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An Integrative Computational 
Approach to Evaluate Genetic 
Markers for Bipolar Disorder
Yong Xu1, Jun Wang2, Shuquan Rao3, McKenzie Ritter4, Lydia C. Manor5, Robert Backer6, 
Hongbao Cao4,7, Zaohuo Cheng2, Sha Liu1, Yansong Liu2, Lin Tian2, Kunlun Dong2, Yin Yao 
Shugart4, Guoqiang Wang2 & Fuquan Zhang2

Studies to date have reported hundreds of genes connected to bipolar disorder (BP). However, many 
studies identifying candidate genes have lacked replication, and their results have, at times, been 
inconsistent with one another. This paper, therefore, offers a computational workflow that can curate 
and evaluate BP-related genetic data. Our method integrated large-scale literature data and gene 
expression data that were acquired from both postmortem human brain regions (BP case/control: 
45/50) and peripheral blood mononuclear cells (BP case/control: 193/593). To assess the pathogenic 
profiles of candidate genes, we conducted Pathway Enrichment, Sub-Network Enrichment, and 
Gene-Gene Interaction analyses, with 4 metrics proposed and validated for each gene. Our approach 
developed a scalable BP genetic database (BP_GD), including BP related genes, drugs, pathways, 
diseases and supporting references. The 4 metrics successfully identified frequently-studied BP genes 
(e.g. GRIN2A, DRD1, DRD2, HTR2A, CACNA1C, TH, BDNF, SLC6A3, P2RX7, DRD3, and DRD4) and also 
highlighted several recently reported BP genes (e.g. GRIK5, GRM1 and CACNA1A). The computational 
biology approach and the BP database developed in this study could contribute to a better 
understanding of the current stage of BP genetic research and assist further studies in the field.

Bipolar disorder (BP) is one of the most common mental illnesses, characterized by alternating periods of depres-
sion and elevated mood. Being the sixth leading cause of disability in the world, BP affects approximately 1% of 
the total population worldwide and about 3% of people in the U.S.1, 2. This disease reduces the expected life span 
by 9.2 years, and about 20% patients with BP commit suicide3. Although the cause of BP remains unclear, it has 
been hypothesized that both environmental and genetic factors play important roles in the development of BP, 
and multiple genes contribute to risk of the disease1, 4.

In recent years, an increased number of studies reported hundreds of genes and proteins related to BP, many of 
which were suggested as potential biomarkers for this disease, such as BDNF, RELN and ANK35–7. Additionally, 
several other genes have been studied in clinical trials, such as INS8. Moreover, other findings have reported 
genetic and quantitative changes of genes in connection with BP9, 10; both increased and decreased gene expres-
sions were observed9, 11. Importantly, many genes were reported to influence BP pathogenesis via unknown mech-
anisms12. Alternatively, some studies have suggested functional mechanisms that can result in the development of 
BP. For instance, Jang et al. found that the genetic dysfunction of TRMP2 causes uncontrolled phosphorylation of 
GSK-3, which may lead to the pathology of BP13.

However, the majority of these BP-gene findings were reported once with no further replication, and over 
two-thirds were supported by no more than three studies. Moreover, most of these findings came from stud-
ies with small sample sizes, which are susceptible to noise. Additionally, owing to variations in data collection 
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and processing approaches, results from different studies were not always consistent. Meanwhile, dozens of new, 
potentially BP-related genes are reported every year, warranting further validation of these BP candidate genes. 
While biological experiments can be an effective method of validation, they can, nevertheless, be very costly. To 
address these issues, we propose in this study a computational biology approach for a systematic evaluation of BP 
candidate genes.

In recent years, Pathway Studio ResNet relation data have been widely used to study modeled relationships 
between proteins, genes, complexes, cells, tissues and diseases (http://pathwaystudio.gousinfo.com/Mendeley.
html). In this study, we integrated large-scale, BP-related ResNet literature data, independent gene expression 
data and related pathway/network information to study the functional profile of a large gene pool that has been 
reported being linked to BP. Our purpose in doing so was to provide an easy-to-use, automatically updating, 
computational evaluation workflow, capable of generating a BP genetic database (BP_GD); this tool can offer a 
comprehensive, yet broad perspective that is useful for considering the current stages of BP pathogenesis research 
at the genetic level. Resulting information revealed that the curated BP target genes were functionally linked to 
each other, forming a large genetic network to play roles within multiple pathways implicated in BP.

