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Cumulative Dynamics of 
Independent Information 
Spreading Behaviour: A Physical 
Perspective
Cangqi Zhou1,2, Qianchuan Zhao1,2 & Wenbo Lu1,2

The popularization of information spreading in online social networks facilitates daily communication 
among people. Although much work has been done to study the effect of interactions among 
people on spreading, there is less work that considers the pattern of spreading behaviour when 
people independently make their decisions. By comparing microblogging, an important medium for 
information spreading, with the disordered spin glass system, we find that there exist interesting 
corresponding relationships between them. And the effect of aging can be observed in both systems. 
Based on the analogy with the Trap Model of spin glasses, we derive a model with a unified power-
function form for the growth of independent spreading activities. Our model takes several key factors 
into consideration, including memory effect, the dynamics of human interest, and the fact that older 
messages are more difficult to discover. We validate our model by a real-world microblogging data set. 
Our work indicates that, other than various features, some invariable rules should be considered during 
spreading prediction. This work also contributes a useful methodology for studying human dynamics.

Information spreading is of great significance to the communication in people’s daily life, the marketing strategies 
of corporations, and the concentration of public opinion1. To investigate how individuals respond to received 
information, most existing research studied the interactions among them. However, to our best knowledge, how 
individuals independently decide whether or not to spread information has not been well answered yet. In this 
paper, we study cumulative dynamics of independent spreading behaviour by probing retweeting, one of the most 
typical information spreading processes in online social networks. Our target problem is to explore if there exists 
a model with a simple unified form that governs the growth of all independent retweeting activities in our data 
set.

Retweeting is the behaviour of copying received messages and reposting them on microblogging platforms. 
The decision of retweeting could be made under the influence of others or, independently. It is intuitive that there 
exist certain patterns of interactions among people, such as the cascading effect2–4, the co-existence of competi-
tion and cooperation5. However, most existing studies, whether theoretical6–8 or empirical9–11, do not discrim-
inate the independence property of spreading activities from others, although it makes up a large portion of all 
spreading activities. Therefore, rather than focusing on the hierarchical structure, we focus on the retwitters who 
directly retweet initialized messages from influentials, without any influence from others. The reason we only 
consider influentials is that there is hardly any information about spreading dynamics if a message is retweeted 
by only a few retwitters, though we do not make any particular assumptions about influentials in our model der-
ivation. One of the benefits of studying direct retwitters is that, due to the filtering of direct retwitters, networks 
can be reduced to a much smaller scale. Meanwhile, this filtering process does not reduce the representativeness 
of retweeting activities, since that a large number of spreading processes originated from influential users end up 
within their one-degree follower networks11.

Specifically, through empirical data, we trace the reposted messages (retweets) of popular initialized/orig-
inal messages (tweets) by direct retwitters in Sina Weibo, China’s most popular microblogging service. Direct 
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retwitters can be identified by text parsing utilities. Then, similar to other studies12–14, the change of the number of 
retweets allows us to investigate the dynamics of independent spreading behaviour. We will investigate whether 
there is a model with a unified form that applies to all responding activities.

Of the existing explanatory models of information spreading, some intend to explain the microscopic interac-
tions among individuals15, some intend to characterize the resulting effect12, 16, and some bridge the gap between 
microscopic mechanisms and macroscopic phenomena2, 4, 5. We aim to come up with a modeling methodology 
that is able to derive a mathematical model for phenomenal results based on some intuitive microscopic con-
jectures. To achieve this goal, we try to model the growth of retweets by the analogy with spin glass models. The 
motivations of this methodology are two-fold. The first one is the inspiration from the works of Johansen and 
co-workers14, 17, 18, who reported several experiments on the Internet which could be explained by the models 
similar to the Trap Model of spin glasses. The second motivation is the realization that aging effect is likely to exist 
in the growth of retweeting activities, since it is harder to discover older messages in microblogging. To derive our 
model, we investigate the Ising Model, the Random Energy Model19 for microscopic mechanisms and the definition 
of ground state of spin glass systems. Then we investigate the Trap Model for the explanation of the aging effect in 
spin glasses. We identify several corresponding relationships between the retweeting behaviour of microblogging 
users after the publication of tweets from influentials, and the relaxation responses of spin glasses after the switch 
off of magnetic fields at low temperature. Based on some intuitive conjectures, we derive a power-function model 
to describe the change of cumulative number of retweets over time. These conjectures, such as memory effect, 
the dynamics of human interest, and the fact that it gets more difficult to discover older messages, are the key ele-
ments in our modeling process. And they are demonstrated, to some extent, by empirical experiments or relevant 
references. Then we fit our data by the derived model. The results show that although the content of messages and 
the influence of original publishers are diverse, our model fits well to most of our empirical data. We also show 
the predictability of our model.

Our work contributes a useful methodology, the analogy with physical systems, for studying human dynamics. 
The discovered rule, that applies to the growth of different retweeting activities with a unified form, reveals the 
nature of complexity in retweeting activities. We hope that our work will shed some light on the study of human 
dynamics20–24. Our work also indicates that, other than various features adopted in well-tuned machine learning 
models, some invariable rules, such as the power-law growth of independent retweeting activities, the memory 
effect in human behaviour, should be taken into consideration during the prediction of information spreading.

