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Effects of Aortic Valve Replacement 
on Severe Aortic Stenosis and 
Preserved Systolic Function: 
Systematic Review and Network 
Meta-analysis
Qishi Zheng1,2, Andie H. Djohan  3, Enghow Lim4, Zee Pin Ding4,5, Lieng H. Ling6,7, Luming 
Shi1,2,4, Edwin Shih-Yen Chan1,2,4 & Calvin Woon Loong Chin4,5

The survival benefits of aortic valve replacement (AVR) in the different flow-gradient states of severe 
aortic stenosis (AS) is not known. A comprehensive search in PubMed/MEDLINE, Embase, Cochrane 
Library, CNKI and OpenGrey were conducted to identify studies that investigated the prognosis of 
severe AS (effective orifice area ≤1.0 cm2) and left ventricular ejection fraction ≥50%. Severe AS was 
stratified by mean pressure gradient [threshold of 40 mmHg; high-gradient (HG) and low-gradient 
(LG)] and stroke volume index [threshold of 35 ml/m2; normal-flow (NL) and low-flow (LF)]. Network 
meta-analysis was conducted to assess all-cause mortality among each AS sub-type with rate ratio (RR) 
reported. The effects of AVR on prognosis were examined using network meta-regression. In the pooled 
analysis (15 studies and 9,737 patients), LF states (both HG and LG) were associated with increased 
mortality rate (LFLG: RR 1.88; 95% CI: 1.43-2.46; LFHG: RR: 1.77; 95% CI: 1.16-2.70) compared to 
moderate AS; and NF states in both HG and LG had similar prognosis as moderate AS (NFLG: RR 1.11; 
95% CI: 0.81-1.53; NFHG: RR 1.16; 95% CI: 0.82-1.64). AVR conferred different survival benefits: it was 
most effective in NFHG (RRwith AVR/RRwithout AVR: 0.43; 95% CI: 0.22-0.82) and least in LFLG (RRwith AVR/
RRwithout AVR: 1.19; 95% CI: 0.74-1.94).

The prevalence of calcific aortic stenosis (AS) increases with age, occurring in 3% to 5% of individuals 75 years 
and above1. Contemporary guidelines from the American Heart Association/American College of Cardiology 
and the European Society of Cardiology recommend aortic valve replacement (AVR) in patients with severe 
aortic stenosis and evidence of decompensation, either in the form of symptoms or left ventricular systolic dys-
function2, 3.

Severe AS is defined by an effective orifice area (EOA) of <1.0 cm2, and a mean pressure gradient 
(MPG) > 40 mmHg or peak aortic jet velocity (Vm) > 4 m/s4. It has recently been proposed that severe AS with 
preserved systolic function can be further stratified into 4 flow-gradient states: normal flow-low gradient (NFLG), 
low flow-low gradient (LFLG), normal flow-high gradient (NFHG), and low flow-high gradient (LFHG) severe 
AS5. Paradoxical low flow states (indexed stroke volumes <35 ml/m2) account for a proportion of patients 
with discordant small EOA and low mean pressure gradient (MPG) despite preserved systolic function6, 7.  
First described in 2007, LF with preserved systolic function (paradoxical LF) AS was associated with increased 
all-cause mortality compared to NF 8. Subsequent studies have suggested that paradoxical LG AS may be less 
severe compared to HG states and a prognosis more akin to moderate disease9, 10, yet others have reported that it 
had the worst prognosis compared to all the other flow-gradient states5, 11. Two meta-analyses demonstrated poor 
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prognosis associated with LFLG AS; and prognosis of severe aortic stenosis (regardless of flow-gradient states) 
improved with AVR compared to conservative management12, 13. However, the relative benefits of AVR may be 
different in patients with different flow-gradient states.

Network meta-analysis is an approach that incorporates evidence from direct comparisons with indirect com-
parisons that are extracted from multiple studies14. Using network meta-analysis, we aimed to assess the prog-
nosis associated with the different flow-gradient states of severe AS and preserved systolic function. We further 
examined the relative effects of AVR on survival in individuals with different flow-gradient states, with moderate 
AS as the reference.