Methods
Figure 1 presents the diagram of the proposed computational gene marker evaluation system. The genetic data-
base developed using our approach, BP_GD, has been deposited into an open source “Bioinformatics Database” 
available at http://database.gousinfo.com, including 535 genes (with metric scores), 198 drugs, 111 pathways and 
115 diseases linked to BP. Also included in BP_GD is information on 2,000 + supporting references for BP-gene 
relationships, 3,000 + for BP-drug relationships and 9,000 for gene-drug relationships, including the titles and rel-
evant sentences where the relations were identified. The BP_GD database is scalable and will be updated monthly 
or upon request, using our approach.

ResNet literature data. ResNet relation data (BP-Gene, BP-Drug and Drug-Gene) were acquired from 
the Pathway Studio ResNet® Mammalian database (http://pathwaystudio.gousinfo.com/ResNetDatabase.html) 
updated Oct. 2016. The ResNet® Mammalian database is a group of real-time updated literature databases, 
including curated information on signaling, cellular processes and metabolic pathways, ontologies and annota-
tions, as well as molecular interactions and functional relationships. Modeled relation data are extracted from the 
41 M + references covering entire PubMed abstracts and Elsevier and third party full text journals. The ResNet 
database employs an automated natural language processing-based information extraction system, MedScan, 
with precision of over 91%14. Each relationship data within the database is supported with one or more references. 
Pathway Studio ResNet Databases is the largest such database among alternatives in the field15.

Enrichment and gene-gene interaction analysis. Pathway enrichment analysis (PEA) and sub-network 
enrichment analysis (SNEA) (http://pathwaystudio.gousinfo.com/SNEA.pdf) was conducted using Pathway 
Studio to identify genetic pathways and diseases potentially linked to BP16. Building upon this information, a 
graph theory approach was adopted, to construct a “network” of all relevant genes, which forms the basis for sub-
sequently derived metrics. A pathway-based gene-gene interaction (GGI) analysis was conducted, wherein genes 
were treated as nodes in a “network” of all genes, and weighted edges (i.e. connections between pairs of nodes) 
reflected relationships within the network. The weight of an edge for nodes A and B is defined as the number of 
pathways between the two nodes.

Metrics analysis. Building upon the network framework, we proposed 4 metrics for each gene, includ-
ing 2 literature-based metric scores (RScore and AScore), and 2 enrichment-based metric scores (PScore and 
SScore). Justification for these metrics follows from several points. If a gene satisfies the following conditions, it is 
highly-probable that it shares a meaningful relationship with BP: the gene has been frequently observed in inde-
pendent studies to be associated with BP (high RScore); the gene plays roles within multiple pathways associated 

Figure 1. Diagram for the integrated computational marker evaluation approach.
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with BP (high PScore); and the gene demonstrates strong functional linkage to many of other genes that were 
associated with BP (high SSCore). Additionally, we proposed the AScore to present the history of each BP-gene 
relation and discover novel genes (e.g., AScore = 1 for the genes identified in this year, 2016). Detailed definitions 
of these metrics are described over the next two sections.

Literature metrics. The reference score (RScore) of a gene is defined as the number of references supporting 
a given gene-disease relationship, as shown in Eq. (1).

= .R relationshipScore The number of references supporting a (1)

The age score (AScore) of a gene is defined as the earliest publication age of a gene-disease relationship, as shown 
in Eq. (2).

= ≤ ≤A ArtilcePubAgeScore max , (2)i1 i n

where n is the total number of references supporting a gene-disease relation, and

= − + .ArtilcePubAge Current date Publication date 1 (3)

Enrichment metrics. Given a disease is associated with a set of genetic pathways , then the pathway score 
(PScore) of gene is defined as the number of pathways including the gene (Eq. (4)).