Results
In this section, we introduce the whole modeling process. The section is outlined as follows: At first, to obtain a 
set of independent retwitters, data preparing and preprocessing are carried out. Then we derive the model for the 
growth of retweets by the analogy with relevant spin glass models. Next, we fit empirical data with the derived 
model. Then, we carry out several experiments to validate our model by real data from Sina Weibo. At last, we 
show the predictability of the derived model.

Data Preparation and Preprocessing. For this study, we obtained two data sets, a message set and a link 
set. The message set allows us to trace every retweet and its corresponding retwitter of an original tweet. The link 
set describes the following relationships among users. Thus, we are allowed to locate every single retweeting activ-
ity on real-world network structures.

A tweet could be spread to distant users from its original publisher. Since that all the followers of current 
retwitters could receive the message and expose it to their own descendants, the entire network structure, on 
which the original tweet spreads, might be too large to study. Goel et al.11 found that a vast majority of spreading 
cascades terminate within one degree of an initial seed. We further defined Direct Follower Networks (DFNs) in 
our former paper25 to describe the spreading activities happened within the first-layer of followers of an influ-
ential user. Figure 1 shows a schematic diagram of a DFN and two overlapped DFNs from real data. The formal 
definition of DFNs is as follows,

Definition 1 A Direct Follower Network associated with an influential user u, is a directed graph with a node set 
  and a link set . The set   consists of all the followers of u with distance 1. The set  consists of all the directed 
links among the nodes in  .

On this simplified network structure, we trace the retweets of 3,506 original tweets initialized by the top 10 
most active (in the sense of the amount of initialized tweets) influentials in our data set. Then we calculate the 
ratios of the retweeting activities on DFNs to the total amounts of retweets. The results show that the ratios exceed 
80% for nearly 90% of original tweets, which means the overwhelming majority of retweeting activities happen 
on DFNs. In addition, as shown in Fig. 2, the hourly intensity of retweeting activities can be roughly classified 
into single-peak and multi-peak patterns. Multi-peak patterns involve more complicated factors than single-peak 
patterns. These multi-peak patterns account for less than 5% of all samples in our data set. Therefore, they are 
removed in the following analyses.

After the simplification of network structure, we discuss the independence among retwitters. A retwitter could 
directly retweet a message after receiving the message exactly once from the author, and he also could receive 
the message multiple times from other retwitters and then retweet it. The retwitters in the former case, who are 
reckoned as direct retwitters, are considered as independent retwitters with each other because their decisions of 
retweeting are not affected by other retwitters. Figure 3 demonstrates direct and indirect retwitters. The so-called 
triad closure makes multiple exposures happen. The effect of multiple exposures on information diffusion in 
social networks is non-trivial. It is of great importance for researchers from a broad range of fields26, 27. In our data 
set, the ratios of the numbers of direct retwitters to the numbers of retwitters in DFNs exceed 70% for more than 
90% of all tweet samples, which means the overwhelming majority of retwitters in DFNs are direct retwitters.
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We identify these direct retwitters by text parsing utilities such as regular expressions. Specifically, among all 
the retwitters, every direct retwitter lies on the structure of DFNs, since other retwitters can only see the original 
message through some mediators. As shown in Fig. 4, we identify direct retwitters by parsing the retweet tag in 
the text of retweets, and locating the positions of retwitters to the author. Admittedly, it is possible that a user 
could bypass his mediators and “directly” reposts a message, even though he saw the message from mediators. 
We ignore this situation since it is a much less convenient way for retweeting in microblogging. After the filtering 
and parsing processes mentioned above, we obtain our data set for modelling independent retweeting behaviour.

Model Derivation. We first introduce the motivations of modeling retweeting behaviour by the analogy with 
spin glass models. Then we describe the connections between them in detail. At last, we give the mathematical 
details of our model.

The motivations that we try to model the growth of retweets by the analogy with spin glass models are 
two-fold. The first one is the inspiration from the works of Johansen and the co-workers14, 17, 18, who reported sev-
eral experiments that characterize the dynamical responses of Internet users to some bursty events. One of their 
experiments is to probe the downloading activities of a scientific paper after the publication of a related online 
interview. The relaxation dynamics to the bursty events is explained as a barrier crossing in the Trap Model28 of 
spin glasses. The second motivation is the realization that aging effect is likely to exist in the growth of retweeting 
activities. The spin glass model we make analogies to are aimed to give reasonable interpretations for aging, which 

Author

(A) Sketch of a Direct Follower Network (B) Two influentials from real-world data

21

Figure 1. An illustration of Direct Follower Networks. (A) An influential user lies at the center of a DFN, 
and every other user follows him. The influential is mainly an author of popular tweets. All the followers of 
the influential and all the links among these followers are included in the DFN. (B) We show the structure of 
DFNs retrieved from Sina Weibo. A tweet is passed on from one influential to another. The overlap of the two 
DFNs is the bridge for tweet spreading. We sample the original data of the two DFNs for a better illustration. 
Nonetheless, the main structure has been retained.

