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InSAR constraints on soil moisture 
evolution after the March 2015 
extreme precipitation event in Chile
C. P. Scott1,2, R. B. Lohman  1 & T. E. Jordan  1

Constraints on soil moisture can guide agricultural practices, act as input into weather, flooding and 
climate models and inform water resource policies. Space-based interferometric synthetic aperture 
radar (InSAR) observations provide near-global coverage, even in the presence of clouds, of proxies 
for soil moisture derived from the amplitude and phase content of radar imagery. We describe results 
from a 1.5 year-long InSAR time series spanning the March, 2015 extreme precipitation event in the 
hyperarid Atacama desert of Chile, constraining the immediate increase in soil moisture and drying out 
over the following months, as well as the response to a later, smaller precipitation event. The inferred 
temporal evolution of soil moisture is remarkably consistent between independent, overlapping SAR 
tracks covering a region ~100 km in extent. The unusually large rain event, combined with the extensive 
spatial and temporal coverage of the SAR dataset, present an unprecedented opportunity to image 
the time-evolution of soil characteristics over different surface types. Constraints on the timescale of 
shallow water storage after precipitation events are increasingly valuable as global water resources 
continue to be stretched to their limits and communities continue to develop in flood-prone areas.

InSAR1, 2 has contributed to our understanding of land surface change on a variety of fronts, including constraints 
on displacements associated with the seismic cycle3–5, anthropogenic activity6–10, landslides11, and volcanic 
unrest12–15. Spatial coherence of the interferometric phase16 is a function of the position and stability of individual 
scatterers within a given resolution element, typically with dimensions of meters to tens of meters. For most sur-
face types, radar interacts with scatterers within a layer with finite thickness17, varying from a few cm up to 10’s of 
meters for vegetation, ice, and dry sand18–20. Variations in coherence due to imaging geometry and ground char-
acteristics are associated with a range of phenomena of societal and scientific interest, including infrastructure 
damage during destructive events21, 22, vegetation structure and soil moisture. Constraints on vegetation structure 
can be derived from both air- or spaceborne SAR amplitude, phase and/or phase coherence, particularly when 
data is available from multiple viewing geometries23, wavelengths24, and/or polarizations25, 26.

The dependence of radar backscatter amplitude on soil moisture has long been recognized17, 27–29, as have 
effects on phase and phase coherence that are thought to be due to a combination of swelling and buckling of the 
surface and changes in the relative strength of SAR scattering centers distributed within each pixel30–33. These 
effects are closely linked to variations in the dielectric properties of the soil33–36 – in drier soils the radar interacts 
with a larger depth range and there is more contribution to the backscattered signal from scatterers at larger 
depths below the surface than there is in soils with higher moisture content. Because the strength of individual 
scatterers within a resolution element changes, interferograms between dates with different moisture levels are 
less coherent than those with similar moisture content.

The SAR dataset used here spans an extreme rain event on 24–26 March, 2015, that covered >400,000 km2 of 
arid lands in Chile and Argentina37–39 and deposited up to decades-worth of the mean annual precipitation within 
a few days (Fig. 1a). In some river valleys there was catastrophic damage to property and loss of life, whereas other 
regions with similar precipitation amounts exhibited little to no surface disturbance37–39. Field reconnaissance 
efforts in the months following the event40 evaluated the potential for groundwater recharge through analysis 
of soil moisture in pits at selected sites and at a few time intervals, but were unable to sample the full variability 
across the region. In much of the study area, much smaller amounts of rain were also recorded in August 2015. 
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Because the region has little to no vegetation, we are able to examine how the interferometric phase characteristics 
between SAR images vary over time and attribute much of the variation to temporal variations in soil properties.

Results
We form interferograms between all pairs of available dates in three Sentinel-1A tracks (see Methods and 
Supplementary Tables 1–3), covering a 100 km × 150 km area located where the March 2015 precipitation was 

Figure 1. Study location and March 2015 precipitation. (a) Extent of the extreme precipitation event as 
measured at rain gauges (colored dots), overlain on shaded relief. (b) Location of Sentinel-1A imagery used here 
(boxes with track (T) and swath (S) indicated, colored by track), city of Taltal, and locations of time series shown 
in Figs 3 and 4 (white dots with letters, A: alluvial fan, B: along Rio Chaco, C: location in Coastal Cordillera). 
Figures generated using Generic Mapping Tools50, v. 5.2.1.