= .P kScore The number of pathways in including the th gene (4)k

The network significance score (SScore) of a gene is defined as the normalized centrality of the gene within the 
network, as shown in Eq. (5).
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which is defined as Eq. (6).
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where deg is the node degree centrality (Eq. (7))18.
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where N is the total number of nodes, and i is the focal node, j represents all other nodes; x is the adjacency 
matrix, in which the cell xij is 1 if node i and j are connected, or 0 if not. Note: For network edges built by PGGI, 
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The strenght in Eq. (6) is the node strength19, defined as the sum of weights of node’s direct ties, i.e.:
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where w is the weighted adjacency matrix. The cell wij is greater than 0 if the node i is connected to node j, and its 
value represents the weight of the connection. Note, for network edges built by GGI, ∈ ⁎C N M[0, ]D

W , where M is 
the total number of candidate pathways.

In Eq. (6), when 0 < α < 1, both high degree and strong ties are favorably measured, whereas, for values of α 
greater than 1, lower degrees and stronger ties are favorably measured17, In this study, we set α = 0.5, such that the 
node degree and node strength were equally evaluated.

Validation using independent gene expression data. We hypothesize that significant BP related genes 
should contribute to distinguishing BP patients from healthy controls. To validate the effectiveness of the selected 
genes and the proposed metrics, we performed a Euclidean distance-based multivariate classification20 on two 
independent gene expression data sets (NCBI GEO: GSE35977 and GSE82042)21, followed by a leave-one-out 
(LOO) cross validation, using the overall gene set and the sub-sets selected by different scores as tentative mark-
ers. In each run of LOO, gene expression data of all subjects but one are used to train the classifier, which is 
then applied to the remaining data of the one reserved subject. Permutation was then conducted to test the null 
hypothesis that a randomly selected gene set of the same size could reach an equal or higher classification accu-
racy (CR) by chance.

The first mRNA microarray dataset (NCBI GEO: GSE35977) contained gene expression data of 20,044 genes 
from Postmortem human brain regions of 45 BP patients (24 males and 21 females, aged 44.33 ± 11.41 years) 
and 50 healthy controls (15 males and 35 females, aged 45.50 ± 8.99 years), with 516 genes overlapping with the 
curated 535 BP genes (BP_GD→Related Genes). The gene expression profile of the second data set (GSE82042) 
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was acquired from peripheral blood mononuclear cells of 193 BP cases and 593 healthy controls; 515 were over-
lapped with the 535 BP genes.

Results
Identification of target genes for evaluation. BP-Gene literature data analysis identified 535 BP can-
didate genes, supported by 2,047 scientific articles (BP_GB→Related Genes and BP_GB→References for 
Disease-Gene Relation). Of these 535 BP candidate genes, 275 (51.40%) have been supported with one reference 
(RScore = 1), 88 (16.45%) with 2, 59 (11.03%) with 3, 30 (5.61%) with 4, 16 (2.99%) with 5, and 67 (12.52%) with 
more than 5 references, as shown in Supplementary Fig. S1(a). The gene positions at human chromosomes are 
presented Supplementary Fig. S1(b), which was generated by using the software R package ‘circlize’22. Publication 
date statistics of the 2,047 supporting references are presented in Supplementary Fig. S1(c), with novel genes 
reported in each year (Supplementary Fig. S1(d)). Notably, these articles have an average publication age of only 
6.4 years, indicating that most were published fairly recently.