Figure 2. Single-peak and multi-peak patterns of retweeting intensity.
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represents the slow magnetic relaxation dynamics existed at all time scale in spin glass materials. A typical feature 
of aging is that, the longer the waiting time, the slower the relaxation. In our Weibo systems, messages are ordered 
chronologically. The older a message is, the harder it is to find for retweeting. Hence, the growth of retweets shows 
a similar behaviour as the aging effect of spin glass.

Here we give a brief description of the spin glass models related to our work. A spin glass is a disordered sys-
tem. Several intermetallic alloys and insulating compounds are made as spin glass experimental samples. These 
materials show some common behaviours, such as aging. The Ising Model is used to describe a set of interacting 
(p-)spins on lattice19. The minima model assumes that the spins can only take on the values 1 or −1. A configura-
tion of a system, which assumes to be comprised of N spins, is an assignment of certain values to each spin. The 
system consists of 2N  configurations. Based on the Ising Model, the Random Energy Model (REM)19 assumes that, 
(1) the energy levels Ei corresponding to each configuration are independent and identically distributed normal 
random variables; (2) the probability that a system is in a certain configuration is proportional to −E Texp( / )i , 
where T represents thermodynamic temperature. The solution to the model indicates that an exponentially large 
number of configurations are distributed on a concentrated ground state. The probability that a system is on other 
states is almost zero.

Based on the REM, the Trap Model28 characterizes the effect of aging in the magnetic relaxation processes of 
spin glasses. The model assumes that a metallic spin-glass instance can be decomposed into a lot independent 
spin glass subsystems. The energy state of a subsystem is characterized by its own configurations. And the energy 
landscape of the whole system is rough and hierarchical. The reference energy f0, which is specified by the ground 
state revealed by REM, forms a “plane” on the landscape. There are many local minima, which trap the subsystems 
into metastable configurations, on that plane. The depth of these traps is exponentially distributed with lower 
probability for deeper traps. And the deeper the trap is, the longer a subsystem stays in it. A transition between 
two configurations that are on the plane is almost instantaneous since that there is no energy difference between 
the configurations. Hence, most of the time, subsystems are trapped in these pits with relatively lower energy 
levels. A subsystem needs extra energy to escape a trap, and transits to another energy level. However, due to the 
constraint of structure, a transition of a subsystem between configurations occurs only between adjacent traps. 
It is unlikely that a subsystem can randomly transit to any trap on the plane. The ensemble of the transitions of 
all subsystems leads to the magnetic relaxation of the whole system. The model also introduces an exponential 
decaying factor for the convergence of integral.

Author

1

23
mediator

multiple exposures

Figure 3. A schematic diagram of direct and indirect retwitters. After the publication of an original tweet 
from the author, direct followers 1 and 2 will immediately receive the message. Suppose 1 reposts the message, 
he becomes a direct retwitter. As a consequence, on the one hand, he will be the mediator for his follower 3, 
a possible indirect retwitter. On the other hand, because of the existence of the direct link from 2 to 1, the 
retweeting behaviour of retwitter 1 increases the number follower 2 receives the message.

: //@Retwitter A Comments A : //@Retwitter B Comments B

: //@Retwitter C Comments C :Author Original Tweet

Main Body: Text Picture Audio Vedio URL ...

Retweet TagDirect Retwitter

Figure 4. Locating the direct retwitter in the text of a retweet. Retwitters C, B and A retweet the author’s 
original tweet chronologically. Retwitter C is the closest to the author. Thus, C is reckoned as a direct retwitter.
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A Weibo system, which is characterized by a Direct Follower Network of an author, consists of many inde-
pendent retwitters. Each follower corresponds to a subsystem in spin glasses. The ground energy level of a retwit-
ter corresponds to the least active state of the retwitter. People carry out different tasks in their daily lives. Once 
a person is dealing with a task, he is “trapped” by it. Since he is now more active compared to the ground energy 
state, the energy landscape formed by these tasks is filled with humps rather than pits. The difficulty and complex-
ity to accomplish these tasks can be different. More difficult tasks will cost people longer time to deal with. And 
the property associated with the difficulty of tasks are assumed to be exponentially distributed. And this distri-
bution in our Weibo systems will be demonstrated later. Now an energy landscape similar to that of spin glasses 
has been established. Analogous to spin glass relaxation, the ensemble of the transitions of retwitters among the 
humps created by original tweets, leads to the growth of the number of retweets.

We introduce two important facts in retweeting behaviour. The first is the memory effect, which characterizes 
the correlations among a series of tasks. Intuitively, the effect implies that people will deal with tasks in a logical 
order, and will not randomly transit between tasks. There are a lot of evidence that human activities show mem-
ory effect, i.e., they are not Markovian29. Considering the REM, adjacent system configurations on a grid are only 
different in the values of a few particles. A system can only transit to its currently adjacent states. And it limits 
large variations in energy levels. The second conjecture characterizes the bursty nature of the dynamics of human 
interest20. One of the basic properties is that the longer the time a person is doing one thing, the more likely he 
will lose his interest and move onto another task21.

