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Macroscopic Singlet-Triplet Qubit 
in Synthetic Spin-One Chain in 
Semiconductor Nanowires
Blazej Jaworowski1,3, Nick Rogers1, Marek Grabowski   1,2 & Pawel Hawrylak1

We show here how to create macroscopic quantum states in a semiconductor device: a chain of InAs 
quantum dots embedded in an InP nanowire. Filling the nanowire with 4 electrons per dot creates a 
synthetic spin-one chain, with four-fold degenerate topological ground state protected by a Haldane 
gap. The four states correspond to two spin-½ quasiparticles localised at the ends of the macroscopic 
wire. The quasiparticle spins are mapped onto a robust, macroscopic, singlet-triplet qubit. These 
predictions are supported by a microscopic theory and extensive numerical simulations.

There is currently a great interest in developing solid state quantum information processing devices1–9. Some of 
the most successful, robust and scalable devices rely on qubits built with superconducting macroscopic quantum 
states5–7. Here we propose to generate robust macroscopic quantum states, and a macroscopic qubit, in a semicon-
ductor device realizing a synthetic Haldane spin-one chain10–12.

The ground state of spin one antiferromagnetic Heisenberg chain is a topological phase of matter known as 
the Haldane phase10–12. Topological phases, in general, are characterized by the existence of edge states, which 
are “topologically protected”, i.e., robust to perturbations. In Haldane phase, there are four such states (two at 
each end of the chain), and despite the fact that the whole chain is made of spins one, these states behave as two 
effective spins-1/2. They can be understood in the valence bond picture (AKLT state)11, in which every spin-1 
is a triplet subspace of two virtual spins-1/2. The virtual spins at neighbouring sites are connected with singlet 
bonds, leaving unpaired spins-1/2 at each end. The resulting four states are ground states, protected from higher 
energy excitations by the Haldane energy gap. These predictions were confirmed by numerical calculations13–18 
and experimental studies19–21 in quasi-one-dimensional complex compounds. Since then, quantum spin systems 
have been used as model systems to study macroscopic quantum phenomena22, 23.

In this report, we demonstrate that a synthetic spin-one chain can be realized in an array of InAs quantum dots 
(QD) embedded in a semiconductor, e.g., InP, nanowire24, 25. Optical spectroscopy of individual either InAs or 
InAsP quantum dots in InP nanowire shows existence of electronic s, p, and d shells24. It has been shown that using 
external gate InAs quantum dots can be loaded with a controlled number Ne of electrons26, 27. With Ne = 4, two of the 
electrons occupy the s-shell and the remaining two electrons occupy the two degenerate orbitals of the p-shell28, 29.  
We show here that as in lens shaped InAs self-assembled quantum dots28–32, in InAs quantum dots in InP nanowires 
exchange interaction of the two electrons on a p-shell leads to a spin polarized, S = 1, triplet ground state. With 
triplet ground state with total spin S = 1, we propose to use each quantum dot as a building block of a synthetic 
spin-one Heisenberg chain, in which the hybridization of single-particle levels due to tunnelling leads to effective 
ferromagnetic interaction. The architecture of the proposed linear spin-one chain in a semiconductor nanowire is 
shown in Fig. 1a. The device consists of an array of InAs or InAsP quantum dots embedded in InP semiconductor 
nanowire covered by InP shell. Each quantum dot contains Ne = 4 electrons. The electrons are confined by a con-
duction band offset between strained InAs and InP. We will show that a single quantum dot in a nanowire with 
Ne = 4 electrons has indeed triplet, S = 1, ground state, with two electron spins effectively locked parallel on each 
dot, as shown schematically in Fig. 1b. Exact diagonalization of a microscopic Hamiltonian shows that the p-shell 
electrons on neighbouring dots interact with each other leading to effective spin-spin interaction. When the low 
energy states of a chain of such quantum dots are determined, the ground state is found to be represented by frac-
tional, spin-1/2, quasi-particles localized at the edges of a macroscopic chain as illustrated in Fig. 1c. We next show 
how the two spin-1/2 quasiparticles can be used to encode and manipulate a macroscopic singlet-triplet qubit1–4.
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The microscopic model
We now turn to a theoretical model of our macroscopic singlet-triplet qubit in a synthetic spin-one chain shown 
in Fig. 1. We start with a single particle spectrum. Extensive atomistic calculations of InAs quantum dots indicate 
that the effective mass approximation works well for conduction band electrons32. We hence describe a single 
electron in a nanowire with Nd dots in the effective mass approximation. The confining potential consists of Nd 
finite cylindrical potential wells of depth V, height h, and radius a (dots), separated by distance D, embedded in 
an infinite cylindrical well of length L and radius r (the wire) as shown in Fig. 1a,b. The potential well depth V is 
determined by the conduction band offset between strained InAs and InP, of the order of 100 meV24. The tunnel-
ling barrier between two dots is determined by the potential depth V and barrier thickness controlled by the 
separation between InAs dots, of the order of nanometers. We expand the one-electron wavefunction φ r( )i , where 
r  is the position of electron in a nanowire, in terms of the eigenstates of the nanowire without quantum dots, 
products of Bessel functions in radial direction and trigonometric functions in the nanowire growth direction. 
We construct a one-electron Hamiltonian matrix in this basis and diagonalize it to obtain the one-electron spec-
trum ε(iσ) and eigenstates φ r( )i . With σ