BP-Drug and Drug-Gene relations. BP-Drug and Drug-Gene relation analysis revealed 198 drugs that 
have been shown evidence of effectiveness in treating BP, supported by 3,115 pre-clinical and clinical study 
reports (BP_GB– > Related Drugs and BP_GB– > References for Disease-Drug Relation). Additionally, 118 
out of the 198 drugs have been through clinical trials. These drugs are highlighted in BP_GB– > References for 
Disease-Drug Relation with ‘Object Type’ marked as ‘Clinical Trial’. Supplementary Fig. S2(a) and (b) present 
the diagrams of the relations between BP and these drugs, with the ones studied in clinical trials shown in (a), and 
these only studied in pre-clinical in (b). Notably, 444 of the 535 BP candidate genes demonstrate strong drug-gene 
associations with 193 out of the 198 BP effective drugs, supported by 9,000 references (BP_GB– > References 
for Disease-Drug Relation). Supplementary Fig. S2(c) presents the diagram of the BP Gene-Drug interaction 
network.

Enrichment analysis results. PEA showed that, 455 out of 535 genes were significantly enriched within 
111 BP candidate pathways/gene sets (p-values < 1e-10, q = 0.001 for FDR; BP_GB→Related Pathways). 
Among these 111 pathways, 17 are related to the neuronal system (with 273 unique genes), 6 to brain function/
development (75 unique genes), 5 to behavior (58 unique genes) and 1 to aging (50 unique genes). Due to the 
lack of space, we only present the top 10 pathways enriched in Table 1 (p-value ≤ 4.5e-36, including 268 out of 
535 genes).

A SNEA was also performed to identify the pathogenic significance of the reported genes for other disorders 
that are potentially related to BP. Most of the top 10 diseases identified by the SNEA are also mental health dis-
orders, including schizophrenia, bipolar disorder, major depressive disorder, seizure, Alzheimer’s disease, anxi-
ety, alcoholism, Parkinson’s disease and cognitive impairment. The genes implicated with these diseases present 
significant overlap with the curated BP_GD genes. The full list of 115 disease related sub-networks enriched 
with p-value < 1e-50 are presented in BP_GB→Related Diseases (q = 0.001 for FDR; 531 out of 535 genes were 
enriched).

GGI results. We hypothesized that, if the curated genes are truly linked to BP, they should demonstrate cer-
tain functional associations with one another, as they all play roles in BP pathogenesis. To test this hypothesis, we 
performed a pathway based GGI analysis. Based on the analysis, a gene-gene interaction network was generated. 
The nodes of the network consist of 455 out of 535 genes that were enriched within the 111 BP target pathways. 
There were 51,886 edges within the network, the weights of which were defined by the number of pathways shared 
within each corresponding pair of nodes. The average node strength (sum of the number of genes directly con-
nected) of the network was 211.85, and the node strength for the 80 unconnected genes was defined as 0.

Pathway/gene set name Hit type GO ID # of Entities Overlap p-value Jaccard similarity

synaptic transmission biological_process 0007268 472 112 8.95E-76 0.13

neuronal cell body cellular_component 0043025 466 94 8.82E-58 0.10

dendrite cellular_component 0030425 396 87 1.32E-56 0.10

response to drug biological_process 0017035 509 87 1.19E-45 0.09

synapse cellular_component 0045202 466 81 2.25E-44 0.09

axon cellular_component 0030424 318 68 4.69E-43 0.09

memory biological_process 0007613 76 39 1.51E-40 0.07

postsynaptic membrane cellular_component 0045211 227 56 7.45E-39 0.08

postsynaptic density cellular_component 0014069 168 48 1.87E-36 0.07

neuron projection cellular_component 0043005 378 66 4.54E-36 0.08

Table 1. Top 20 Molecular function pathways/groups enriched by 535 reported genes. Note: For each gene set, 
the p-value was calculated using Fisher-Exact test against the hypothesis that a randomly selected gene group of 
the same size (535) would generate the same or higher overlap with a given gene set (q = 0.001 for FDR 
correction). Jaccard similarity (Js) is a statistic used for comparing the similarity and diversity of sample sets, 
which is defined by = ∩

∪
J A B( , )s

A B
A B

, where A and B are two sample sets.

http://S1(a)
http://S1(b)
http://S1(c)
http://S1(d)
http://S2(a) and (b)
http://S2(c)
http://1
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Along with GGI, SScore and PScore were calculated for each gene (BP_GD→ Related Gene). The value of a 
PScore represents how many BP candidate pathways involve a given gene, and an SScore represents how strongly 
the gene was associated with others in the network.

