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Human neutrophils phagocytose 
and kill Acinetobacter baumannii 
and A. pittii
María Lázaro-Díez1,2,8, Itziar Chapartegui-González1,2, Santiago Redondo-Salvo1,  
Chike Leigh3, David Merino1,4, David San Segundo1,4, Adrián Fernández1, Jesús Navas1,5,  
José Manuel Icardo6, Félix Acosta7, Alain Ocampo-Sosa1,2,8, Luis Martínez-Martínez8,9,10 &  
José Ramos-Vivas1,2,8

Acinetobacter baumannii is a common cause of health care associated infections worldwide. A. pittii 
is an opportunistic pathogen also frequently isolated from Acinetobacter infections other than those 
from A. baumannii. Knowledge of Acinetobacter virulence factors and their role in pathogenesis is 
scarce. Also, there are no detailed published reports on the interactions between A. pittii and human 
phagocytic cells. Using confocal laser and scanning electron microscopy, immunofluorescence, and 
live-cell imaging, our study shows that immediately after bacteria-cell contact, neutrophils rapidly and 
continuously engulf and kill bacteria during at least 4 hours of infection in vitro. After 3 h of infection, 
neutrophils start to release neutrophil extracellular traps (NETs) against Acinetobacter. DNA in NETs 
colocalizes well with human histone H3 and with the specific neutrophil elastase. We have observed 
that human neutrophils use large filopodia as cellular tentacles to sense local environment but also to 
detect and retain bacteria during phagocytosis. Furthermore, co-cultivation of neutrophils with human 
differentiated macrophages before infections shows that human neutrophils, but not macrophages, 
are key immune cells to control Acinetobacter. Although macrophages were largely activated by both 
bacterial species, they lack the phagocytic activity demonstrated by neutrophils.

Acinetobacter baumannii has been extensively studied because infections caused by this pathogen have been 
associated with high morbidity and mortality rates1, 2. Also, their ability to survive in dry conditions and their 
resistance to disinfectants allows these microorganisms to survive in the hospital environment3, 4. Furthermore, 
this organism frequently presents multidrug or pan-resistance5, 6. Due to those three attributes (survival in the 
hospital environment, antimicrobial resistance and virulence) it is likely that this organism will gain even increas-
ing importance in the near future. Among Acinetobacter genus, A. pittii is another clinically relevant species. The 
significant role of A. pittii in human infections and the emergence of resistant strains have also become a great 
medical concern7–9.

When Acinetobacter strains penetrate epithelial barriers and invade the host tissues, they first encounter the 
so-called “professional phagocytes”, macrophages and neutrophils. Professional phagocytes play a key role in host 
defence by engulfing and killing microorganisms. Little is known about the relative contribution of macrophages 
and neutrophils in the initial phase of encounter with Acinetobacter strains.

Neutrophils (also known as polymorphonuclears, PMNs) are the most abundant leukocytes in the blood 
which are rapidly recruited to the inflammatory site upon inflammation. Neutrophils can eliminate microbes 
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using three basic strategies: phagocytosis, degranulation, and by a recently discovered mechanism called NETosis, 
a specific type of cell death different from both necrosis and apoptosis10–13. Bacterial metabolites and inflamma-
tory stimuli induce NETosis and the release of neutrophil extracellular traps (NETs). NETs are released to the 
extracellular space by activated neutrophils, but additional studies are required to establish under what conditions 
NETs play an important role in bacterial killing. Importantly, some pathogens are able to overcome these bacte-
ricidal mechanisms14–18.

In this study, we investigated the interaction of A. baumannii and A. pittii clinical isolates with professional 
phagocytes. Understanding the mechanisms by which Acinetobacter interacts with immune cells is a prerequisite 
for the development of new prophylactic or therapeutic agents to treat the infections caused by these bacteria. 
Therefore, the aim of this work was to clarify the mechanisms of host-microbe interaction between neutrophils 
and Acinetobacter with focus on phagocytosis and neutrophil extracellular traps release.

Results
Phagocytosis and clearance of Acinetobacter strains by human neutrophils. Human neutrophils 
are round cells that remain semi-attached and roll along the surfaces used in this study (glass or plastic). The 
presence of human (2%) or bovine serum (10%) in the protocol used to cultivate cells did not affect neutrophil 
behavior nor the outcome of the in vitro infections. The capability of neutrophils to bind and internalize A. bau-
mannii and A. pittii is presented in Fig. 1. In presence of Acinetobacter, neutrophils can flatten and become phago-
cytic. The transition to active phagocytosis is sudden, with extension of the cell-bacteria contact area followed by 
the emergence of pseudopods to form a phagocytic arm that progresses to complete engulfment of the bacteria. 

Figure 1. Contact and phagocytosis of Acinetobacter by human neutrophils. Human neutrophils were 
infected for 30 min (a), 60 min (b,c) or 2 h (d–f) with A. baumannii ATCC 19606T, fixed and processed for 
immunofluorescence labelling. Bacteria were detected with anti-A. baumannii rabbit antibody (red). Actin 
cytoskeleton was labelled with Atto 488 phalloidin (green) and nuclei are stained with DAPI (blue) (a–c,f). (a) 
Single stack; (b and d–f) maximal projections; (c) cross-sectional view. Arrow in (b) indicates a pseudopod in 
close contact with a bacterium. In (d,e) double-immunofluorescence images show extracellular bacteria (green), 
debris of intracellular bacteria (red) and bacterial and cellular DNA (blue). (f) As control, fresh untreated 
neutrophils were incubated in parallel during 4 h. Micrographs were originally captured at ×400 magnification 
(a,f) or ×600 magnification (b–e). Scale bars, (a,f) 5 µm; (b,d,e) 2 µm.
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Bacteria were associated with neutrophils as early as 30 min post-infection (Fig. 1a). Neutrophils were in contact 
with some of the surrounding bacteria through filopodia or pseudopods (arrow in Fig. 1b), and multiple attempts 
at phagocytosis were observed at neutrophil surfaces. At this time, whole bacteria (indicated by red fluorescence) 
were observed inside human neutrophils (Fig. 1c). After 2 h, bacteria already remained largely inside neutrophils, 
but with different sizes and some loss of their characteristic red immunofluorescent pattern, indicating that the 
phagocytosed bacteria were probably being degraded (Fig. 1d,e). Morphology in control neutrophils remains 
unchanged (Fig. 1f).