+ci  (ciσ) the electron creation (annihilation) operators on the orbital i and 
spin σ the Hamiltonian of Ne electrons in a quantum dot array may be written as:
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The first term is the energy of noninteracting electrons which captures the shell structure of individual dots 
and interdot tunneling. The second term, 〈i, j|VC|k, l〉, measured in effective Rydbergs, describes the Coulomb 
scattering of pairs of electrons from states k,l to states i, j, φ φ φ φ〈 | | 〉 = → − →
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We compute Coulomb matrix elements using vectorized real-space discrete integration over orbitals and 
Coulomb interaction, with length and energy measured in effective Bohr radius ε=⁎ ⁎a m a( / )B B and effective 
Rydberg, Ry* = (m*)(1/ε)2Ry. Here m* is the electron effective mass, ε is the dielectric constant, and aB and Ry are 
the Bohr radius and Rydberg. In what follows we use ε = 12.4 and m* = 0.054 in the units of vacuum permittivity 
and free electron mass, respectively.

Numerical results for one and two quantum dots
We illustrate our theory with numerical results for typical quantum dots in a nanowire, with a = r = 18 nm, 
h = 4 nm, D = 11 nm and V = 100 meV. For a single quantum dot confined in a nanowire we find characteristic s, 
p and d electronic shells. Populating this quantum dot with Ne = 4 electrons and diagonalizing the many-electron 
Hamiltonian, Eq. 1., in the space of configurations on the s, p and d-shells confirms the triplet ground state with 
total spin one obtained previously for quantum dots with parabolic lateral confinement28–33.

We next determine the interaction of electrons in two quantum dots in a nanowire. With a basis of s-, p- and 
d-shells in each dot we expect orbitals with the same angular momentum to hybridize34, 35. Such a hybridized, 
numerically calculated single-particle spectrum is shown in the inset of Fig. 2. Indeed, for a double quantum dot 
we see a characteristic quasi-2D cylindrical shell structure with a splitting of each pair of angular momentum 
levels. The splitting is the difference in energy between the symmetric and anti-symmetric combination of angular 
momentum states on each dot35. The magnitude of the splitting, 2t, depends on the separation of dots D and bar-
rier height V. We now populate the single particle spectrum of a double dot shown in Fig. 2 with Ne = 8 electrons, 
i.e., Ne = 4 electrons in each dot. Figure 2 shows the low-energy spectrum of Ne = 8 electrons in a double dot for 
different total spin S obtained using exact diagonalization techniques1, 2, 28, 29, 33. We find that the ground state has 

Figure 1.  Schematic view of operation of a singlet-triplet qubit in a synthetic spin-one chain realized in an 
array of nanowire quantum dots. The dots are loaded with 4 electrons each, forming a spin-one ground state due 
to Hund’s rules. The spin-one dots interact with each other antiferromagnetically via an effective Heisenberg 
Hamiltonian. The ground state of Haldane spin-one chain is highly correlated, with properties similar to two 
spin ½ quasielectrons localized on the two ends of the chain.
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total spin S = 0, and the three lowest energy S = 0,1,2 states are very well separated from the higher energy states. 
To show that the singlet ground state of a double dot can be interpreted as antiferromagnetically coupled spin one 
states of each dot, let us compare the numerically computed electronic spectrum with a spectrum of a Heisenberg 
Hamiltonian for two spins one, = ⋅

 