Validation results. We hypothesized that, if our selected gene set (535 genes) and, particularly, the 
highest-ranking genes selected by the proposed metric scores were significant to the pathogenesis of BP, they 
would lead to significant higher classification accuracy compare to randomly selected genes. To test the hypothe-
sis, classification and LOO cross validation were conducted on two independent public mRNA microarray dataset 
(NCBI GEO: GSE35977 and GSE82042), followed by a permutation test of 5,000 runs.

For the LOO cross validation, we first ranked the 535 genes by different metric scores, then used the 
highest-ranked n (n = 1, 2 …) genes as input variables for classification and LOO cross validation. Table 2 and 
Fig. 2 present the results with the maximum classification ratio (CR) marked for each gene.

Figure 2 shows that the highest-ranked genes, selected by their metrics scores (in descending order), were 
associated with the highest classification accuracy (significantly higher than the average CRs of randomly selected 
gene sets of the same size). However, adding more, lower-ranking genes did not improve classification.

Cross-metrics analysis. Results from BP classification (Table 2 and Fig. 2) demonstrate that the genes 
ranked highest by our four metrics led to significantly higher CR compared to randomly selected sets of genes, 

Data Sets Items RScore AScore PScore SScore All Genes

GSE35977 (516/535)

Max CR (%) 70.53 66.32 67.37 72.63 63.16

#Gene 7 37 11 34 516

p-value 0.0006 0.046 0.015 0.0008 0.11

GSE82042 (515/535)

Max CR (%) 56.36 57.00 57.63 57.12 54.70

#Gene 384 61 141 187 515

p-value 0.073 0.022 0.02 0.034 0.32

Table 2. Permutation test on top genes corresponding to highest CRs. Note: p-value in the table refers to 
permutation p-value, which is defined as the number of runs with equal or higher CRs, using same number of 
genes divided by the total number of runs.

Figure 2. Validation of different metrics through a LOO cross-validation. (a) Results from GSE35977. (b) 
Results from GSE82042. Mean CRs of randomly selected genes are displayed in green. The maximum CRs for 
each metric are presented in corresponding positions.
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thus supporting the effectiveness of this approach. To distinguish how literature support and genetic function 
metrics might operate differently, we selected 55 (out of the total 535) BP-related genes recently published (within 
the last two years; AScore ≤2) and compared them with an equivalent number of genes ranked highest by each 
of the other metrics. Cross-metrics analysis (see Venn diagram in Supplementary Fig. S3) indicated that a strong 
overlap exists between the highest-ranking PScore group and SScore group genes (42/55). Among these 42 
genes, 11 were also present in the highest-ranking RScore group, including GRIN2A, DRD1, DRD2, HTR2A, 
CACNA1C, TH, BDNF, SLC6A3, P2RX7, DRD3, and DRD4. Average scores for each metric were as follows: 
RScore = 33.55 ± 38.35, PScore = 21.91 ± 7.42 and SScore = 2.05 ± 0.27. Network analysis using Pathway Studio 
further revealed that these 11 genes also possessed strong correlations with a number of other mental health 
disorders linked to BP (Fig. 3, highlighted in red). Comparing highest-ranking AScore, PScore and SScore genes, 
the overlap were: GRIK5, GRM1 and CACNA1A (Fig. 3, highlighted in yellow). Of these, GRIK5 has been only 
associated with BP, while the other two are also connected to other mental health disorders. (Note, this does not 
exhaust all possible comparisons; others can also be made using the list of genes and their scores provided in 
BP_GD→Related Genes.)