Furthermore, a Live/Dead staining was used to examine survival of Acinetobacter spp. after phagocytosis by 
unfixed primary human neutrophils. The dyes were added in the presence of 0.1% saponin, which sequesters 
cholesterol to preferentially permeabilize host cell plasma membranes, not Acinetobacter membranes. All acine-
tobacters stain with SYTO9, but only bacteria with compromised membranes stain with propidium iodide. The 
propidium iodide overcomes the SYTO9 fluorescence, so live bacteria appear green and dead bacteria appear red. 
Intracellular dead bacteria increased over time during the infection period (Fig. 2). From 2 to 4 h post-infection 
bacteria attached to plastic or glass surfaces divided rapidly and neutrophils tried to contain the bacterial over-
growth by quickly and continuously engulfing these pathogens (Supplementary videos 1 and 2).

Interestingly, using scanning electron microscopy and immunofluorescence, we observed that human neutro-
phils used very large filopodia (more than 50 µm) to not only sense the environment, but also to detect and retain 
bacteria (Fig. 3). These large filopodia were also observed during experiments using live cell imaging on glass or 
plastic (Supplementary video 3).

Importantly, preincubation of neutrophils with actin-cytoskeleton inhibitor cytochalasin D abrogated phago-
cytosis of Acinetobacter strains. This was demonstrated by the presence of neutrophils without bacteria 3 h after 
infection (Supplementary Figure 1a,b). Of note, this cytoskeleton inhibitor reduces up to 90% of the number of 
neutrophils in the microscopic fields indicating that not only was phagocytosis affected, but also adherence of 
these cells to inert surfaces (the remained neutrophil morphology totally round).

Gentamicin protection assays also demonstrated that intracellular bacteria had died because no live bacteria 
were recovered 3 h after infections following gentamicin treatment (Supplementary Figure 1c). After performing 
quantitative CFUs counting experiments, difference in numbers between wells containing Acinetobacter and wells 
containing Acinetobacter plus neutrophils was not significative, despite neutrophils are able to eat at least 50 bac-
teria/cell (as observed by confocal microscopy) after 4 h of infection (Supplementary Figure 1d).

We incubated human neutrophils cells with extracellular products (ECPs) produced by all the Acinetobacter 
strains during growth in liquid medium, and no cytotoxicity was observed after 5 h of incubation with increasing 
volumes of bacterial ECPs (not shown).

Production of neutrophil extracellular traps. Neutrophils that had become engorged with microbes 
(some neutrophils were shown to harbour more than 50 bacteria) started to die after 3 h post infection (Fig. 4a,b). 
Neutrophils started to lose their individual nuclear lobules resulting in globular or horseshoe shape structures. 
During their final stage, nuclear and cytoplasmic integrity was lost, and most cells finally round up again and 
finally release NETs (Fig. 4c,d). Very occasionally, NETs form large aggregates (up to 1 mm in length) (Fig. 4e). 
In many cases, NETs clearly seems to entrap bacteria (Supplementary Figure 2a and Supplementary video 4). 
Immunofluorescence analyses confirmed the co-localization of histones (H3) and neutrophil elastase (NE) in 

Figure 2. Live/Dead staining in unfixed neutrophils. Neutrophils were infected with Acinetobacter strains, then 
exposed to components of the live/dead kit, propidium iodide and SYTO9. Upper panels: in merged images, live 
bacteria appear green, dead bacteria appear red and eukaryotic nuclei appear pink. Lower panels show selected 
z-stacks at high magnifications (red channel) of the boxed areas in the upper panel. Untreated similarly stained 
cells served as control (C). Original magnifications: upper panels ×400; lower panels ×1000. Scale bars, 5 µm.
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extracellular traps released from human neutrophils (Supplementary Figure 2b,c). These NETs appear to be flex-
ible, and to emerge from the cell from which they originated (Supplementary Figure 3a). The presence of NETs 
in infected cultures was highly variable. Non-infected neutrophils were used as controls for immunofluores-
cence staining in the nucleus (colocalization with histone H3) and cytoplasm (intracellular neutrophil elastase), 
and, as expected, Pseudomonas aeruginosa PAO1 infection used as positive control induced NET formation 
(Supplementary Figure 3b–d).