Methods
Literature Search and Eligibility Criteria. A comprehensive literature search was performed on elec-
tronic databases: PubMed/MEDLINE (1946 onwards), Embase (1974 onwards), Cochrane library (1992 
onwards), China Knowledge Research Integrated Database (CNKI; 1979 onwards) and OpenGrey (2000 onwards) 
until 28 February 2017. The specific concepts used in the search strategy were “severe aortic stenosis”, “flow”, “gra-
dient” and “prognosis”. We conducted literature search using Medical Subject Headings (MeSH) or Emtree, and 
free text terms (see online supplemental data). There were no restrictions on language. All the bibliography listed 
in review papers and included publications were also checked.

Two investigators (CWLC and QSZ) independently screened for eligible studies based on pre-defined eligi-
bility criteria. Full-text studies that examined the prognosis of severe AS (EOA ≤1.0 cm2 stratified by flow and 
gradient states) with preserved systolic function (LVEF ≥50%) and published after the introduction of the clas-
sification system in 2007 were included. We excluded studies that examined prognosis in AS with impaired sys-
tolic function (LVEF <50%) and those that did not specify flow-gradient states. Case reports, commentaries and 
letters-to-editors were also excluded. Flow states were categorized as according to low (<35 ml/m2) and normal 
flow (≥35 ml/m2). Low and high MPG were defined by a gradient of <40 mmHg and ≥40 mmHg, respectively. 
Therefore, 4 subgroups of severe AS were defined: LFLG, NFLG, LFHG and NFHG.

Data extraction and quality assessment. The following data were extracted from the included studies: 
(1) study characteristics (publication year, patient population and the type of cohort study); (2) baseline charac-
teristics (mean age, proportion of symptomatic status, number of males/females and proportion of patients with 
hypertension, coronary artery disease and diabetes); (3) valve severity and flow states; and (4) outcome events 
(all-cause mortality regardless of AVR). In publications with survival curves, the cumulative survival rates were 
estimated by digitizing the plots15, 16.

The quality of each study was evaluated, using the Quality In Prognosis Studies tool (QUIPS tool), by two 
independent investigators (QSZ and LMS)17. Six domains (study participation study attrition, prognostic factor 
measurement, outcome measurement, study confounding and statistical analysis and reporting) were evaluated 
to assess the risk of bias in prognostic studies. For each of the 6 domains in the QUIPS tool, responses to the 
signaling questions are taken together to arrive at the judgment of “High”, “Moderate” or “Low” risk of bias. Any 
disagreement in quality assessment was resolved by discussion and consensus.

Statistical analysis. A network geometry was constructed based on the included studies for subgroups 
of severe AS. Each node represented a subgroup and its size was weighted by the number of subjects of each 
subgroup. The connecting line between two nodes meant direct comparison was existed and its thickness was 
determined by the number of studies included.

Network meta-analysis, comparing the prognosis of the different severe AS sub-groups, was performed using 
a multivariate meta-regression model with random-effects, adopting a frequentist approach18, 19. The model 
allows for the inclusion of potential covariates, and accounts for the correlations from multi-arm trials, and rate 
ratio (RR) of each subgroup was estimated20.

To rank the prognosis for all the groups, we used surface under the cumulative ranking (SUCRA) values21. 
Rank probabilities of all the groups were first estimated under a Bayesian framework. A step function was then 
applied to summarize the cumulative ranking for estimating the SUCRA values of each group, ranging from 0 to 
1. Thus, a large SUCRA value indicated a better prognosis.

Meta-regression was used to investigate the effects of AVR on survival in the different flow-gradient patterns 
of AS19. The node-splitting approach and inconsistency model were used to test the consistency assumption22. 
The former method involved fitting a series of node-splitting models, with one model for each sub-group pairing 
for which there was direct and indirect evidence23. The latter method first fits an inconsistency model and then 
conduct a global Wald test to check whether there is significant inconsistency exists14.

The network meta-analyses and meta-regression were implemented by Stata/MP 13 with network and net-
work graphs package14, 24, 25.