The main corresponding relationships between spin glasses and Weibo systems are summarized in Table 1.
The main conjectures in spin glass systems also correspond to the conjectures in Weibo systems. They are, the 

exponentially distributed landscape, memory effect and the dynamics of human interest. These conjectures are 
demonstrated, to some extent, by either empirical experiments or relevant references.

Next, we give the mathematical details of model derivation. The configurations in REM correspond to dif-
ferent states when an individual is dealing with different tasks. Intuitively, more difficult tasks will cost people 
longer time to deal with. For instance, in Weibo systems, we will spend different lengths of time for messages with 
different contents. Let f denote the property associated with a task that will affect the length of time when people 
deal with it. The property could be associated with the complexity of mathematical problems, or the attractiveness 
of tweets. The distribution of f is assumed to be exponential, which is

=
−

∈ ∞P f x
T

x f f
T

f f( ) exp
( )

, [ , ) (1)
0

0

where f0 is the reference state in which people stay in their normal status of activeness. f0 corresponds to the 
ground state derived in the REM. The difference with the Trap Model is that f0 is our lowest energy state, and f is 
always equal or greater than f. The exponential form of the distribution will be demonstrated later by our Weibo 
data set.

The landscape is filled with humps, which means that people will transfer from ground state to more active 
states when he deals with some tasks. The expectation of f is

〈 〉 = +f f T
x (2)0

Parameter T corresponds to the activeness of a user. The more active he is, the more probable he will be to deal 
with complex tasks. Parameter x corresponds to how simple, on average, users’ tasks are. The simpler the tasks, 
the lower the humps on the landscape.

According to the Arrhenius Law, the time for dealing with a task with property f is,

τ τ=
−f f
T

exp (3)0
0

where τ0 is the minimum time for users to deal with a task. This response time is a very small quantity compared 
to the time span under our consideration.

According to Equation (1) and (3), we obtain the distribution of τ as,

Item Description

Individual Correspondence A spin glass subsystem corresponds to a direct retwitter of an influential.

Individual Independence
Direct retwitters are independent with each other. The independence 
property appears in REM when p becomes large, where p is the number 
of spin interactions in the Hamiltonian.

Magnetic Field 
Correspondence

The external magnetic filed applied to a disordered system corresponds 
to the publication of a tweet by an influential. This publication can be 
viewed as a “field” applied immediately to the DFN of the influential.

State Transition 
Correspondence

The state transitions among energy states of spin glass subsystems 
corresponds to the transitions from different humps created by different 
tasks in people’s daily life.

Relaxation Correspondence The magnetization relaxation of a disordered system corresponds to the 
spreading saturation of an original tweet in Weibo systems.

Table 1. Corresponding relationships between spin glasses and Weibo systems.
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The memory effect indicates that, when people are dealing with a sequence of tasks, there must be a reasonable 
order29. It limits large variations of f during state transitions. In order to involve this effect, we introduce 

τ=r u r t( ) ( / )w  to denote the likelihood a user deals with a task with processing time τ. tw is a constant, and it will 
be eliminated in our following analysis. The likelihood function should satisfy the properties of <dr du/ 0 and 

τ =τ→∞r tlim ( / ) 0w . At any specific time point, let τP t( , )h w  denote the hitting probability that a user is dealing with 
a task with processing time τ. We have,

τ τ τΨ τ∝P t r
t

( , ) ( ) ( )
(5)h w

w

Hence, by re-organizing constant parameters, we have
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where A is the normalization constant.
As mentioned by the study of human interest dynamics21, the longer the time a person keeps doing something, 

the more probable he is to change his current interest. Hence, the longer the time τ a user is trapped into his for-
mer business, the more probable he is to see a certain message at present. Let pm denote the possibility that users 
transfer from doing other business to message browsing in microblogging platforms. To involve the above effect, 
the transition probability from the task with processing time τ at some point to message browsing in Weibo will 
be modified by multiplying the factor τ−p texp( / )m . Note that this factor and the memory effect factor r(u) do not 
affect the final form of the power-law relaxation equation, as long as they satisfy required properties28.

Let N denote the final number of retweets of an original message. At time point t after the publication of the 
message, let n(t) denotes the cumulative number of retweets at t. For those who have not retweeted the message 
yet, they will try τ dt1/  times with transition probability pm and hitting probability τP ( )h . We assume that once a 
user decides to retweet a message, his action is instantaneous. τ1/  denotes the average hopping frequency when 
users transfer from doing other business to tweet browsing. We calculate τ1/  for all terms with τ. Let 

τ τ=r t t( / ) /w w , we have,
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Hence,

τ= − ⋅ ⋅dn N n t dt p( ( )) 1/ (8)m

−
=

dn
N n

p x
t

dt (9)m

The general solution to the above differential equation is

= − − ⋅n t N C t( ) (10)x p
0 m

where C0 is a constant. Its value depends on the satisfaction of the boundary condition. We will discuss the values 
of parameters later. Equation (10) shows the cumulative dynamics of retweeting. It has the form of − −c at b.