H J S S1 2, and show that J > 0, i.e., the exchange coupling is antiferromag-
netic. The spectrum of two spins one consists of an S = 0 singlet with energy E = −2J, S = 1 triplet at E = −J, and 
an S = 2 quintuplet at E =  + J. We compare these levels with the lowest three levels (not counting degenerate 
states) of the numerically obtained Ne = 8 electron spectrum by fitting J. These lowest levels are marked with the 
dotted box “Heisenberg ladder” in Fig. 2. They are indistinguishable from the spectrum of two interacting 
Heisenberg spins one on this energy scale. The agreement depends on the distance of the two dots, for large dis-
tance the tunneling induced splitting of the p-shell is smaller than the s-p-d shell separation. For short distances 
the concept of two weakly coupled p-shells is no longer valid and the Ne = 8 electrons populate a more complex 
shell structure of a double dot molecule. We can estimate the exchange interaction between electrons on the two 
dots as J = 2t2/U. Taking the shell energy spacing as ω0, shell splitting by tunneling 2t = ω0, Coulomb repulsion on 
p-orbital as π ω= .U 0 6875 0

28, 29 we obtain ω≈ .J Ry0 41 0
3/2 . For a typical shell energy spacing of ω0 = 4 Ry we 

find an upper limit on the exchange coupling J~4 Ry~20 meV, comparable to room temperature.

The spin one chain model
With Heisenberg model for two quantum dots established, we proceed to approximate the Hamiltonian for an 
array of Nd quantum dots with Ne = 4 electrons per dot, Eq. 1, by a Heisenberg Hamiltonian of a spin-one chain:
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The first term describes antiferromagnetic interaction of nearest neighbour spins with strength J. The second 
term describes the effect of a homogeneous background magnetic field Bbg on a total spin = ∑ =
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e.g., a ferromagnetic substrate. The last term describes the local Zeeman coupling of a micromagnet with electron 
spins on a first site. Here g is the Lande factor and μ is the Bohr magneton.

We first discuss the spectrum of a spin chain in the absence of external magnetic fields following previous 
work11–17. The ground state of an infinite chain is 4-fold degenerate, consisting of a degenerate total spin S = 0 sin-
glet and total spin S = 1 triplet states, 4 states total, separated from excitations by an energy gap of ΔE = 0.41J10–16. 
This is indeed shown in Fig. 3, which shows the energy spectrum of a finite spin-one chain, Eq. 2, obtained using 
the Lanczos method. While the spectrum for a spin-one chain of length N contains 3N levels, only the low-energy 
spectrum is shown. The total spin of each energy level is determined from its degeneracy. We show the singlet S = 0 
levels in blue, S = 1 triplet levels in green and S = 2 quintet levels in red colours. We see that the singlet and triplet 
energy levels are separated by an energy gap from quintet and higher energy states. The energy gap approaches 
0.41 J with increasing chain length. The singlet and triplet alternate as ground states, and their energy splitting 
decreases to zero with increasing chain length. The singlet-triplet energy structure of the ground state can be 
understood with effective spin-1/2 quasiparticles localized at the end of the chain and interacting over the macro-
scopic distance. Figure 3b shows the calculated expectation value of the spin on the i-th site along the chain, 
〈 | | 〉



GS S GS
zi , for the triplet ground state |T+〉. Indeed, despite the fact that each non-interacting spin can have only 

〈 〉 = ±


S 0, 1
zi , the expectation value of the spin in the ground state |GS〉 of the interacting chain corresponds to 

Figure 2.  Low energy spectrum as a function of total spin S of Ne = 8 electrons on two quantum dots. The 
lowest energy levels in total S = 0,1,2 subspace are very well reproduced by the energy spectrum of the 
Heisenberg Hamiltonian of two spin ones coupled anti-ferromagnetically. The low energy states are isolated 
by an energy gap from higher energy excitations. Inset shows the single-particle energy spectrum showing 
hybridization of s,p, and d orbitals of each dot. Numerical results describe two quantum dots with height 
h = 4 nm, diameter a = r = 18 nm and separated by D = 11 nm.
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two spin-1/2 quasiparticles localized at the end of the chain. These quasiparticles are coupled with each other over 
macroscopic wire length, with the coupling decreasing with length. Note that since the Haldane gap is of the order 
of the exchange constant, the upper limit on the Haldane gap is also comparable to the room temperature.

Haldane spin-1/2 quasiparticles and a spin singlet-triplet qubit
We now turn to define a singlet-triplet qubit1–4, 32 using the spin-1/2 quasiparticles of the spin-one chain. In a 
chain of even number Nd of quantum dots, the singlet ground state |S0〉 has total spin S = 0, and there are 3 excited 
states |T0〉, |T+〉|T−〉 of the threefold degenerate spin-one triplet manifold, with total Sz = 0, + 1, −1. To isolate two 
qubit states we apply the finite magnetic field B, measured in units of the ratio of the Zeeman to exchange energy 
gμB/J. In Fig. 4a, we plot the evolution of the numerically obtained low energy spectrum of Nd = 14 spins one, 
Eq. 2. There are ~5 million states in total; we only show the evolution of the lowest few energy levels. We see that 
the |T+〉 and |T−〉 energy levels split from the two, |T0〉 and |S0〉 levels selected as the two qubit levels. These two 
levels are split by exchange energy, J2, giving effective magnetic field along z-axis. We want this splitting to be 
finite, but much lower than separation of these states from the rest. Therefore we expect that the chain length of 
Nd = 14 is close to optimal for the qubit performance. We also see that at high applied magnetic fields the energy 
of the quintet |S = 0, Sz = −2〉 level starts approaching the two Sz = 0 qubit levels and we must optimize the 
qubit-quintet energy gap. To implement the rotation of a qubit state, we create a linear superposition 