Figure 2. Coherence of three interferograms from Track 54, Swath 1. Interferograms between January 1, 2015, 
and 3 different dates: (a) before the event - March 2, 2015, (b) soon after the event - May 13, 2015,  
(c) significantly after the event - January 18, 2016. Note that the year-long interferogram has higher coherence 
than the 4.5 month interferogram, except for in regions with significant relief, such as the coastal escarpment 
north of Taltal. (d) Timespan of interferograms shown in a–c (blue bars), relative to timing of 24–26 March rain 
event (red bar). T: City of Taltal, RC: Rio Chaco, PF: Paposa Fault. All available dates shown in Supplementary 
Figure 1. Figures generated using Generic Mapping Tools50, v. 5.2.1.
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particularly heavy (Fig. 1b), and examine the phase coherence as a function of time. We show that the effects 
on coherence from other sources (timespan, orbital geometry) can be separated from those that are due to a 
proxy for soil moisture, for a result that is consistent between independent, overlapping tracks. Typically, inter-
ferograms that span longer time intervals typically have lower coherence than interferograms with shorter time 
spans. However, for this dataset, the least coherent interferograms are those that include the dates in the months 
immediately after the rain event, regardless of timescale. Even interferograms with very long time spans (>1 year) 
between two “dry” dates have much higher coherence than any of those that include dates immediately after the 
rain event (Fig. 2).

Each of the three independent tracks we examine here contains 11–14 dates acquired at least six months after 
the event, allowing us to capture the full temporal evolution from dates that are clearly affected by the rain event 
to those where coherence behavior appears to have returned to “normal”. The interferograms (Supplementary 
Tables 1–3) have a wide range of spatial and temporal baselines, both of which adversely affect coherence as 
they become larger16. We examine the decrease of coherence as a function of time and baseline in order to verify 
that the changes in the immediate aftermath of the rain event are not associated with those variables. At each 
pixel, we solve for the decrease in coherence as a function of temporal and spatial baseline using only interfero-
grams between the subset of dates that are at least six months after the event (Fig. 3b, see Methods). We find that 
the dependence on spatial baseline is negligible (i.e., not significantly different from zero) except for over some 
higher-relief areas, which we hereafter omit from consideration in our conclusions. The dependence on temporal 
baseline results in decreases of less than 0.1 (coherence ranges from 0 to 1) except for along the coastal escarp-
ment and other high relief areas that are not a focus of this study.

We attribute the remaining variation in coherence to changes in soil moisture following the rain events as 
well as permanent loss of coherence due to surface disruption and sediment transport. The former effect results 
in lower coherence only in interferograms that include dates immediately after the rain event (i.e., interfero-
grams with time intervals of six months or more spanning the event have high coherence), while the latter results 
in lower coherence for any interferogram that spans the event. Over most of the study region interferograms 
between dates before the March rain event and dates long afterwards (six months or more) are also very coher-
ent, indicating that the loss of coherence was “temporary” and was associated with variations in soil moisture. 
However, at other locations, interferograms between the pre-event and the later, post-event dates are consistently 
lower. We interpret this effect as a permanent loss of coherence, Cp.

At each pixel, we invert for the “relative coherence”, Cr, at every date such that the predicted coherence of the 
interferogram between each pair of dates (after correction for temporal decay) depends on the absolute value of 
the difference in Cr at those dates (Fig. 4, Supplemental Figures 3–5, see Methods). The functional form of the 

Figure 3. Full coherence dataset at an alluvial fan site (Track 156). (a) Interferometric coherence between 
all available acquisitions for Track 156 (Supplementary Table 1, Supplementary Figure 2), sorted by master, 
then secondary date, and colored by coherence at alluvial fan point (A) indicated in Fig. 1b. Vertical black line 
indicates timing of March 2015 rain event. (b) Expected coherence due to timespan alone, based only on SAR 
data acquired after October 1, 2015. (c) Coherence predicted from timespan and proxy for soil moisture.  
(d) Residual between (a) and (c). Note smaller color scale in b and d.
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relationship between coherence and differences in soil moisture should depend on the absolute amount of soil 
moisture as well as the difference in moisture between the two SAR acquisition dates19, 31, 33, 36. However, our 
approach captures most of the variability in the coherence signal (Fig. 3c), including the months-long temporal 
decay following the rain event. (Fig. 4). The poorest fits to the data are for the first dates acquired immediately 
after the rain event for each track (Fig. 3d). The change in relative coherence can be fit with an exponential decay 
with time constants of ~50 days (Fig. 4). The second rain event in August of 2015 is associated at some locations 
(Fig. 4b) with a second pulse of relative coherence variation with a similar amplitude but shorter decay time than 
that observed for the March event. The interferograms do not robustly support inversion for a second permanent 
loss of coherence during the second event, but there is likely some permanent impact that does occur below the 
noise level in our data.

