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Study on Optimal Selection of 
Wavelet Vanishing Moments for 
ECG Denoising
Ziran Peng  1,3 & Guojun Wang2

The frequency characteristics of wavelets and the vanishing moments of wavelet filters are both 
important parameters of wavelets. Clarifying the relationship between the wavelet frequency 
characteristics and the vanishing moments of the wavelet filter can provide a theoretical basis for 
selecting the best wavelet. In this paper, the frequency characteristics of wavelets were analyzed by 
mathematical modeling, the mathematical relationship between wavelet frequency characteristics 
and vanishing moments was clarified, the optimal wavelet base function was selected hierarchically 
according to the amplitude frequency characteristics of ECG signal, and an accurate notch filter was 
realized according to the frequency characteristics of the noise. The experimental results showed that 
the optimal orthogonal wavelet analysis for the ECG signals with different frequency characteristics 
could make the high frequency energy distribution sparser, and the method proposed in this paper 
could effectively preserve the singularity of the signal and reduce the signal distortion.

Electrocardiogram (ECG) signals collected from the surface of the human body inevitably contain noise, such 
as from EMG interference and power frequency interference. Removal of this noise is required for further anal-
ysis of ECG signals. At present, digital filtering algorithms used with ECG mainly include EMD decomposition, 
wavelet transform, and other methods. In ref. 1, Sharmila and P. Geethanjali proposed an adaptive ECG signal 
denoising method2. Ensemble empirical mode decomposition (EEMD) and a threshold-based genetic algorithm 
(GA) are used to remove mixed noise by using a similarity measurement method based on a probability density 
function. The experimental results in this paper show that this method has certain advantages, however, adaptive 
threshold estimates are based on probability and statistics and, therefore, contain not only the complexity of the 
calculation but also the uncertainty of the results. Reference 3 proposes an IMF threshold technique based on 
GAs. The experimental results show that this method is superior to the traditional method based on EMD noise 
reduction. In ref. 4, an ECG signal enhancement technique is proposed for the elimination of noise components. 
By eliminating ECG signal noise in the time domain, the signal-to-noise ratio (SNR) can be improved while 
maintaining a lower RMSE (root mean square error). The methods discussed in refs 3 and 4 do not consider the 
characteristics of the signal itself, so it is possible to eliminate singular points in the signal while denoising. The 
EMD-based algorithm has some limitations, and its practical application is limited. At present, wavelet trans-
form is widely used in biomedical engineering. Reference 5 proposes a method for extraction of ECG signals 
based on wavelet analysis. Firstly, CWT (continuous wavelet transform) is performed on signals obtained from 
human abdomen and chest regions, and the decomposition coefficient is processed by an LMS algorithm. The 
correlation of the processed wavelet coefficient is then calculated. Experimental results show that this method is 
superior to the EMD algorithm in noise immunity. However, there is no further discussion on how to choose the 
wavelet basis function and how to deal with it hierarchically. In recent literature, the main methods of dealing 
with physiologically-based digital signals are the classical wavelet transform and lifting format wavelet transform. 
However, most of the methods using wavelet transform involve specific parameters and features of wavelets, e.g., 
wavelet vanishing moments, wavelet support length, etc. The types of wavelet basis used, as well as other param-
eters, are mainly determined by experience and experiment, and there is a lack of systematic theoretical analysis. 
Based on the analysis of vanishing moment and frequency characteristics of the wavelet filter, this paper analyze 
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how to select and use the appropriate wavelet basis function and how to filter the noise of the specific frequency 
characteristic in the process of wavelet transform6.

Wavelet vanishing moments and optimal wavelet basis selection
For ECG signal analysis and processing by wavelet transform, there are several purposes: denoising, feature detec-
tion, and data compression. Whatever the purpose, it is hoped that, after the wavelet decomposition of the ECG 
signal, the signal energy can achieve the maximum concentration in low-pass components, and the energy of 
high-pass components can achieve maximum thinning7. According to the current literature, under the premise 
of not considering the computational complexity of wavelet transform, it is generally thought that the higher van-
ishing moment of the wavelet can produce a better effect8. Some other articles contend that the effect of high-pass 
component thinning and the shape of the wavelet scale function are related to the similarity of the shape of the 
signal9, 10. This paper provides an in-depth study on this issue and offers an answer.

