) ( 1) (6)

Proof:  Recall that with EMDG, the active probability of links is p, which implies that a node can contact 
(n − 1)p other nodes in one time slot. Since there are I(t) infected nodes and S(t) susceptible nodes, the number 
of active links among themis S(t) × I(t) × p as shown in Fig. 4. Hence, the number of new infected nodes in one 
time slot is (n − 1)pSIp.

With the condition I(0) = 1 and I(t) + S(t) = n, we obtain:

Figure 4.  Number of active links.
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=
+ − − −

I t n

n e
( )

1 ( 1) (7)n n tp( 1) 2

Correspondingly, the cumulative delay distribution  t( ) until the first copy of a packet is delivered to its des-
tination can be formulated as  ′ = − −t n pIp( ) ( 1) (1 ). After some algebras, we obtain:

 = −




 − +





−
t n

n e
( ) 1

( 1) (8)n n tp( 1) 2

The average number of copies of a packet when it is delivered to the destination, E(c) is hence derived:

∫= ′ − = −
∞

E c I t t dt n( ) ( ) ( ) 1 ( 1)/2 (9)0

Proof of equation (5).  We now prove equation (5).
Assume that each node is the source of one flow and the destination for another flow; then, there are n flows 

in the network. Given the (n − 1)/2 copies of a packet and the packet generation rate r, the number of packets 
generated by nodes is nrTd and the total number of packets (the packets generated by nodes and their copies) in 

Figure 5.  Number of nodes in the largest connected cluster and SET.

Figure 6.  Buffer size in supercritical case.
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the system is nrTd(n − 1)/2, which is equally shared among the n nodes. The arrival rate of relay packets for each 
node is therefore (n − 1)rTd/2. Since a copy is deleted if the node encounters the destination, the contact rate is 
just the service rate (n − 1)p. According to the queuing theory, the average buffer size of nodes is the ratio of the 
arrival rate and service rate. Hence, we obtain =E B t( ( ))u

rT
p2
d .

Compute Sn, Dn and M.  We demonstrate how to compute the values of Sn, Dn and M in this section.
Recall that Sn and Dn denote the size of SET and DET, respectively. Nodes in SET and DET are disconnected 

and do ont belong to the giant cluster M. Hence, the message diffusion in SET/DET also takes flooding in the 
same way as that in the subcritical case, and the number of infected nodes in SET/DET can be calculated by equa-
tion (7), where the parameters n and p are set in advance and the only issue is how to ascertain the value of t. 
Fortunately, from lemma 2, we know that the transmission time ts → u can not exceed n

pM
log  with at least probability 

1 − O(1/n). This means that the maximum value of t is n
pM

log , and we can use it to calculate the bound of the buffer 
size in equation (7). Using a similar process, we can get the value of Dn.

For the number of connected nodes in the giant cluster (i.e., M), it can be obtained by the MATLAB function 
largestcomponent().

Numerical Results
In this section, we present the simulation results to show the expectation of the buffer size in different conditions 
and other key components such as the number of nodes in the largest connected cluster.

For the supercritical case, we initially deploy 1000 nodes in the network. The value of c is 1.1 and r = Td = 1. 
After that, we vary the parameter of p from 0.003 to 0.004 with a step 0.0005 to evaluate the network connectivity 
performance under different active probabilities. In addition, the simulation results are the average over 100 runs 
for statistical confidence.

Figure 5(a) illustrates the number of connected nodes. It is obvious that the number of connected nodes 
ranges from 880 to 970 as the active probability increases from 0.0030 to 0.0040, which means there indeed exists 
a giant connected cluster in the network. The two parameters are positively related. That is, the smaller the value 
of p is, the smaller the value of M should be.

Figure 5(b) shows the size of SET. We note that in the supercritical case, the source flooding stage is very short 
and the number of nodes in SET is smaller compared to those in the giant cluster. For example, the size of SET is 
smaller than 40 in p = 0.003, and under the same condition, M tends to 890.

After calculating the values of Sn, Dn and M, we can compute the expectation of node buffer size by equation 
(2). The results are shown in Fig. 6(a,b). Figure 6(a) shows the expected buffer size at different moments, and there 
is a slight fluctuation. Figure 6(b) further shows the influence of the number of nodes on the expectation of buffer 
size. We observe that the expectation curve is declining sharply when the number of nodes increases from 500 to 
700 and levels out at the end, which demonstrates that only bits of buffer size are needed in this scenario.

For the subcritical case, we calculate the expectation of the node buffer size according to equation (5) and 
plot the results in Fig. 7, where the value of p is 0.001, 0.0015 and 0.002, respectively, and all of them satisfy the 
subcritical condition. Figure 7(a) shows the influence of p on buffer size, and Fig. 7(b) shows the role of packet 
generation r. The value of the buffer size ranges from 250 units to 500 with different active probability p and shows 
no relationship with the number of nodes in Fig. 7(a). In Fig. 7(b), the value of buffer size has a positive correla-
tion with the parameter r. Generally speaking, the node buffer size is independent of the number of nodes in the 
subcritical case, which instead relies on the active probability p.

Figure 7.  Buffer size in subcritical case.
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Conclusion
In this paper, we study the cache potentiality of mobile opportunistic networks. We model the MONs with EMDG 
and find that there exists a critical probability pc from the perspective of percolation theory. If the active prob-
ability p ≥ pc, the network is in the supercritical case and there exist two bounds on the buffer size of nodes: the 
lower bound is dependent on both the active probability p and the inactive probability q, while the upper bound 
is independent of q. If, instead, p ≤ pc, there is a closed-form solution for buffer occupation that, is independent 
of the size of the network. In the future, extensive simulations under various scenarios will be run to evaluate the 
results, and to explore the influence of different buffer management metrics.
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