Model Fitting. We fit the power-function model = − −n t c at( ) b with our real-world tweet spreading data 
set.

We choose the top 5 most active influentials as the root users of their corresponding Direct Follower Networks. 
They are also the authors of the initialized tweets, which are the seeds of the chains of retweets that we trace. The 
identities of the influentials are diverse, including the official account of a news agency, two popular accounts 
that publish jokes and witticisms, a famous writer and a popular actress. There are altogether 2623 seed tweets 
initialized by these influentials.

We fit the 2623 chains of samples with the same model but different parameters (See Methods). The results 
show that for 2087 samples, the parameters b are in (0, 1), which account for 80% of all the samples. We choose 
normalized Root Mean Square Error (RMSE) as our performance measure. Some fitting examples are illustrated 
in Fig. 5. The figures show that those fitting results with errors lower than around 0.06 demonstrate the effec-
tiveness of our model. The results with high errors are rare, and the reason of high errors is probably that there 
are several peaks of retweeting intensity during the whole process of spreading. We examine the samples with 
relatively large fitting errors, and discover that around 70% of the original tweets corresponding to these samples 
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are published between 10 pm and 6am the next day. It is mainly the circadian rhythm30 that results in the sponta-
neous emergence of multi-peak retweeting patterns among direct retwitters. The distribution of all fitting errors 
is illustrated in Fig. 6(a). It is shown that the errors are less than 0.05 for around 85.9% of retweeting curves. The 
empirical data are well fitted by our model.

To further demonstrate the effectiveness of our power-function model, we fit the empirical data with two 
alternative forms, an exponential function (11) and a logarithmic function (12).

= − −n t c ae( ) (11)bt

= + +n t c a t b( ) ln( ) (12)

The fitting method is identical to that for power-function fitting. Results are illustrated in Fig. 6(b). We find 
that the samples whose fitting errors are less that 0.05 account for 1.68% and 13.6% of total samples for exponen-
tial model and logarithmic model respectively. While this number is 85.9% for power-function model. Hence, we 
conclude that the derived power-function model outperforms both exponential and logarithmic models.

In order to show the distribution of the waiting time of retweeting τ, we plot the CCDF (Complementary 
Cumulative Distribution Function) of τ in Fig. 7. Within the time span under our consideration, which is 72 hours 
(4320 minutes), the tail of the distribution of τ shows approximately a straight line (the red line). However, at a 
relatively larger time span, the distribution indicates an exponential tail of the form θ θ∼ − ≥f x x( ) exp( ), 0, 
we adopt the maximum distance between the CCDF of the empirical distribution and the CCDF of the estimated 
exponential distribution as our criterion, which is similar to the Kolmogorov–Smirnov statistic. Then we estimate 
the exponent θ, and find the optimal value, which is . × −2 73 10 5, approximately. The red line in Fig. 7(b) shows 
the fitting result. The criterion is approximately 0.01782, which is not large compared to 1.

Within a small time span, in which most spreading processes saturate, the distribution of τ is approximately 
power-law. This result is consistent with Equation (4).

The above results validate the power-function model of cumulative dynamics of independent spreading activ-
ities. The model implies a clear trend of saturation, and an aging effect, which means if the longer the time after 
the last retweeting activity happens, the longer the time it is to wait for the next retweeting. Model compari-
son demonstrates that the decay of the intensity of spreading is neither as fast as exponential, nor as slow as 
logarithmic.

Model Validation. We conduct several empirical experiments to validate some key facts in our model, 
including

1.the relationship between parameter a and c.
2.the exponentially distributed landscape.

(a) Example 1 (b) Example 2 (c) Example 3

(d) Example 4 (e) Example 5 (f) Example 6

Figure 5. Model fitting examples with our real-world data set. The grey dots represent the cumulative numbers 
of retweets at different time points. And the black curves are the fitted models with the form of our power 
function. Error-bars are calculated based on the standard deviation of residuals.
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3.the connection between b and temperature.
These experiments are based on those samples with parameter b in (0, 1), which account for 80% of all 

samples.
To determine the value of the constant C0 in model (10), we need to investigate the satisfaction of the bound-

ary condition = =n t( 1) 0. If we precisely choose the minimal response time of retweeting as our base unit of time, 
it is possible to adjust the cumulative curves to meet the desired boundary condition. In this case, the boundary 
condition will hold and a equals c. However, there exist some technical limitations when collecting our data. And 
for the convenience of analysis, we choose one minute as our time unit. We calculate the ratio of the number of 
retweets within one minute. They are less than 5% for 96% of all samples. Hence, there are some small deviations 
in calculating the boundary condition. We draw a scatterplot of a and c in Fig. 8(a). It seems that a = c. However, 
a closer examination reveals that there are more points below the diagonal.