To quantify NETosis and NET release by in vitro-infected human neutrophils, neutrophil elastase and cit-
rullinated histone H3 were measured by a NETosis assay and ELISA kit respectively. These assays demonstrated 
that Acinetobacter strains were able to induce the release of certain amounts of NETs by human neutrophils  

Figure 3. Capture and phagocytosis of Acinetobacter by human neutrophils. Pictures show SEM 
microphotographs (a,c,d,e) or immunofluorescence (b) images of infected neutrophils (3 h, strain ATCC 
19606T). Large filopodia were observed in infected cultures in close contact with bacteria (b,c). Some of these 
filopodia completely surround two bacteria (asterisks in c) while pseudopods are catching bacteria attached 
to the inert surface (arrows in c). In (b) bacteria were detected with anti-A. baumannii rabbit antibody (red), 
actin cytoskeleton was labelled with Atto 488 phalloidin (green) and nuclei were stained with DAPI (blue). 
Unstimulated neutrophils show round shapes (d). (e) Detail of the boxed area in (d) Micrographs were 
originally captured at ×4000 (a), ×600 (b), ×10000 (c), ×500 (d) or ×9000 magnification (e). Scale bars, (a) 
10 µm; (b,c,e) 5 µm; (d) 100 µm.

http://2b,c
http://3a
http://3b�d


www.nature.com/scientificreports/

5ScIeNtIfIc RePoRts | 7:4571 | DOI:10.1038/s41598-017-04870-8

in vitro (Fig. 5a,b). However, NET release by infected neutrophils was always lower than neutrophils stimulated 
with the well known activator of full NETs release, PMA. To compare the induction of NETs by different strains, 
NETs formation was examined using the extracellular nucleic acid dye SYTOX Green by live-cell imaging during 
infections (Supplementary Figure 4). Furthermore, using a quantitative fluorescence assay, NETs formation by 
several strains was compared with untreated neutrophils and with neutrophils treated with PMA. Fluorescence 
from NETs in infected cultures with several Acinetobacter strains was also higher than in untreated neutrophils 
and lower that in PMA stimulated neutrophils. By this method, one strain (HUMV 06-2790) failed to clearly 
demonstrate NETs release (Fig. 5c).

Infection of macrophage-neutrophil co-cultures. To test whether host cell type contributed mostly 
to clearance of this pathogen, we performed infections of mixed cultures containing human neutrophils and 
differentiated macrophages. Incubation of Acinetobacter with macrophages and neutrophils did not induce an 
important phagocytosis in macrophages, although produced remarkable important cell activation (compared 
with untreated macrophages), as demonstrated by the elongated cell shape. After 3 h of infection, >90% of mac-
rophages were in contact with 5 or less bacteria despite that Acinetobacter was largely occupying the glass surface. 
On the other hand, neutrophils were full of bacteria (Supplementary Figure 5).

Discussion
Neutrophils and macrophages are the first lines of defence against invading microbes. Neutrophils are terminally 
differentiated, rapidly reach the infection site, and are equipped with antimicrobial proteins to kill bacteria19. 
However, little is known about the relative contribution of neutrophils during the initial phase after encoun-
tering Acinetobacter spp. in human infections. Moreover, although several animal infection models were used 
to study the infection by A. baumannii (sepsis and lung infections), neutrophils from mammals and fish differ 
from human neutrophils in many ways20–22. As the success of A. baumannii and A. pittii as pathogens depends 
on its ability to avoid killing by components of the innate immune system, the aim of the current study was 
to characterize the human neutrophil response to these microbes. When neutrophils were assessed for their 
inherent abilities to neutralize Acinetobacter strains, both bacterial species were recognized within 20–30 min of 
co-incubation with cells. Immunofluorescence staining and double-immunofluorescence performed from 30 min 

Figure 4. NETs production by human neutrophils infected with Acinetobacter. Pictures show a SEM 
microphotograph (a) or immunofluorescence images (b–e) of neutrophils 4 h post-infection: (a,c–e) strain 
ATCC 19606T; (b) strain HUMV 06-2790. From (b to e) bacteria were detected with anti-A. baumannii rabbit 
antibody (red), actin was labelled with Atto 488 phalloidin (green), and DNA was stained with DAPI (blue). 
Micrographs were originally captured at ×15000 (a), ×600 (b,d), ×400 (c) or ×200 magnification (e). Scale 
bars, (a–d) 5 µm; (e) 100 µm.
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to 4 h demonstrated that neutrophils catch bacteria continuously. This was also confirmed by time-lapse micros-
copy. Moreover, we examined live and dead acinetobacters inside neutrophils by using confocal microscopy. The 
primary goal of these experiments was to confirm whether the bacteria were located physically inside or outside 
the host cells and that dead bacteria inside cells lost their immunogenic surface (stained with a polyclonal anti-
body) because, although neutrophils kill the vast majority of bacteria, some microbes circumvent killing by these 
cells14–16. Using anti-Acinetobacter antibodies, whole bacteria were seen as red at the glass surface and associated 
with cells, but dead or damaged bacteria inside cells lost their characteristic red fluorescence. To unequivocally 
demonstrate that human neutrophils kill Acinetobacter, and therefore bacterial survival is compromised in pres-
ence of these cells, we performed an in situ Live/Dead staining on unfixed cells. This staining demonstrated that, 
once inside neutrophils, Acinetobacter die. This was observed along the experiments demonstrating that human 
neutrophils can easily and effectively kill both A. baumannii and A. pittii in vitro. In accordance with several 
authors, uptake of bacteria could lead to full activation of the anti-microbial arsenal of the neutrophil killing the 
ingested bacteria23. In conclusion, our findings strongly indicate that all the strains tested were phagocytosed 
and killed by human neutrophils. This is clearly in contrast to reports by others24, 25. Based on the experimental 
methods described in these previous publications, there is no obvious indication for the discrepancies in the 
reported results, apart from bacteria-cell contact time 1 h26 vs 4 h. According to our immunofluorescence, SEM, 
CFUs counting and live-cell and live/dead imaging experiments, neutrophils are in contact with Acinetobacter 
at 1 h, but further incubation time renders active phagocytosis. Our findings also correlate with current in vivo 
studies in mice and fish reporting the significance of neutrophils on Acinetobacter infections26–28. Moreover, our 