Results
Study characteristics and network geometry. From 1,274 potential studies identified from the initial 
search, 15 cohort studies (n = 9,737 individuals) satisfied inclusion/exclusion criteria and were included in this 
meta-analysis10, 11, 26–47 (Fig. 1; Table 1). No randomized controlled studies were found. The mean age was 76±6 
years and 43% were males. Of note, 29%, 38% and 63% of individuals had diabetes, coronary artery disease and 
hypertension respectively, with the duration of follow-up varied between 0.8 and 4.9 years (Tables 1 and 2). 
Twelve studies examined the effects of AVR on prognosis.

Of the 9,737 individuals in the studies, 39% (n = 3,803), 29% (n = 2,842) and 32% (n = 3,092) of individuals 
had moderate, HG and LG severe AS, respectively. Amongst the individuals with LG AS, 57% (n = 1,762) and 
43% (n = 1,330) had low and normal flow, respectively. Conversely, significantly more individuals with HG had 
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normal flow (82%; n = 2,330) compared to low flow states (18%; n = 512). Moderate AS was used as the reference 
group for comparison in this study.

The quality of all the studies demonstrated low to moderate risk of bias in the six domains assessed (Table 3). 
The network geometry was constructed (Fig. 2).

Network meta-analysis results. In both HG and LG AS, low flow states were associated with increased 
all-cause mortality (LFLG: RR 1.88; 95% CI: 1.43 to 2.46; LFHG: RR: 1.77; 95% CI: 1.16 to 2.70; Table 4). Of note, 
both low flow subgroups had similar mortality rate (the ratio of LFHG and LFLG RRs was 0.94; 95% CI: 0.67 
to 1.33). Conversely, normal flow states in both HG and LG had similar prognosis compared to moderate AS 
(NFLG: RR 1.11; 95% CI: 0.81 to 1.53; NFHG: RR 1.16; 95% CI: 0.82 to 1.64; Table 4). Based on the SUCRA values 
of each subgroup, the prognosis of the different flow-gradient states ranked from best to worst would be: NFLG, 
NFHG, LFHG and LFLG (Fig. 3). Results from both node-splitting method and inconsistency model showed no 
evidence of violating the assumption of consistency between direct and indirect comparison (P = 0.507; Fig. 4).

Comparative effects of AVR on survival. To examine the relative effects of AVR on survival in individu-
als with different flow-gradient states, we compared the RRs before and after adjusting for AVR (Fig. 5). In NFHG 
severe AS, the RR improved from 1.89 (95% CI: 1.25 to 2.84) to 1.16 (95% CI: 0.82 to 1.64) with AVR (RRwith AVR/
RRwithout AVR: 0.43; 95% CI: 0.22 to 0.82). Whilst AVR conferred a survival benefit for NFHG, it may not benefit all 
patients with LFLG equally. The mortality RR of LFLG increased from 1.59 (95% CI: 1.24 to 2.04) to 1.88 (95% CI: 
1.43 to 2.46) with AVR (RRwith AVR/RRwithout AVR: 1.19; 95% CI: 0.74 to 1.94; Fig. 5). There was a trend towards ben-
efit in severe AS patients with LFHG (RRwith AVR/RRwithout AVR: 0.63; 95% CI: 0.24 to 1.67) and NFLG (RRwith AVR/ 
RRwithout AVR: 0.87; 95% CI: 0.45 to 1.68).

Similar findings were observed when traditional pair-wise comparisons were performed (Fig. 6). Compared 
to medical therapy, AVR improved outcomes in all flow-gradient states of severe AS but with different relative 
benefits. NFHG severe AS derived the most relative benefits from AVR (RR: 0.11; 95% CI: 0.07 to 0.20) compared 
to LFLG severe AS (RR: 0.32; 95% CI: 0.25 to 0.42).

Discussion
Our network meta-analysis investigated the prognostic effects of AVR on the different flow-gradient states of 
severe AS. Overall, we demonstrated that the risk of all-cause mortality in severe AS was associated with low flow 
states, and not valvular gradients. Normal flow states had similar prognosis to moderate AS. Moreover, the relative 

Figure 1. PRISMA flowchart of study selection. The systematic review and meta-analysis was conducted 
according to the guidelines recommended by PRISMA48.
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survival benefits conferred by AVR were different in patients with severe AS, depending on flow-gradient states. 
Individuals with NFHG derived the greatest survival benefit from AVR among all the subgroups of severe AS.