In addition, the bias in estimating the waiting time τ may affect the boundary condition. If we adopt the power 
function model of τ described by Equation (4), we can see from Fig. 7(a) that this power-law model is likely to 
overestimate the actual processing time near zero, which means that the cumulative number of retweets predicted 
by the model will grow slower than the actual number. A slower growth of the model indicates a relatively larger 
a in the form = − −n t c at( ) b. And the curve generated by our model tends to shift to the right side of the actual 
curve. Due to this shifting, the model may produce negative values near zero. Hence, it is very possible that a > c 
when t = 1. And it is consistence with the results in Fig. 8(a). The effect of the above facts on the satisfaction of the 
boundary condition may be inevitable, but it is small. The above analysis demonstrates the consistency between 
the derived model and our empirical data.

The energy landscape of disordered systems, social systems and biological systems are well-studied31–33. The 
landscape of very low energies in REM is exponentially distributed. In our Weibo systems, the ground-state cor-
responds to users’ normal status in their daily activities. Once a user begins to browse and read tweets, he will be 
“trapped” into some humps created by the tweets he browsed. Most of the tweets will take up only a small amount 
of his time, but there are some tweets that will attract his attention. Hence, the landscape in Weibo systems is cre-
ated by the tweets. Furthermore, the time one spends on each tweet is determined by the height of the hump. The 
popularity or attractiveness of a tweet is well-defined by how many times it has been retweeted during a relatively 
long period. Figure 8(b) shows the CCDF of the numbers of retweets of the original tweets in our data set. The 
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Figure 6. Model Fitting Results. (a) Distribution of fitting errors for the top 5 most active authors. (b) 
Comparison of fitting error distributions using different models.
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Figure 7. Complementary Cumulative Distribution Function (CCDF) of the waiting time for retweeting. 
(a) The distribution of τ within a relatively small time span. The tail is approximately a straight line. (b) The 
distribution of τ at a larger time span. The tail is likely to be exponential.



www.nature.com/scientificreports/

9Scientific RepoRts | 7: 5530  | DOI:10.1038/s41598-017-05899-5

figure indicates that the CCDF is approximately a straight line with a log-transformed y-axis. This results provide 
evidence that the energy landscape of Weibo systems is likely to be exponentially distributed.

Rate parameter b is crucial since it determines the overall shape of the growth of retweeting activities. The spin 
glass parameter x in Equation (1) in Reference 28, to which b corresponds, is temperature dependent. Since tem-
perature represents the average kinetic energy of microscopic motions of particles, the physical model indicates 
that there is a connection between b and the average activeness of retwitters. The actual meaning that b reveals 
is related to the so-called social temperature concept, which is defined as the probability of one’s acceptance of 
others’ opinion34, 35.

Here, we introduce an indicator to represent the average activeness of retwitters. The number of a user’s fol-
lowees Ω determines the amount of messages the user receives, and the number of messages ω the user retweets 
during a certain period determines to what extent the user approves others’ opinion. These two quantities are 
direct indicators of users’ activeness. Then we define the ratio ω= Ωr /act  as an indicator of retweeting activeness 
for each retwitter. If temperature rises, retwitters will be more active and the system will relax faster. For each 
retweeting sample, we calculate ract for every its retwitter. The distribution of ract for one sample is not fat-tailed. 
We then fit ract with exponential distribution and record the exponent λ for each sample. As shown in Fig. 9, as b 
increases, the distributions of λ in each group decrease. Since λ1/  reflects the average activeness among the retwit-
ters of a sample, the results demonstrate that as “social temperature” increases, the level of activeness among users 
increases too. This is consistent with our former analysis. The above empirical findings demonstrate the real sig-
nificance that parameter b points to.

Predictability. In order to demonstrate the function of our derived model, we carry out several prediction 
experiments, including two based on historical data and one based on microscopic data.

At first, we try to predict the saturated number of retweets N by using historical data. We fit the curve of 
cumulative number of retweets by our power-function model at the 8th, 12th and 16th hour respectively after 
the publication of the original tweet for all our samples. Then we obtain 3 groups of parameters a, b and c. We 
use these 9 parameters as features to train a support vector regression model for the prediction of the number 
of retweets at the 72nd hour. We use a ten-fold cross validation to evaluate the accuracy of the prediction. The 
distribution of the absolute percentage errors between predicted number of retweets and the actual number is 
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Figure 8. (a) The scatterplot for parameter a and c. (b) Complementary Cumulative Distribution Function 
(CCDF) of the number of retweets of original tweets. The approximate straight line on a single-log plot indicates 
the possibility of an exponential distribution.

Figure 9. The variation of the relaxation exponent b and the distribution of the parameter λ of the exponential 
model fitted to groups of ract.
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shown in Fig. 10(a). The red line indicates the median of the error, which is 24.7%. And the errors are lower than 
40% for more than 70% samples.

In view of the difficulty of accurate prediction of the number of retweets for every single original message, the 
performance of the above prediction seems moderate.