Figure 5. Quantification of elastase, citrullinated histone H3 and extracellular DNA using SYTOX Green. 
(a) Measurement of released neutrophil elastase. Human neutrophils were infected with Acinetobacter strains 
or treated with PMA for four hours, washed, and treated with S7 nuclease for 15 min. The supernatant from 
each well was assayed. Samples were tested in triplicate. (b) Measurement of citrullinated histone H3 (CitH3). 
Human neutrophils were infected with Acinetobacter strains for 4 hours. Supernatants were centrifuged to 
remove cellular debris and then tested in the ELISA. Samples were tested in triplicate. The concentrations of 
total neutrophil elastase and CitH3 in the analyzed samples were estimated from standard curves obtained for 
each assay. (c) Quantification of fluorescence after infection experiments using SYTOX Green. Supernatants 
from unstained infected cultures were partially digested with DNAse I and stained with SYTOX Green. Each bar 
indicates the average of three independent experiments ± SD. Asterisks indicate: *p = 0.0004; **p < 0.00001; 
n.s., p = 0.1610.
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results correlate well with in vitro models using human neutrophils against other microbes, where phagocytosis 
seems to be the main mechanism to clear bacteria10, 29. Filopodia are abundant in macrophages30, but little is 
known about their role during phagocytosis or chemotaxis in neutrophils. An unexpected finding of the study 
was the presence of very large filopodia emerging from the neutrophil body to sense the environment and even to 
catch bacteria in vitro. Although quantitation of the filopodial dynamics or the cytoskeletal reorganization during 
neutrophil chemotaxis or phagocytosis is beyond the scope of this paper, new knowledge through a deeper study 
on the modulation and regulation of these filopodia may prove helpful in understanding the pathogenesis of this 
and other bacteria.

After 3–4 h post-infection, neutrophils started to die in presence of growing acinetobacters. In our assays, both 
Acinetobacter species grow actively in cell culture media and large numbers of bacteria were achieved 4 h after 
infections. Despite these in vitro assays did not allow new neutrophils recruitment, cells are full of dead bacteria 
4 h after infections as demonstrate by confocal microscopy and gentamycin protection assays. This could mean 
that neutrophils play an important role against Acinetobacter in vivo.

Neutrophil cell death is fundamentally divided into necrosis, apoptosis, autophagy and the newly recognized 
NETosis. NETosis is a complex process that occurs with dramatic changes in the morphology of the neutrophil 
that finally lead to cell death10. The release of NETs against Acinetobacter was identical when human neutrophils 
were seeded on glass or plastic, as well as when using human or bovine serum. NETs are able to trap bacteria, 
fungi, and parasites31, but the possibility that the microbes ensnared in NETs are alive is controversial32. In our 
hands, A. baumannii and A. pittii induce a moderate cell death during the first 2 h of infection and NETs release 
by human neutrophils started after 3 h, similar to those induced by P. aeruginosa.

One of the most widely used techniques to observe NET induction is confocal microscopy. This approach 
is very informative as to the presence or absence of NETs, but microscopy images did not allow quantifica-
tion of NETs. In this work, quantification of neutrophil elastase and citrullinated histone H3 demonstrated a 
strain-dependent variation in the NETs induction. Using SYTOX Green to stain and to quantify extracellular 
DNA, one strain failed to induce significant amounts of DNA release as compared with untreated controls. 
However, neutrophil extracellular traps release after Acinetobacter infections correlates with the presence of spe-
cific NETosis markers such as neutrophil elastase and histone H333. Therefore, and in agreement with Naccache 
and Fernandes33 the experimental approaches to investigate NET formation underscore the need for consensus 
on standardized experimental approaches in the NET field.

Our results show that some bacteria were entrapped by NETs, and therefore this neutrophil response to these 
pathogens could partially prevent dissemination during the infection. A recent study shows that there are no ex 
vivo NETs production in neutrophils isolated from Acinetobacter baumannii bacteremia34. However, neither the 
presence of NETs in vivo was studied nor the neutrophil-Acinetobacter interactions in vitro.

Finally, using differentiated human macrophages in co-culture with neutrophils to study Acinetobacter 
host-microbe interactions, we show that neutrophils play a key role in controlling the infections caused by these 
bacteria. This is important because neutrophils make also an essential contribution in the recruitment and activa-
tion of macrophages during infections35. Our results also correlate with those of others showing that neutrophils, 
but not macrophages, are crucially to control early steps during bacterial and fungal infections35, 36.

In this work, our first objective was to demonstrate phagocytosis and killing of these two important path-
ogens by human neutrophils as a defence mechanism, but the induction of NETs in a small number of human 
neutrophils could be also important to fight infection. As neutrophils are also responsible for tissue damage and 
inflammation during certain circumstances, an overactivation of these cells (i.e. excessive NETs release) could be 
detrimental to the host. Therefore, future detailed studies at the molecular level will help to decipher the mecha-
nisms involved in the regulation of neutrophils in presence of Acinetobacter or other pathogens, both alone or in 
combination with other immune cells.

Methods
Bacterial strains and growth conditions. The nine Acinetobacter clinical isolates (A. baumannii n = 4; A. 
pittii n = 5) used in this work were all previously described37. Reference strains A. baumannii ATCC 19606T and 

n° Species Strain Clinical source

1 A. baumannii aATCC® 19606T urine

2 A. baumannii bHUMV 1319 wound exudate

3 A. baumannii HUMV 2471 sputum

4 A. baumannii HUMV 2790 skin ulcer

5 A. baumannii HUMV 3743 wound exudate

6 A. pittii cLMG 10559 tracheal aspirate

7 A. pittii HUMV 0315 sputum

8 A. pittii HUMV 4336 diabetic foot exudate

9 A. pittii HUMV 6207 wound exudate

10 A. pittii HUMV 5918 wound exudate

11 A. pittii HUMV 6483 urine

Table 1. Acinetobacter strains used in this study. aATCC, American Type Culture Collection. bHUMV, Hospital 
Universitario Marqués de Valdecilla. cLMG, Culture Collection of the Laboratorium voor Microbiologie Gent.
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A. pittii LMG 10559 were also included (Table 1). The strains were routinely cultured on blood agar (BA) plates, 
brain hearth infusion broth (BHIB) or Luria Bertani broth (LB) at 37 °C, and frozen at −80 °C with 20% glycerol. 
As control for NETs induction, Pseudomonas aeruginosa strain PAO1 was used38. P. aeruginosa was cultured in 
LB at 37 °C.