The traditional pair-wise meta-analysis can only synthesize evidence from studies with direct comparisons of 
two arms being tested. However, it is difficult to rank the prognosis of each subgroup of severe AS, as such direct 
evidence is limited, i.e. only 4 out of 15 studies included all the flow-gradient states of interest (LFLG, NFLG, 
LFHG and NFHG). Therefore, the traditional pairwise approach is not ideal to comprehensively investigate the 
prognosis of the different flow-gradient states from the existing evidence. By synthesizing direct and indirect 

Study name, Year Comparison pairs
Age  
(mean, SD)

Gender 
(Male) Diabetes CAD HTN SYM AVR

Median follow-
up (Year)

Cohort study 
design

Clavel 2012 LFLG (187), NFHG 
(187), MAS (187) 69, 13.3 339 (60%) 132 (24%) 288 (51%) 395 (70%) 397 (71%) 307 (55%) 4.2 Retrospective

Eleid 2013
LFLG (53), NFHG 
(1249), NFLG (352), 
LFHG (50)

78, 11.9 753 (44%) 722 (42%) 472 (28%) 1250 (73%) 1193 (70%) 1121 (66%) 2.3 Retrospective

Fan 2015
LFLG (19), NFHG 
(59), NFLG (30), 
LFHG (80)

55, 11.4 99 (53%) 8 (4.3%) NA 36 (19%) 111 (59%) 188 (100%) 4.9 Mixed

Hermann 2011 LFLG (11), MAS 
(17) 71, 7.4 11 (39%) 6 (21%) NA 24 (86%) 12 (43%) 11 (39%) 0.75 Prospective

Kamperidis 2014 LFLG (48), NFLG 
(86) 76, 10 67 (50%) 34 (25%) 83 (62%) 98 (73%) 48 (36%) 134 (100%) 1.8 Retrospective

Maes 2014 LFLG (115), NFLG 
(90) 78, 10.2 145 (42%) 77 (22%) 73 (21%) 270 (77%) 129 (37%) 92 (26%) 2.3 Prospective

Maor 2014 LFLG (136), NFLG 
(273) 78, 11 172 (42%) 132 (33%) 164 (40%) 245 (60%) NA 94 (23%) 2.92 Mixed

Mehrotra 2013 LFLG (38), NFLG 
(75), MAS (70) 78, 9.4 86 (47%) 37 (20%) 63 (34%) 161 (88%) 21 (12%) 0 (0%) 3 Retrospective

Melis 2013
LFLG (42), NFHG 
(169), NFLG (98), 
LFHG (54)

76.8 177 (49%) 104 (29%) 136 (38%) 270 (74%) NA 216 (59%) 2.1 Retrospective

Mohty 2013
LFLG (99), NFHG 
(386), NFLG (172), 
LFHG (111)

74, 8 445 (58%) 161 (21%) 353 (46%) 476 (62%) 684 (89%) 699 (91%) 4.6 Retrospective

O’Sullivan 2013 LFLG (85), LFHG 
(208) 83, 5.2 118 (40%) 82 (28%) 164 (56%) 247 (84%) 199 (68%) 293 (100%) 1 Retrospective

Romero 2014 LFLG (776), MAS 
(2958) 78, 12.3 1324 (31%) 1048 (25%) 1684 (40%) 2072 (49%) NA 432 (10%) 2.3 Retrospective

Schewel 2015 LFLG (104), NFHG 
(289) 81, 6.8 149 (38%) 116 (30%) 218 (55%) 345 (88%) 352 (90%) 393 (100%) 1 Prospective

Tribouilloy 2015 LFLG (57), NFLG 
(85), MAS (420) 77, 4.1 306 (54%) 179 (32%) 176 (31%) 421 (75%) 74 (13%) 0 (0%) 3.25 Retrospective