The first experiment implies that an accurate qualitative classification model could be more practical. In order 
to examine the predictability of historical data, rather than the effect of network structure and message contents, 
we only select the samples that contain no multimedia contents and are published by a same author. The samples 
with the largest 200 b are labeled as positive, and the samples with the smallest 200 b are labeled as negative. We 
use the parameters fitted at the 8th, 12th and 16th hour after publication as features to train a support vector 
machine for classification. We adopt the ten-fold cross validation to evaluate the performance. The average accu-
racy, precision and recall are 85.25%, 90.60% and 79.50%, respectively. The results show that, by fitting historical 
data to our power-function model, we can obtain a high-performance classifier for predicting the magnitude of 
parameter b.

Next, we show the predictability by using microscopic data. In order to demonstrate the relationship between 
microscopic features and macroscopic measurements, by using a machine learning technique, we perform an 
experiment to predict the relaxation exponent b. The external magnetic field, which affects the relaxation of a 
spin glass system, corresponds to the “field” applied by the author and the original tweet in a Weibo system. We 
retrieve several microscopic features from authors’ profiles and the content of messages, and perform a support 
vector regression for the prediction of b. These features are detailed in Table 2. The features are extracted only 
from the profiles of the authors and the content of the original messages, since we believe that it is only the charm 
of the influentials and the topics in their messages that define the external magnetic field and then attract people 
to retweet.

We perform a ten-fold cross-validation to test the performance of our prediction. The absolute errors are 
shown in Fig. 10(b). Since ∈b (0,1), the mean value of the absolute error, which is 0.064, is not large. This exper-
iment shows that the differences in b are partly due to the effect of the differences in the identities of authors and 
also the content of messages. The gap between microscopic mechanisms and macroscopic phenomena can be 
bridged in this way.

The above experiments demonstrate, to some extent, the predictive capability of our model.

An Application. Here we demonstrate a possible application of our model, which is the examination of 
whether or not a spreading process is approaching to saturation.
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Figure 10. (a) Distribution of the absolute percentage errors of the prediction of number of saturated retweets. 
(b) The distribution of prediction error for parameter b by support vector regression.

Feature Description

Followee No. of followees of an author

Follower No. of followers/fans of an author

Activeness No. of messages an author posted in the past

VIP VIP certification of an author

URL No. of URLs in an original message

Hashtag No. of hashtags in an original message

Mention No. of mentions in an original message (@username)

Multimedia No. of videos and musics in an original message

Retweets No. of retweets of the original message

Table 2. Generated Features for the prediction of b.
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If the parameter b in the model of = − −n t c at( ) b is positive, then n → c as → ∞t , which means the spread-
ing process is approaching to saturation. If a spreading process approaches to saturation, the model parameter b 
estimated by the saturated curve will be greater than 0. However, at the early stage of a spreading, n grows in a 
divergent way. The model parameters a and b will be both negative. Hence, if we estimate the model parameters 
with truncated data according to the time order, the value of parameter b will monotonically increase from nega-
tive to positive.

By the estimation of the value of model parameter b, we are allowed to examine if a spreading process reaches 
saturation or not. We conduct a simple experiment to explore the application potential of our model. We truncate 
our data by the 4th, 6th, …, 82th hour and fit our power-function model for parameters a, b and c, respectively. 
We record the change of the values of b at different hours. Then we record the time points tl, tm and th at which the 
cumulative number of retweets reaches 65%, 80% and 95% of the saturated number of retweets. According to the 
change of b, we record the values bl, bm and bh that correspond to time points tl, tm and th. We calculate all bl, bm 
and bh for each tweet spreading sample. The distributions of bl, bm and bh for the 5 influentials are illustrated in 
Fig. 11.

The results show that for all 5 influentials, the peak values of the distributions of b increase. And when the 
number of retweets reaches 95% of final saturated number, all peak values of the distributions of b exceed zero. 
We could utilize this feature to roughly identify whether or not a retweeting process approaches to saturation at 
present. Specifically, we could monitor and record the growth of cumulative number of retweets dynamically. 
Then we fit the recorded data with our power-function model at a certain time point. We learn and choose a 
threshold larger than zero based on historical experiences. When the value of parameter b in the fitted model 
exceeds the threshold, we could make our decision that the spreading process reaches saturation approximately. 
Accurate identification of the saturation of spreading will be beneficial to the scheduling of intervention, such as 
influence maximization and advertising promotion using microblogging services.

Discussion
Both our model and data show clear saturation patterns of independent retweeting behaviour. The reasons may 
be a mixture of the fading of interest and the limit of the size of personal devices. Microblogging is a platform for 
high-speed information exchange. People will quickly lose interest on one topic and shift to another. In addition, 
because of the size limit of screens on personal devices and the speed of newly generated content, people will miss 
large amounts of information easily and will be unlikely to take efforts for digging old messages. The combined 
effect of these factors results in the saturation of spreading.