Neutrophil isolation from whole human blood. All studies involving human samples were in accord-
ance with international standards for research ethics and were approved by the local institutional review board 
(Hospital Universitario Marqués de Valdecilla). Neutrophils were isolated from whole venous blood obtained 
from healthy human volunteers after informed consent. The EasySepTM Direct Human Neutrophil enrichment kit 
(StemCell) was used, following the manufacturer’s instructions. Briefly, 50 μL of EasySep® neutrophil enrichment 
cocktail, containing a mix of tetrameric antibody complexes produced from monoclonal antibodies directed 
against the cell surface antigens CD2, CD3, CD9, CD19, CD36, CD56 and magnetic particles were added per 
1 mL of blood. The blood/antibody/bead solution was adjusted to a total volume of 50 mL with recommended 
media and placed into an Easy 50 magnet for 10 min at room temperature (RT). Unbound neutrophils were pipet-
ted into a new tube and placed in the Easy 50 magnet before addition of new magnetic particles. This step was 
repeated once. Highly-pure unbound neutrophils were briefly centrifuged and resuspended in RPMI 1640 media 
plus 10% fetal bovine serum (FBS) or 2% human serum. Neutrophils were also separated from other leukocytes 
using dextran density gradient centrifugation and red blood cells lysis as described elsewhere39. Neutrophils were 
isolated from samples from at least 14 donors and purity of neutrophil preparations was determined by morphol-
ogy after staining of nuclei with NucBlue (Molecular Probes).

Phagocytosis experiments. Acinetobacter strains were cultured overnight in 10 ml BHIB or LB at 37 °C 
with shaking at 175 rpm. Neutrophils were infected with bacteria at a multiplicity of infection (MOI, bacterium: 
eukaryotic cell ratio) of ~100:1. The number of colony forming units (CFUs) inoculated per well was determined 
by serial dilution in phosphate buffered saline (PBS) and plating on BA and incubated for 24 h. The infected plates 
were centrifuged for 4 min at 200 × g prior to the incubation to promote adherence of bacteria to cells and to syn-
chronize infections. Infected cells were then incubated at 37 °C with 5% CO2 for different times. For quantification 
of live bacteria (extracellular and intracellular), external non-adherent bacteria were removed by washing four 
times with PBS, and human cells were then disrupted by addition of 100 µl Triton X-100 (1% in PBS) per well. 
To determine if A. baumannii is able to survive inside neutrophils after phagocytosis, strain A. baumannii ATCC 
19606T was selected. The MIC of gentamicin for this strain was previously determined37. Cells were infected for 
2 h, washed with PBS, and the culture medium was replaced by medium containing 200 µg ml−1 of gentamicin 
(Gibco). Cells were incubated for a further 2 h, and lysed as described before. After this time, number of putative 
viable intracellular bacteria was counted. To do this, serial dilutions of the disrupted mixture were plated onto 
BA and incubated for 48 h at 37 °C. Growth of 3 Acinetobacter strains in presence or absence of neutrophils was 
monitored during 4 h. Viability/growth of Acinetobacter was calculated as the average of the total number of CFUs 
per total initial inoculum and expressed as a percentage. Quantitative phagocytosis experiments and growth 
experiments were repeated at least four times.

Incubation with cytochalasin D. Neutrophils were incubated with the actin-cytoskeleton inhibitor cyto-
chalasin D (5 µg ml−1) (Sigma) for 30 min before the bacteria were added. Neutrophils were then infected for 3 h 
as described for the immunofluorescence assays.

Immunofluorescence assays. Cells were placed in 24-well tissue culture plates containing round glass 
coverslips. Bacteria were cultured as described above. Infected monolayers were incubated at 37 °C with 5% CO2 
for different times (from 30 min up to 4 h). Cells were washed four times and fixed with cold paraformaldehyde 
(3.2% in PBS) for 20 min at room temperature. Then, cells were permeabilized with Triton X-100 (0.1% in PBS) 
for 5 min at RT and washed five times with PBS. Atto-488 phalloidin (Sigma), which binds polymerized F-actin, 
was used to identify actin filaments and fibers. Differential double immunofluorescent labelling of Acinetobacter 
allowed extracellular bacteria to be differentiated from intracellular bacteria. For double immunofluorescence 
assays, strains A. baumannii ATCC 19606T and A. pittii LMG 10559 were used to produce polyclonal sera as 
previously described40. Antiserum was collected 8 weeks after the first boost, processed and stored using standard 
protocols40. Histones in NETs were stained with a rabbit polyclonal anti-histone H3 antibody (Abcam). Specific 
human neutrophil elastase was stained with an anti-neutrophil elastase rabbit monoclonal antibody (Abcam). 
Secondary antibodies conjugated to Alexa Fluor 594 or Alexa Fluor 488 goat anti-rabbit IgG were purchased from 
Invitrogen. After infections, coverslips were mounted on glass slides with Fluoroshield mounting medium con-
taining DAPI (Sigma Aldrich) to stain double-stranded DNA. All preparations were examined with a Nikon A1R 
confocal scanning laser microscope equipped with 403 nm, 488 nm and 561 nm lasers. Images were captured at 
random with a ×20 Plan-Apo 0.75 NA, ×40 Plan-Fluor 1.3 NA or ×100 Apo-TIRF 1.49 NA objectives, and pro-
cessed using the NIS-Elements 3.2 software. All immunofluorescence experiments for each strain were repeated 
with neutrophils from at least three different blood samples.