In regions that are covered by multiple, independent tracks of data (including imaging from different flight 
directions), the time series of relative coherence is remarkably consistent between tracks (Fig. 4). Coherence 
between dates that were both acquired before the March rain event is high (Track 54, Fig. 2a, black dots in Fig. 4). 
Permanent losses of coherence, Cp, associated with the rain event are apparent in all tracks and agree in regions 
of overlap. The largest losses of coherence appear to be due to sediment transport in river channels (Fig. 4b) and 
at sites that had been disturbed by mining (Fig. 5). Other sites (Fig. 4a,c) do not show any appreciable permanent 
loss of coherence. Prominent NNW-trending streaks in Cp (Fig. 5) are consistent with inferred prevailing wind 
patterns during the storm41 and suggest a high degree of heterogeneity in land surface disturbance.

Discussion
The rich set of satellite-based SAR imagery spanning this event illustrates the potential of dense InSAR time series 
for use in soil moisture research. We image both the coherence loss associated with land disturbance during the 

Figure 4. Relative coherence as a function of time. Time-series results for three independent tracks (colored 
dots) and the best-fit exponential decay for the larger (March) and smaller (August) rain events with locations 
of pixels shown as A, B, and C in Fig. 1b. (A) Alluvial fan site also shown in Fig. 3. (B) River valley site, where 
rain gauge observations (pink) indicate a second rain event. (C) Site within the coastal cordillera. Evidence of 
the 2nd rain event can be seen, but both rain events have smaller magnitude.
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event and its immediate aftermath, as well as a months-long perturbation to soil moisture over the region. Such 
observations, particularly when combined with field measurements or other remote sensing data (such as varia-
tions in SAR amplitude), are valuable input into efforts to understand the budget of infiltration and evaporation 
that impact soil moisture and groundwater recharge in arid environments.

The region examined here is hyperarid, with little to no vegetation. In areas with vegetation, particularly where 
crops are grown, we would expect the coherence behavior to have a large contribution from properties of the 
vegetation and their temporal changes26, 34, 42, 43. However, even if we restrict ourselves to arid regions, there are 
many interesting problems that can be addressed with the rich, openly available catalogs of SAR data that are now 
becoming available through the Sentinel-1 and other satellite remote sensing acquisition missions. For instance, 
there has been an outstanding question of whether variations in coherence and phase such as those we see here 
are due to swelling of clays and soils at the surface, or due to changes in the strength of the scatterers distributed 
beneath the surface under changing moisture conditions30, 31, 33, 44. Our data set contains at least one observation 
that may shed light on this question. At rain gauge locations where the second, August, event is detected (pink 
line in Fig. 4b), the observed precipitation was much smaller in magnitude than it was in March. Interestingly, the 
peak magnitude of our inferred Cr variation is similar, while the temporal decay is shorter for the second event. If 
the variation in coherence is due to swelling of clays, our observations require that the soils somehow “unswell” to 
the exact same state they were in before, so that longer time interval interferograms that span the event are asso-
ciated with high coherence. Additionally, we may expect the clays at the immediate Earth surface to dry out at a 
fairly uniform and fast rate, particularly in such a hyperarid environment, rather than the longer and nonuniform 
rates that we observed. The change in rates may be explained to some degree by seasonality, since the two events 
occurred in late summer (March) and winter (August), respectively.

On the other hand, if the coherence is related to the integration of radar backscatter within a layer with finite 
depth (on order of one to a few wavelengths), then alternatives exist which may better fit the observations. For 
example, alluvial fans where the moisture content of the soil was increased significantly by the rain, capillary 
action may move moisture upward toward the surface layer, replenishing evaporated near-surface moisture; this 
may continue over many weeks. Another example may exist in the regions whose surface is dominated by calcium 
sulfate, where there is likely a cycle in which rain water that infiltrated the highly porous soil will initially partially 
dissolve the mineral salts which form pore walls, and then during evaporation precipitate new calcium sulfate 
crystals. This dissolution-precipitation cycle changes the physical state of materials in the upper tens of centim-
eters below the surface. By either of those mechanisms, the smaller event would change the soil moisture at very 
shallow depths by a similar amount as did the larger event, but the lack of deeper penetration of moisture into the 
subsurface would result in a shorter time scale for return to the original conditions.