Comparison of results to three GWAS meta-analyses. To contextualize the findings of our methods, 
we compare the BP_GD genes to those found in three large scale BP GWAS meta-analysis. The GWAS data were 
acquired from top three BP case/control studies curated in Illumina (www.illumina.com), including 9 bio-sets of 
30,434 samples in total. Focusing here on several main findings, we provide a more comprehensive overview of 
all GWAS results in Supplementary Table 1 and Supplementary Fig. S4). Each GWAS identified different genes 
from one another, with no overlap. However, their identified genes did display overlap with our BP_GD genes 
(10%, 45% and 31% for meta-analyses 1, 2 and 3, respectively). The lack of overlap between genes identified by 
these GWAS studies reflects the limitation of using experiment data, alone, for conducting analysis. The results of 
each study are susceptible to influence from variation in sample sizes, data sources, etc. One final note: the genes 
identified in these studies were not all identified by our BP_GD. This is due to the fact that some of those genes 
may not have been reported in the text of the publications (i.e., results only presented in supplementary data) nor 
been replicated in any other studies.

Discussion
Studies to date have proposed hundreds of genes associated with the risk of developing BP, with dozens of new 
candidates identified each year. However, over half of these studies lack replication, and results among the studies 
are not always consistent. This poses an increasing need for a systematic approach to evaluate the significance of 
these genes’ relationships to BP. In this study, we worked with large-scale literature data and gene expression data, 
applying a networks approach to evaluate 535 BP candidate genes. Four resulting metrics were proposed and 
validated. Based upon these metrics, we developed an automatically updated scalable genetic database (BP_GD) 
and maintain it online (Bioinformatics Database; http://database.gousinfo.com).

PEA results revealed that most genes within our constructed network were included in pathways previously 
implicated with BP, including 15 in neurological systems (317/535 genes), 5 in brain function/development 
(71/535 genes), 4 in behavior (55/535 genes) and 1 in aging (50/535 genes)23–26. GGI analysis built upon this 
PEA data. Results of GGI revealed that the 455/535 nodes displayed a robust connectivity with one another 
(Supplementary Fig. 3, average node degree: 216.19 edges), supporting the hypothesis that BP candidate genes 
are functionally linked to one another and across multiple BP-relevant pathways.

In addition to PEA, a SNEA was conducted, which can provide high levels of confidence when interpreting 
experimentally-derived genetic data against a background of previously published results (http://pathwaystu-
dio.gousinfo.com/SNEA.pdf). SNEA results confirmed that over 97% (522/535) of the 535 genes identified for 

Figure 3. Top BP genes selected by cross-metrics analysis and their relationships to other diseases. The 11 genes 
that shared overlap in RScore, PScore and SScore groups are highlighted in red; The 3 genes that shared overlap 
in AScore, PScore and SScore groups are highlighted in yellow. The network was built using the ‘network 
building’ module of Pathway Studio.

http://S3
http://1
http://S4
http://database.gousinfo.com
http://3
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BP_GD were also identified by previous studies as target genes for multiple other mental health related disorders 
(BP_GD→Related Diseases)27–29.

Further, Drug-Gene relation analysis revealed that 444 out of the 535 targeted genes (83.0%) are related to 
the majority of BP effective drugs (193/198, 96.5%), supported by over 9,000 references (BP_GD→ References 
for Drug-Gene Relation). Additional study of these BP related Drug-Gene relations could contribute to a better 
understanding of the biological pathogenic mechanisms of BP.

For a quantitative measure of the significance of the 535 selected BP candidate genes, we proposed 4 met-
rics: 1) publication frequency (RScore), 2) novelty (AScore), 3) number of associated BP candidate pathways 
(PScore), and 4) network centrality (SScore). We applied these four metrics to a BP case/control classification 
study, drawing from two independent gene expression data sets (GSE35977 and GSE82042). Results from LOO 
cross-validation and permutation testing demonstrate that the metrics are significant in gene ranking (Table 2 and 
Fig. 2). Using the identified gene set as a whole (comprised of 516 and 515 genes out of 535 total, for GSE18123 
and GSE37772 respectively) did not significantly predict BP (permutation p-value > 0.1; see Table 2), suggesting 
that our network metrics were warranted for further analysis of the candidate BP genes. Notably the number of 
highest-ranking genes, corresponding to the maximum CRs in each of the four metrics, was different across the 
two data sets. This likely results from differences in between-study variations—such as sample size (ranging from 
95 to 786), tissues difference (brain vs. peripheral blood), as well as clinical parameter dissimilarities (e.g., age, 
gender)—across the data sets. This difference between the two data sets may also stem from variations between 
subjects’ individual, BP-related genomes30.