Assessing Bacterial Viability inside neutrophils with Live/Dead staining. Bacterial viability inside 
neutrophils was determined by using the BacLight Live/Dead bacterial viability kit (Molecular Probes Inc.). Live/
Dead Staining was performed in presence of 0.1% saponin for 20 min at 1 h, 2 h, 3 h and 4 h post-infection. A 
series of optical sections was obtained with a Nikon A1R confocal scanning laser microscope (CLSM); the excita-
tion wavelengths were 488 nm (green) and 561 nm (red), and 500- to 550-nm and 570- to 620 nm emission filters 
were used, respectively. Images were captured at random with a 100× Apo TIRF (numerical aperture [NA], 1.49) 
objective. Reconstructions of confocal sections were assembled using NIS-Elements software, version 3.2.
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Time-lapse fluorescence microscopy. Time-lapse microscopy was carried out on a Nikon Eclipse 
Ti-E microscope (Nikon), equipped with a PlanFluor 20–40 × 0.6NA objective (Nikon) and a CO2 incubator. 
Neutrophils cells were seeded in 6-well plates (Nunc), in coated 4-well µ-slides (Ibidi, Martinsried, Germany) 
or in 24-well plates containing coverslips and infected as described before. NucBlue (one drop/well, Molecular 
Probes) or 10 µM SYTOX Green were added to each well to stain nuclei. Cells were infected as described before, 
and images were collected from 30 min up to 120 min post-infection every 2 min (NucBlue) or from 40 min up to 
190 min post-infection every 1.5 min (SYTOX Green) with an ORCA- R2 CCD camera (Hamamatsu) powered 
by Nis Elements 3.2 software. For NucBlue, a 375–390 nm excitation, 420–490 nm emission filter was used and for 
SYTOX Green, a 485–520 nm excitation, 521/25 nm emission filter was used. Individual time-lapse frames were 
imported to the open source image analysis software, ImageJ (http://rsbweb.nih.gov/ij).

NETosis assay. In separate experiments, we used a NETosis assay kit (Cayman Chemical) to deter-
mine the activity of NET-bound neutrophil elastase, according to manufacturer’s instructions. The assay 
is based on the enzymatic activity of neutrophil elastase in the culture medium that has been released from 
NETs through the action of S7 Nuclease. A colorimetric assay employing a specific elastase substrate 
(N-methoxysuccinyl-Ala-Ala-Pro-Val p-nitroanilide) was used after washing away non-NET associated elastase, 
as to measure only NET-associated elastase activity. The 5 substrate is selectively cleaved by elastase to give a 
4-nitroaniline product that absorbs light at 405 nm. The concentration of neutrophil elastase was measured by 
optical densitometry in a Multiskan FC microplate reader (Thermo Fisher).

Citrullinated Histone H3 assay. Quantitative determination of citrullinated histone was made using an 
ELISA Kit (citrullinated histone H3 ELISA kit, Cayman Chemical) according to manufacturer’s instructions. The 
concentration of citrullinated H3 was measured by optical densitometry at 450 nm in a Multiskan FC microplate 
reader (Thermo Fisher).

Quantification of NET-DNA. Neutrophils were left untreated, treated with PMA (100 nM) or infected with 
Acinetobacter strains for 4 h. Wells containing infected cultures and controls were then treated with DNAse I 
(Sigma Aldrich) for 15 min at RT. The reaction was stopped with 0.5 M EDTA and cultures were centrifuged for 
10 min at 8,000 × g. 150 µl supernatants from each well were transferred in triplicate into black 96-well plates 
(Thermo Scientific™). SYTOX Green was added (10 µM) to each well for 15 min and then fluorescence was 
quantified with excitation/emission wavelengths of 485/535 nm using a Synergy™ HTX Multi-Mode Microplate 
Reader (Biotek). All data were derived from three independent experiments. Statistical analysis of the data 
was carried out with the paired two-tailed Student t-test. A p-value less than 0.05 was considered statistically 
significant.

Cytotoxicity of bacterial extracellular products. To determine the cytotoxic potential of the ECPs 
present in Acinetobacter culture supernatants, bacteria were grown on LB or BHIB for 24 h and collected by 
centrifugation at 3,000 rpm for 15 min at RT. The supernatants were sterilized via membrane filtration (0.22 µm, 
Millipore) and used immediately to challenge human neutrophils plated at density of 2 × 104 cells/well. ECPs 
were added directly to the cell culture medium at different volumes (100–300 μl, each in duplicate) and cells were 
incubated for periods up to 24 h and processed for immunofluorescence. Control cultures were incubated with 
the same volumes using fresh bacterial culture medium.

Scanning Electron Microscopy. Coverslips containing infected neutrophils were fixed in ice-cold 3% glu-
taraldehyde for 20 min at 4 °C. Samples were dehydrated with a graded ethanol series, dried by the critical point 
method, coated with gold in a Fine coat ion sputter JFC-1100 226 (JEOL, Ltd), and observed with an Inspect S 
microscope (FEI Company) working at 25 kV.