Yamashita 2015 NFLG (61), MAS 
(151) 76, 9 93 (44%) 73 (34%) 76 (36%) 164 (77%) 79 (37%) 0 (0%) 1.3 Retrospective

Table 1. Study characteristics. MAS: moderate aortic stenosis; LFLG: low-flow low-gradient; NFLG: normal-
flow low-gradient; IFLG: indeterminate-flow low-gradient; LFHG: low-flow high-gradient; NFHG: normal-flow 
high-gradient; IFHG: indeterminate-flow high-gradient; CAD: coronary artery disease; HTN: hypertension; 
SYM: symptoms present; AVR: aortic valve replacement.

Characteristics
MAS 
(n = 3,803)

LFLG 
(n = 1,762)

NFLG 
(n = 1,330)

LFHG 
(n = 512)

NFHG 
(n = 2,330)

Age (SD), years 77 (2.2) 79 (3.6) 77 (4.4) 76 (8.8) 75 (4.8)

Females, % 63 62 56 55 43

Diabetes Mellitus, % 26 29 33 27 31

Coronary artery 
disease, % 36 49 40 45 33

Hypertension, % 53 67 73 67 69

Symptoms, % 26 67 49 75 78

Atrial fibrillation, % 13 41 16 21 16

Dyslipidemia, % 28 40 54 54 46

Smoking, % 8 7 14 11 12

Aortic valve 
replacement, % 5 35 40 91 81

Table 2. Baseline Characteristics Stratified by Flow-Gradient States.
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evidence using network meta-analysis, we were able to examine the prognosis of all the different flow-gradient 
states in severe AS.

In our study, low flow states (not valvular gradient) in severe AS were associated with an increased risk of 
all-cause mortality. Compared to two recent meta-analyses that have combined flow states in HG12, 13, we demon-
strated that HG severe AS can further be risk-stratified based on flow patterns: the prognosis of NFHG was 

Study 
Participation

Study 
Attrition

Prognostic Factor 
Measurement

Outcome 
Measurement

Study 
Confounding

Statistical Analysis 
and Reporting

Clavel 2012 Low Low Low Low Low Low

Eleid 2013 Low Low Low Low Low Low

Fan 2015 Moderate Low Low Low Low Moderate

Hermann 2011 Low Low Low Low Low Moderate

Kamperidis 2014 Low Moderate Low Low Low Low

Maes 2014 Low Low Low Low Low Low

Maor 2014 Low Low Low Low Low Low

Mehrotra 2013 Moderate Low Low Low Low Low

Melis 2013 Moderate Low Low Low Low Low

Mohty 2013 Low Low Low Low Low Low

O’Sullivan 2013 Low Low Low Low Low Low

Romero 2014 Moderate Low Low Low Low Low

Schewel 2015 Low Low Low Low Low Low

Tribouilloy 2015 Low Low Low Low Low Low

Yamashita 2015 Low Low Low Low Low Low

Table 3. Risk of bias assessment for included studies.

Figure 2. Network geometry of the different flow-gradient states of severe aortic stenosis and preserved systolic 
ejection fraction.

MAS LFLG NFLG LFHG NFHG

MAS 1 1.88 (1.43,2.46) 1.11 (0.81,1.53) 1.77 (1.16,2.70) 1.16 (0.82,1.64)

LFLG 0.53 (0.41, 0.70) 1 0.59 (0.46,0.76) 0.94 (0.67,1.33) 0.62 (0.48,0.80)

NFLG 0.90 (0.65, 1.23) 1.69 (1.32, 2.17) 1 1.59 (1.09,2.31) 1.04 (0.78,1.40)

LFHG 0.56 (0.37, 0.86) 1.06 (0.75, 1.49) 0.63 (0.43, 0.92) 1 0.66 (0.46,0.93)