Cross-metrics analysis showed that 11 genes overlapped across the highest-ranking RScore, SScore and PScore 
groups (Fig. 3, highlighted in red). This indicates that these 11 genes were frequently identified by different stud-
ies to be linked to BP (RScore = 33.55 ± 38.35 references), play roles with in multiple BP candidate pathways 
(PScore = 21.91 ± 7.42 pathways), demonstrate strong association (SScore = 2.05 ± 0.27 times than that of aver-
age). Therefore, our results highlight various aspects that make these genes particularly highly likely to pose 
biological significance for BP. Moreover, these genes were also identified to play a role within many other mental 
disorders that were linked to BP, such as schizophrenia, major depressive disorder, autism spectrum disorder, 
anxiety, Parkinson’s disease, obsessive-compulsive disorder, attention deficit hyperactivity disorder (Fig. 3). Thus, 
the proposed metric scores collectively support a unique way to focus on a subpopulation of candidate genes that 
carry especially high promise for illuminating the pathogenesis of BP.

Additionally, 3 newly-reported genes (AScore ≤2) also demonstrated a high SScore and PScore, includ-
ing GRIK5, GRM1 and CACNA1A (Fig. 3, highlighted in yellow). Although these genes were not frequently 
referenced in association to BP (RScore = 1 reference for each gene), and presented little or no relation with 
other BP related mental disorders, they demonstrated high interaction with other genes within the genetic 
network (SSCore = 2.00 ± 0.18 above average) and are a part of multiple pathways implicated with BP 
(PScore = 19.00 ± 3.45 pathways). Therefore, our study suggests these, too, may especially warrant further study. 
In fact, GRIK5 has thus far been reported to influence the neocortical synaptic plasticity31, an impairment of 
which is, indeed, associated with the pathogenesis of BP32. The upregulation of GRIK5 has been shown to enhance 
the release of γ-aminobutyric acid33, an effective drug for treating BP34. These findings illustrate how our pro-
posed PScore and SScore methods can identify genes that likely hold meaningful, but currently less defined 
relationships to BP. Therefore, although this study worked with metrics involving prior literature support, it is 
important to underscore that our PScore and SScore metrics could be applied to any given genes and therefore 
may contribute to the discovery of novel BP genes.

The genetic database built through our approach, BP_GD, is scalable and can be automatically updated using 
the computational workflow detailed in this study. Any novel BP-gene/drug relationships will be added as they 
accrue. Further network analysis incorporating more experiment data may allow for extraction of additional 
meaningful features. Hence, going forward we will compile more such data, in order to enhance BP_GD’s capa-
bilities for evaluating existing and novel candidate BP genes.

To our knowledge, this is the first study integrating large-scale literature data, experiment data and related 
pathway/network data for a systematical evaluation of BP target genes. While we validated that such an approach 
can identify novel information, the study design contained several limitations. First, the target genes were curated 
from literature reports; a result being reported in literature should not be equated with it necessarily being a true 
marker for BP. Second, the BP_GD was curated using unsupervised data mining, which is necessary for dealing 
with such a large volume of literature data (40 + M articles). This method contributes some noise to the data, 
leading to about a 10% false positive rate for the current database BP_GD. However, given the large scale of our 
analysis, it is still capable of generating meaningful information, despite this drawback. Therefore, the BP_GD 
developed in this study is for guidance, to be used as reference in conjunction with expert human judgement. 
While useful information is certainly generated, users of the database should therefore still make sure to examine 
the details of derived results.

In conclusion, the computational biology approach adopted in this study offers a novel genetics database tool, 
based on network algorithms, which can point out new relationships between candidate BP genes and prioritize 
areas for further inquiry. Due to its comprehensive nature, this approach can lend a wider perspective on emer-
gent themes, which we hope will assist the productivity in the field of BP pathogenesis.
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