A possible explanation to the exponentially distributed landscape could be given based on the Boltzmann dis-
tribution, which characterizes the distribution of particles on different energy states of isolated systems that are in 
thermal equilibrium. Similar to thermodynamic systems, retwitters in our systems are reasonably assumed to be 
separable. And their interest orientations may correspond to particles’ degeneracy states. The energy of a retwitter 
may represent his activeness in the sense of retweeting. The states of retwitters are only associated to their energy 
property. Retwitters could be distributed over different energy states. According to the principle of equal a priori 
probabilities, the distribution with the largest number of micro-states occurs with the highest probability. This 
Most Probable Distribution leads to the exponential form of the Boltzmann Distribution.

Among our fitting results, we find that most retweeting samples with relatively large fitting errors show 
multi-peak patterns in their intensity curves of retweeting. The main reason is the circadian rhythm in people’s 
daily life. When an influential publishes a tweet in daytime, most active retwitters have enough time to response 
to the message. While if the message is initialized around people’s sleeping period, a portion of the retwitters are 
inactive at that moment. It looks like retweeting activities are paused at night and restored in the morning. This 
leads to multi-peak patterns and relatively large fitting errors. We plan to take into account this effect in our future 
work.

Parameter b changes if we choose different lengths of time intervals for fitting. The reason is that as the orig-
inal message is getting older, due to the limit of screen sizes, the number of users who will see the message is 
getting smaller. Retweeting happens when two conditions hold: first, users must have the willingness to retweet 
a certain message; second, users must have the chances to see the message. The number of users who are willing 
to retweet a certain message may be relatively stable. However, the number of users who will see the message 
decreases after its publication, unless other influentials retweet it during the whole spreading process. Users will 
pay more effort for searching if a message is getting older.

The significance of our work is two-fold. First, this work demonstrates that applying physical theories to 
research fields outside physics, such as social sciences and economics24, 36–38, is of great significance. It is true that 
data fitting methods are widely used to summarize the relationships among variables and to infer values. However, 
when different scenarios are considered, we need to repeat fitting procedures in a possible high-dimensional 
parameter space. In addition, the actual meanings of the fitted parameters could be ambiguous. The analogy with 
physical systems helps us derive a model that explains the formation of the data with microscopic mechanisms 
and meaningful parameters. Once the changes of parameters are measured, the model can be applied in other 
scenarios. Second, our work indicates that some invariable rules should be taken into consideration during the 
prediction of information spreading. Traditionally, various features retrieved from users, message text and net-
work structures are adopted in well-tuned models for prediction. However, we find that our derived model with a 
unified form governs the independent retweeting behaviours with different authors and contents in our data set. 
And some features, such as memory effect, seem to be common to different retweeting activities. Hence, some 
common rules, which are ignored before, may be useful for prediction.
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Materials and Methods
Data Description. We obtain two data sets from Sina Weibo for our study. The message data set consists 
of more than 69 million tweets/retweets from Sina Weibo. There are 6 properties associated with each tweet, (1) 
message text, (2) original publisher’s ID and nickname, (3) timestamp, (4) number of retweets, (5) number of 
comments, (6) a flag to indicate that the tweet is either originally published or retweeted. The link data set consists 
of 3.7 billion directed links among 80 million users.

Model Fitting Method. For each of the 2623 seeds, all of its retweets are collected. We use regular expres-
sions to parse the retweet tag in the text of retweets. Then a chain of retwitters of the root author could be retrieved 
chronologically for each branch of retweets of the initialized tweet. In this way, we could locate the retwitters who 
directly retweet the root user’s tweets, rather than indirectly retweet it from other retwitters.

For each initialized tweet, we plot the curve of its cumulative number of retweets with respect to time. We 
intend to fit these curves with our power function model. We choose Root Mean Square Error (RMSE) as our 
objective error function to measure the goodness that real-world data are observed to fit our model. In addi-
tion, in order to make the fitting errors of different samples comparable, we divide RMSEs by the maximum/
saturated numbers of retweets of the corresponding initialized tweets. This division has no effect on parameter 
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Figure11. Variation of the distributions of bl, bm and bh.
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optimization, and it provides a proper way of evaluating the goodness of fitting. Equation (13) defines our objec-
tive function.

∑= −
=

ˆE
M N

M M1 1 ( )
(13)

obj
N t

N

t t
1

2

where Mt is the cumulative number of retweets in empirical data at time t, M̂t is the model output at time t. The 
time granularity is set to 1 minute, and the maximum of t is set to 72 hours since most spreading processes will 
saturate in DFNs at the end of the third day after the initialization of the seed tweets. Then N is 4,320. And MN is 
the saturated number of retweets, i.e., the maximum retweeting number.

We assume that the objective function to be minimized is F a b c( , , ) with respect to parameters a, b and c. The 
first order total derivative of F with respect to b is
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It is difficult to calculate the first order and second order total derivatives of the error function with respect to 
parameter b, since b occurs as the exponent of variable t. However, if we set ∂ ∂ =F a/ 0 and ∂ ∂ =F c/ 0, dF db/  equals 
to ∂ ∂F b/ . Parameters a and c are represented by b. Hence, in order to avoid the expensiveness, we adopt a 
Quasi-Newton method to find the optimal parameter set. The convexity of F with respect to b is difficult to prove. 
However, the searching algorithm yields good results.
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