Isolation and differentiation of macrophages from human blood. Human monocyte-derived mac-
rophages (HMDM) were isolated from the peripheral blood of healthy donors as previously described. Briefly, 
blood was layered at a ratio of 2:1 (blood/Ficoll medium) on Ficoll Histopaque-1077 (Sigma) in 15 ml centrifuge 
tubes and spun for 30 min at 2000 rpm in an Allegra X-22R centrifuge (Beckman Coulter). The layer contain-
ing the peripheral blood mononuclear cells was collected and then resuspended in 15 ml of PBS, and recen-
trifuged for 10 min at 1000 rpm. After two washes in PBS, cells were resuspended in DMEM containing 10% 
FBS, L-Glutamine and 100 units ml−1 penicillin and 100 mg ml−1 streptomycin on 12 mm diameter coverslips 
in 24-well plates. Non-adherent cells were removed after 4 h. The cells were subsequently cultured in cell culture 
medium containing 50 ng ml−1 granulocyte macrophage colony stimulating factor (GM-CSF) (Sigma Aldrich) in 
an atmosphere containing 5% CO2. Cultures were fed daily, and infection experiments were performed 10 days 
after the peripheral blood was collected. Infections were performed with MOI of 100:1:1 (bacteria/neutrophil/
macrophage) ratio.

References
 1. Clark, N. M., Zhanel, G. G. & Lynch, J. P. 3rd. Emergence of antimicrobial resistance among Acinetobacter species: a global threat. 

Curr Opin Crit Care 22, 491–499 (2016).
 2. Lahmer, T. et al. Acinetobacter baumannii sepsis is fatal in medical intensive care unit patients: six cases and review of literature. 

Anaesth Intensive Care 42, 666–668 (2014).
 3. Greene, C., Vadlamudi, G., Newton, D., Foxman, B. & Xi, C. The influence of biofilm formation and multidrug resistance on 

environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am J Infect Control 44, e65–71 (2016).
 4. Espinal, P., Marti, S. & Vila, J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect 

80, 56–60 (2012).

http://rsbweb.nih.gov/ij


www.nature.com/scientificreports/

1 0ScIeNtIfIc RePoRts | 7:4571 | DOI:10.1038/s41598-017-04870-8

 5. Vila-Farres, X. et al. In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter 
baumannii. Clin Microbiol Infect 18, 383–387 (2012).

 6. Antunes, L. C., Imperi, F., Minandri, F. & Visca, P. In vitro and in vivo antimicrobial activities of gallium nitrate against multidrug-
resistant Acinetobacter baumannii. Antimicrobial agents and chemotherapy 56, 5961–5970 (2012).

 7. Yamamoto, M. et al. Regional dissemination of Acinetobacter species harbouring metallo-beta-lactamase genes in Japan. Clin 
Microbiol Infect 19, 729–736 (2013).

 8. Pagano, M. et al. Emergence of NDM-1-producing Acinetobacter pittii in Brazil. Int J Antimicrob Agents 45, 444–445 (2015).
 9. Kamolvit, W., Derrington, P., Paterson, D. L. & Sidjabat, H. E. A case of IMP-4-, OXA-421-, OXA-96-, and CARB-2-producing 

Acinetobacter pittii sequence type 119 in Australia. J Clin Microbiol 53, 727–730 (2015).
 10. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176, 231–241 (2007).
 11. Brinkmann, V. & Zychlinsky, A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5, 577–582 (2007).
 12. Standish, A. J. & Weiser, J. N. Human neutrophils kill Streptococcus pneumoniae via serine proteases. J Immunol 183, 2602–2609 (2009).
 13. Kumar, V. & Sharma, A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol 10, 1325–1334 (2010).
 14. Greenlee-Wacker, M., DeLeo, F. R. & Nauseef, W. M. How methicillin-resistant Staphylococcus aureus evade neutrophil killing. Curr 

Opin Hematol 22, 30–35 (2015).
 15. Voyich, J. M. et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol 

175, 3907–3919 (2005).
 16. Johnson, M. B. & Criss, A. K. Resistance of Neisseria gonorrhoeae to neutrophils. Front Microbiol 2, 77 (2011).
 17. Kobayashi, S. D. et al. Phagocytosis and Killing of Carbapenem-Resistant ST258 Klebsiella pneumoniae by Human Neutrophils. J 

Infect Dis 213, 1615–1622 (2016).
 18. Silva, M. T. When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and 

cooperative partners of a myeloid phagocyte system. J Leukoc Biol 87, 93–106 (2010).
 19. Kaufmann, S. H. & Dorhoi, A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 44, 476–491 (2016).
 20. Rosen, H. Editorial: of mice and men–yet again. J Leukoc Biol 94, 210–212 (2013).
 21. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J Immunol 172, 2731–2738 (2004).
 22. Bhuiyan, M. S. et al. Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on 

neutrophil chemotaxis. Proc Natl Acad Sci USA 113, 9599–9604 (2016).
 23. Nordenfelt, P. & Tapper, H. Phagosome dynamics during phagocytosis by neutrophils. J Leukoc Biol 90, 271–284 (2011).
 24. Kamoshida, G. et al. Acinetobacter baumannii escape from neutrophil extracellular traps (NETs). J Infect Chemother 21, 43–49 (2015).
 25. Kamoshida, G. et al. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through 

interleukin-8. J Leukoc Biol 100, 1405–1412 (2016).
 26. Breslow, J. M. et al. Innate immune responses to systemic Acinetobacter baumannii infection in mice: neutrophils, but not 

interleukin-17, mediate host resistance. Infect Immun 79, 3317–3327 (2011).
 27. van Faassen, H. et al. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in 

mice. Infect Immun 75, 5597–5608 (2007).
 28. Guo, B. et al. Quantitative impact of neutrophils on bacterial clearance in a murine pneumonia model. Antimicrobial agents and 

chemotherapy 55, 4601–4605 (2011).
 29. Surewaard, B. G. et al. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol 

15, 1427–1437 (2013).
 30. Kress, H. et al. Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proc Natl Acad Sci 

USA 104, 11633–11638 (2007).
 31. Lu, T., Kobayashi, S. D., Quinn, M. T. & Deleo, F. R. A NET Outcome. Front Immunol 3, 365 (2012).
 32. Menegazzi, R., Decleva, E. & Dri, P. Killing by neutrophil extracellular traps: fact or folklore? Blood 119, 1214–1216 (2016).
 33. Naccache, P. H. & Fernandes, M. J. Challenges in the characterization of neutrophil extracellular traps: The truth is in the details. 