Apart from the potential for characterization of hydrology and surface characteristics, InSAR observations, 
particularly those from modern satellite platforms with regular repeat times and open access to data, are also 
increasingly valuable for rapid characterization of damage associated with events such as earthquakes and large 
storms21, 22, 45, 46. While the computational requirements are high, our results suggest that analysis of background 
variations in coherence associated with storms or seasonal effects may improve such forecasts. This may be par-
ticularly true in arid environments where variations in moisture, rather than infrastructure damage, may dom-
inate the change in correlation over time. This work suggests that ongoing, multi-year SAR observations of arid 

Figure 5. Permanent coherence loss, Cp. Permanent coherence loss between dates before and after the March 
extreme precipitation event, Cp, for all three tracks used in this study. Negative values (blue) indicate regions 
where land was disturbed during the event, values <−0.3 are in black. Dry lake beds (salars) and mines were 
particularly affected. Note that the NNW-trending streaks, which otherwise might be attributed to ionospheric 
effects on a particular date, are continuous from track to track and are nearly identical in the areas of overlap. 
These likely indicate real surface disturbance and are aligned with the prevailing winds active during the March 
event37, 38. Figures generated using Generic Mapping Tools50, v. 5.2.1.
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and hyperarid regions (including coherence, phase delays and amplitude) and the development of a catalog of 
precipitation events can provide constraints on the temporal evolution of soil moisture and support future field 
or laboratory efforts.

Methods
InSAR data and processing. We use data acquired by the European Space Agency’s Sentinel-1A satellite 
in the Terrain Observation by Progressive Scans (TOPS) mode (run in the interferometric wide swath mode) for 
three independent, overlapping tracks (Supplementary Tables 1–3), for the subswaths that cover our study region. 
Images from a single track do not image exactly the same area on each pass, resulting in some pixels that are in one 
subswath on some dates and the adjacent subswath on other dates. We only perform our analysis on pixels that are 
located within the same subswath on all dates, resulting in a small gap between the subswaths that can be seen in 
Fig. 1b. We process all potential interferometric pairs with data acquired between January 2015 and September 2016 
using the InSAR Scientific Computing Software (ISCE) package47. We produce between 153 and 190 interferograms 
for each of the three tracks, including up to two of the available swaths for each track (Fig. 1b). Most of the images 
were acquired in VV polarization, but we see no variation between those and images acquired in VV + HV.

Interferometric Coherence. Interferometric coherence16 is a measure of the similarity in the reflective 
ground properties at the timing of two SAR acquisitions, s1 and s2. The complex-valued correlation function (γ) 
is typically defined as:

γ =
⁎

⁎ ⁎
s s

s s s s (1)
1 2

1 1 2 2

where si is the complex-valued SAR backscattered field (magnitude and phase) recorded for each acquisition. The 
ensemble averages 〈⋅〉 are typically evaluated by averaging in space over some number of pixels, N. We estimate γ 
over a box with dimensions of 7 pixels in the range direction and 3 pixels in the azimuth direction. Full resolution 
pixels from the Sentinel mission in the interferometric wide swath mode have a ground dimension of approximately 
5 meters in range and 20 meters in azimuth. In our results shown here we do not use the amplitude weighting in 
Equation 1, since we find that the natural, unvegetated terrain in this research area contains amplitude variations 
that are completely uncorrelated with the variance of the phase (i.e., dark, smooth surfaces adjacent to bright, rough 
surfaces with identical phase stability). We are primarily interested in the temporal behavior of phase stability in a 
region where the temporal decorrelation is nearly zero – i.e., where surface roughness is not changing over time. 
Surface roughness strongly affects coherence and backscattered amplitude48, and would need to be examined in 
order to derive proxies for soil moisture in an absolute sense. Below, we refer to coherence as C = abs(γ), which will 
have low values (near 0.3) for regions that have experienced significant ground disturbance and high value (near 1) 
for regions that have not experienced much change in the position or characteristics of scatterers.

The small box size used in our estimate of phase variance allows us to capture sharp spatial gradients and 
steps between different lithologies. However, small box sizes have been shown to bias the estimate of coherence 
slightly upwards, particularly for low values19, 49. Our focus is on the temporal evolution of coherence, and focuses 
primarily on high coherence regions where the expected bias is small (<0.04 in correlation units for our least 
coherent pairs). We repeated the analysis described below at several locations using the correction for effective 
averaging over N = 9 and N = 25 and with and without amplitude-weighting (Supplementary Figure 6), but found 
no significant variation in the temporal evolution of relative coherence.

Products derived from these values (described below) are generated in the slant-range coordinate system for 
each track (i.e., not terrain corrected) and then the final products are georeferenced before comparison between 
different tracks.