NFHG 0.86 (0.61, 1.22) 1.61 (1.25, 2.08) 0.96 (0.71, 1.28) 1.52 (1.08, 2.17) 1

Table 4. Rate ratios of all-cause mortality from network meta-analysis with 95% confidence interval. MAS: 
moderate aortic stenosis; LFLG: low-flow low-gradient; NFLG: normal-flow low-gradient; LFHG: low-flow 
high-gradient; NFHG: normal-flow high-gradient. All the RRs were presented using the row sub-type as the 
reference group.
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similar to moderate AS, and better than LFHG. These findings are consistent with a recent study that demon-
strated a continuous association between adverse events and reduced stroke volumes in patients with AS and 
preserved systolic function, independent of valvular gradient49. The complex interaction of the valve, comorbid 
medical conditions and the myocardium account for the different flow-gradient states in AS50, 51. In the presence 
of preserved systolic function, low flow states can be present in individuals with significant myocardial hypertro-
phy. Other factors contributing to low flow states such as atrial fibrillation (41% in those with LFLG in the pooled 
studies), hypertension and concomitant valvular heart disease (mitral stenosis or mitral regurgitation) can also 
result in increased mortality.

Although patients with severe AS (regardless of flow or gradient) have improved outcomes with AVR com-
pared to conservative management12, it is possible AVR would confer different survival benefits since the progno-
sis varied across the flow-gradient states. Our study adds novelty by demonstrating the relative survival benefits 
of AVR vary with flow-gradient states. Patients with classically severe (NFHG) AS derived the most benefit 
from AVR whilst the risk of mortality was not completely modified by AVR in those with paradoxical LFLG 
severe AS. These findings were confirmed using traditional pair-wise comparisons. The role of AVR in the other 
flow-gradient states should be interpreted with caution. There was a trend towards benefit in severe AS patients 

Figure 3. Cumulative probability curves for prognosis for each group with SUCRA values.

Figure 4. Forest plots with results from consistency (red diamond) and inconsistency (green diamond) model.



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 5092  | DOI:10.1038/s41598-017-05021-9

with LFHG and NFLG. The wide confidence limits may be explained by the relatively smaller number of individ-
uals compared to other flow-gradient states.

Clinical Implications. These findings have important clinical implications. Paradoxical LG severe AS may 
be conceptualized as a heterogeneous condition akin to heart failure with preserved ejection fraction (HFpEF)51. 
Both conditions share similar clinical characteristics and mechanisms of cardiac adaptation12, 51, 52. Similar to 
paradoxical LG severe AS, a high proportion of adverse events are related to non-cardiovascular comorbidities in 
HFpEF52. Patients with paradoxical LFLG severe AS may benefit from AVR, as currently recommended by both 
the ACC/AHA and ESC (Class IIa)2, 3. For reasons discussed above, AVR may not completely ameliorate the risks 
in those with paradoxical LG severe AS. Therefore, it is crucial to confirm severity of disease and improve risk 
stratification using either imaging (stress echocardiography, aortic valve CT calcium score and cardiovascular 
magnetic resonance) or biochemical markers53–59. However, the benefits of AVR in at-risk individuals identified 
using such a strategy will need to be carefully tested in a clinical trial.

Study Limitations. Due to incomplete data we were unable to assess the prognosis on cardiovascular mor-
tality. The adjustment of AVR in the current analysis can only be conducted at the study-level, which might not 

Figure 5. Effects of AVR on the different flow-gradient states of severe aortic stenosis.

Figure 6. Direct comparisons of the effects of AVR versus medical therapy on the different flow-gradient states.
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accurately reflect the prognosis of the individual patient. In the absence of any randomized controlled studies, 
the effects of AVR may be confounded by potential biases inherent to the observational nature of the studies. For 
example, AVR in individuals with LFLG may be delayed because of an uncertainty in diagnosis and management. 
Potential study inconsistency may affect the validity of the network meta-analysis. However, we have carefully 
assessed for any potential violation of the consistency assumption. Similar estimates from direct and indirect 
comparisons were demonstrated and formal statistical testing did not reveal violation of consistency.

Conclusions
Low flow states (regardless of valvular gradient) were associated with increased all-cause mortality amongst indi-
viduals with severe AS. Of all the flow-gradient states, NFHG was associated with the greatest survival benefit 
from AVR. Properly designed randomized studies are crucially needed to clarify the role of AVR in individuals 
with LFLG severe AS.
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