〉 = 〉 + 〉a A S A Ti
i i
0 0 1 0  of the |T0 〉 and |S0 〉 qubit levels by applying a local magnetic field B1 to the first dot. 

Because the singlet and triplet are entangled states of two spin-1/2 quasiparticles, acting on only one of them 
rotates the whole state. The evolution of the low-lying levels for homogeneous external field gμB/J = 0.17, for 
which the qubit levels are well separated from the quintet levels, as a function of the local magnetic field B1 is 
shown in Fig. 4b. We see that increasing the local field B1 results in the evolution of the two qubit levels |a0〉 and 
|a1〉. To verify that we indeed rotate the qubit we calculate the projections =S a A0 1

2
0
1 2 and =T a A0 1

2
1
1 2 

of the exact numerically calculated qubit eigenstates |ai〉. The result, confirming rotation of the qubit, is shown in 
Fig. 4c. We note that the isolation of qubit states from higher excitations due to the Haldane gap makes the admix-
ture of higher energy excitations into the qubit levels very small, at most 1.2% (see Fig. 4).

Discussion
The macroscopic singlet-triplet qubit proposed here has several advantages compared to other, spin, charge and 
superconducting qubits. Most of all it is macroscopic and yet semiconductor based. It hence combines advantages 
of macroscopic superconducting and microscopic semiconductor qubits1, 2. Being macroscopic, large, and semi-
conductor makes it easier to fabricate, control and integrate with existing semiconductor based microelectronics. 
With electrons confined in self-assembled quantum dots with band offsets of the order of 100 meV it is stable at 
much higher temperature than electron spin based qubits in lateral gated quantum dots, refs 1, 2 where confining 
potential is of the order of 1 meV. The qubit is also robust against fluctuations in exchange coupling due to com-
position and interdot distance variations as shown in ref. 36. The states of a qubit can be probed optically as both 
photo-excited electrons and holes are located in the InAs quantum dots containing electrons building effective 
spin-1/2 quasiparticles24, 25. If nanowires are fabricated using InAs in InP, the qubit states can be converted to 
photons in the telecom range. If decoherence due to nuclear spins in the InAs/InP system turns out to be a prob-
lem, the qubit can be fabricated in Si/SiGe system37, 38. Such robust qubits, once demonstrated, can in principle be 
assembled into a quantum circuit as the interaction of capacitively coupled singlet-triplet qubits in lateral gated 
quantum dots has been already demonstrated39.

Figure 3.  (a) Low energy spectrum of finite spin-one Heisenberg chains of Nd sites. Singlet, triplet and quintet 
states are shown, with singlet and triplet separated by the Haldane gap from the higher energy states. The 
Haldane gap limit of ~0.41 J15 is shown. (b) The expectation value of Sz in the triplet |T+〉 ground state at each 
quantum dot for 14-site chain. The edge states with Sz = 1/2 appear.
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Conclusions
In summary, we proposed here a synthetic spin-one chain in a semiconductor nanowire realizing macroscopic 
quantum states in a semiconductor device. The synthetic spin chain is created by quantum dots in a nanowire 
with four electrons each. Using exact diagonalization techniques we show that the ground state of each dot cor-
responds to spin one and the coupling between spins on each dot is anti-ferromagnetic. We show that the low 
energy states of the macroscopic wire correspond to two quasiparticles with spin ½ localised at the ends of the 
nanowire. Using a homogeneous magnetic field and a micromagnet at one end we show how to define and operate 
a robust, macroscopic singlet-triplet qubit, protected from decoherence by a Haldane gap. The gap, determined 
by anti-ferromagnetic coupling J, has the potential to reach room temperature. Future work will focus on theory 
of interaction of synthetic spin-one chain with light, hyperfine coupling with nuclear spins, microscopic nature of 
capacitive coupling of two qubits, effects of unintentional variation in quantum dot size and separation as well as 
its realisation in Si/SiGe material system.

Data availability statement.  The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.
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