Coherence modeling. Processes occurring before, during, and after the rain event are all expected to reduce 
interferometric coherence, C at a particular pixel, i, and between times t1 and t2:

τ
= − −

∆
− − .C i t t C i t

i
C i t C i t( , ) 1 ( )

( )
( , ) ( , )

(2)r r1 2 0 1 2

C0 captures the loss of coherence over time-periods shorter than the available Sentinel-1 repeat interval of 
12 days (6 days if Sentinel-1a and -1b data are available), including the effects of surface roughness on coher-
ence. Δt is the timespan of individual interferograms, and τ describes the slope of the time-dependent loss of 
coherence. Here we model this decay as linear, although clearly that relationship does not hold at very long time 
intervals (coherence would become negative). Coherence in all interferograms between dates 6 months or longer 
after the rain event (presumably unbiased by coherence loss associated with soil moisture) decays approximately 
linearly with time, with a magnitude that is small compared with the variations in Cr. We impose a negativity 
constraint on τ, such that coherence must decrease as the time-span between SAR acquisitions increases. This 
constraint does not significantly change the final result, but does keep the predicted coherence values from having 
non-physical values greater than one.

The Cr(i, tj) term involves the changes in soil moisture that the affect strength of interaction between the radar 
signal and the scatterers within the shallow subsurface. Coherence between two dates decreases when the set 
of scatterers change following either an increase or decrease in soil moisture on one of the two dates. Since the 
effect is the same regardless of the sign of that increase or decrease (i.e. a wet first date vs. a dry second date gives 
the same change as a dry vs. wet pair), we use the absolute value of the difference between Cr on two dates, as in 
Equation 2. The inversion for Cr is nonlinear because of the absolute value term, and has an ambiguity in sign, 
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and in terms of an absolute shift (i.e., you could add a constant to all values and get the same fit). We normalize 
the inversion by constraining the mean of values at dates 6 months or more after the rain event to be zero and 
requiring that the first post-event date have positive Cr. This normalization does not affect the differences between 
Cr on individual dates. We use a trust-region reflective algorithm to perform the inversion, with multiple starting 
models, and find that it is robust to within the 0.1 coherence unit errors that we find for other aspects of our anal-
ysis. The inferred Cr is shown in Fig. 4 as a function of time at several pixels and all available tracks, with the fit to 
the full coherence dataset at one pixel and one track shown in Fig. 3 and Supplementary Figures 3–5.

We also infer a coherence loss (Cp) that reflects permanent changes in the radar scatterers, likely associated 
with processes such as overland flow and debris transport during and shortly after the rain event. We define Cp 
as the difference between Cr averaged over pre-event dates and the Cr averaged over dates 6 months or later after 
the rain event. Because two pre-rain event SAR acquisitions are available for Track 54, this permanent change 
can be easily seen in Fig. 4b (black dots) where the values of Cr for the two pre-event dates are both negative, but 
very similar to each other – interferograms between those two dates have high coherence. The loss in coherence 
for the other two tracks on the single pre-event date relative to the rest of the time series could be assigned either 
to a permanent coherence loss or to a variation in soil moisture. However, the similarity to Track 54 (Fig. 5) and 
uniformly high coherence of dates 6 months after the rain event supports the idea that this loss of coherence was 
permanent and was likely related to permanent changes in the surface.

Temporal decay rates. Cr decays to the background, near-zero values over a time period of >1 month at 
most pixels, and includes a signal from the secondary, smaller rain event in many locations (Fig. 4). To character-
ize the temporal decay of Cr, we fit a piecewise exponential function to the inferred zt values of the following form,

τ

τ τ

=




− 




< <

=




− 




+




− 




>

C i t A t

C i t A t A t

( , ) exp for March 24, 2015 t August 8, 2015

( , ) exp exp for t August 8, 2015
(3)

r

r

1
1

1
1

2
2

where τ1 and τ2 describe the decay of the effect of the soil moisture associated with the March 24–26, 2015 and 
the August 8–9, 2015 rain events.

Rainfall and atmospheric data. Rainfall (Figs 1 and 4) is reported at stations distributed throughout the 
research area37 and models of horizontal wind orientations37, 38 are consistent with the NNW-SSE orientation of 
streaks of lower correlation apparent in the Cp product (Fig. 5). Most of the precipitation data is available to the 
public at http://dgasatel.mop.cl/, via the Dirección General de Aguas (DGA), a Chilean governmental agency. 
Other sources are described in Jordan et al.37, Table S2.
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