European journal of immunology 46, 52–55 (2016).
 34. Konstantinidis, T. et al. Immunomodulatory Role of Clarithromycin in Acinetobacter baumannii Infection via Formation of 

Neutrophil Extracellular Traps. Antimicrobial agents and chemotherapy 60, 1040–1048 (2015).
 35. Chertov, O. et al. Identification of human neutrophil-derived cathepsin G and azurocidin/CAP37 as chemoattractants for 

mononuclear cells and neutrophils. J Exp Med 186, 739–747 (1997).
 36. Mircescu, M. M., Lipuma, L., van Rooijen, N., Pamer, E. G. & Hohl, T. M. Essential role for neutrophils but not alveolar macrophages 

at early time points following Aspergillus fumigatus infection. J Infect Dis 200, 647–656 (2009).
 37. Lazaro-Diez, M. et al. Acinetobacter baumannii and A. pittii clinical isolates lack adherence and cytotoxicity to lung epithelial cells 

in vitro. Microbes Infect 18, 559–564 (2016).
 38. Ocampo-Sosa, A. A. et al. Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa 

isolated from patients with bacteremia in a Spanish multicenter study. Antimicrobial agents and chemotherapy 56, 1703–1713 (2012).
 39. Kuhns, D. B., Long Priel, D. A., Chu, J. & Zarember, K. A. Isolation and Functional Analysis of Human Neutrophils. Curr Protoc 

Immunol 111(7.23), 21–16 (2015).
 40. Ramos-Vivas, J. et al. Rhodococcus equi human clinical isolates enter and survive within human alveolar epithelial cells. Microbes 

Infect 13, 438–446 (2011).

Acknowledgements
M.L.-D. holds a contract from the Instituto de Investigación Sanitaria Valdecilla IDIVAL and Universidad de 
Cantabria (PREVAL16/05). S.R.-S. holds a contract from the Instituto de Investigación Valdecilla IDIVAL. 
J.R.-V. holds a Miguel Servet II contract for Young Researchers from the Instituto de Salud Carlos III, Spain. 
The authors thank Dr. Fidel Madrazo (Electron Microscopy Unit, Technology Support Services, IDIVAL) for 
helping with confocal microscopy and live cell imaging. J.R.-V. acknowledges the receipt of a Sociedad Española 
de Enfermedades Infecciosas y Microbiologı́a Clı́nica (SEIMC) fellowship. J.R.-V. thanks Inés Montes and 
Adrián Fernández for technical assistance. J.R.-V. was supported by the Spanish Instituto de Salud Carlos III, 
Spain (grants PI13/01310 and PI16/01103). Research in our laboratories is supported by Plan Nacional de 
I + D + i 2008–2011 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación 
Cooperativa, Ministerio de Economía y Competitividad, Spanish Network for Research in Infectious Diseases 
(REIPI RD12/0015) - co-financed by European Development Regional Fund “A way to achieve Europe” ERDF. 
The funders had no role in study design, data collection and interpretation, or the decision to submit the work 
for publication.



www.nature.com/scientificreports/

1 1ScIeNtIfIc RePoRts | 7:4571 | DOI:10.1038/s41598-017-04870-8

Author Contributions
J.R.V. conceived the experiments, J.R.V. and D.S.S. designed the experiments, M.L.D., I.C.G., S.R.S., C.L., D.M., 
A.F., F.A., A.O.S., J.M.I. and J.R.V. performed the experiments, M.L.D., I.C.G., J.N., F.A., J.M.I. L.M.M. and J.R.V. 
analyzed the data, A.O.S., D.S.S., J.N., F.A., J.M.I. contributed with reagents/materials/analysis tools, J.R.V. wrote 
the paper. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-04870-8
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-04870-8
http://creativecommons.org/licenses/by/4.0/

	Human neutrophils phagocytose and kill Acinetobacter baumannii and A. pittii
	Results
	Phagocytosis and clearance of Acinetobacter strains by human neutrophils. 
	Production of neutrophil extracellular traps. 
	Infection of macrophage-neutrophil co-cultures. 

	Discussion
	Methods
	Bacterial strains and growth conditions. 
	Neutrophil isolation from whole human blood. 
	Phagocytosis experiments. 
	Incubation with cytochalasin D. 
	Immunofluorescence assays. 
	Assessing Bacterial Viability inside neutrophils with Live/Dead staining. 
	Time-lapse fluorescence microscopy. 
	NETosis assay. 
	Citrullinated Histone H3 assay. 
	Quantification of NET-DNA. 
	Cytotoxicity of bacterial extracellular products. 
	Scanning Electron Microscopy. 
	Isolation and differentiation of macrophages from human blood. 

	Acknowledgements
	Figure 1 Contact and phagocytosis of Acinetobacter by human neutrophils.
	Figure 2 Live/Dead staining in unfixed neutrophils.
	Figure 3 Capture and phagocytosis of Acinetobacter by human neutrophils.
	Figure 4 NETs production by human neutrophils infected with Acinetobacter.
	Figure 5 Quantification of elastase, citrullinated histone H3 and extracellular DNA using SYTOX Green.
	Table 1 Acinetobacter strains used in this study.