Wavelet vanishing moment and filter amplitude-frequency characteristics. For any N, there are 
2N non-zero real-scale coefficients −h h h, N0 1 2 1, which can constitute a [0, 2N−1] scale function and wavelet 
function. With an appropriate choice of these coefficients, the 2N−1 order polynomial can be written as: 

= +H z z Q z( ) ( 1) ( )N
N , where Q(z) is the N−1 order polynomial, and Q(−1) ≠ 0. HN(z) is the N-order vanishing 

moment, and is subject to Taylor expansion at z = −1:
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The Fourier transform is a special case of the Laplace transform in imaginary axis s = jΩ, and thus is mapped as a 
unit circle in the Z-plane. The Z-transform of the sequence H on the unit circle is equal to the ideal Fourier trans-
form of the sampled signal10, 11. Let the digital frequency (ω) be the parameter of the unit circle in the Z-plane. Ω 
is the angle of the Z-plane, denoted as =A H
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Theorem 1: The order of the vanishing moment of an orthogonal wavelet is proportional to its corresponding 
filter order.
Proof: For ω ≈
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filter slope at the edge of the transition band is: ≈ω
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1. This shows that the larger the vanishing moment, 

the steeper the slope of the edge in the transition band of the corresponding filter, and the higher the order of the 
filter Figure 1 shows the amplitude-frequency characteristics of orthogonal wavelet high-pass filters with vanish-
ing moments of 2, 4, 6, 8, 10, and 12.
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Selection of wavelet for ECG signal processing. It can be deduced from the above cases that the low 
and high frequency energies after wavelet transform are related to the frequency characteristics of the signal and 
also to the vanishing moments of the wavelet. For a signal whose frequency is stable, there must be a wavelet with 
a vanishing moment of N, so that the high-frequency energy after the wavelet transformation is the lowest12, 13. 
Therefore, the following theorem can be introduced:

Theorem 2: The signal f(x) is a periodic signal with stable frequency characteristics. For a wavelet series W with 
order vanishing moments from N1 to N2, there exists a unique wavelet Wk (vanishing moment k: N1kN2) such 
that its energy is minimized after wavelet transform.

Proof: According to the Mallat principle, let xj(k), dj(k) be a discrete approximation coefficient in multiresolution 
analysis where h0(k), h1(k) are two filters that satisfy the orthonormal two-scale difference equation. Then, for 
Xj(k), dj(k), there are recursive relations as follows:
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If = =X z Z x n H z Z h n( ) [ ( )], ( ) [ ( )], then, in accordance with the Fourier convolution theorem:
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Figure 1. Amplitude-frequency characteristics of the orthogonal wavelet high pass filter with vanishing 
moments N.
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In general, for the signal processing, there are minimum requirements on the order of the vanishing moments 
in the filter14. The reason being that, the lower the vanishing moments, the more signal detail is lost during pro-
cessing and the greater the distortion. If the lower limit of the vanishing moments is given, it can be understood 
from Theorem 2 that for a given a signal and set of wavelets with given frequency characteristics, there must be 
an optimal wavelet for minimizing the energy contained in the processed high-pass component. This facilitates 
the subsequent filtering process and the signal compression process. Real-time ECG signal Fourier transform 
is as shown in Fig. 2a, and we can clearly find the corresponding frequency characteristics, as shown in Fig. 2b.

The real-time ECG signals are decomposed by four-order, six-order, eight-order and ten-order orthogonal filters, 
respectively, and the corresponding high-pass components are shown in Figs 3b,d and 4b,d. As shown in Table 1, 
the energy of the decomposed high-pass signal is smallest when the wavelet vanishing moment N = 6. It can be seen 
that the orthogonal wavelet with the vanishing moment N = 6 is the best choice when the first layer is decomposed.

According to Theorem 2, prior to the processing of the ECG signal, an optimal wavelet should be selected to achieve 
filtering. There should be a complete wavelet set, where the wavelet should have a lowest vanishing moment such as 
four-order, until the fast wavelet transform can support up to the highest order, such as 24-order. If the vanishing 
moment is too low, then it will affect the accuracy of signal processing; if the vanishing moment is too high, the calcula-
tion will be too complex15. The high-frequency filter bank of each wavelet is extended by zero-padding (length Γ), and 
then Fourier-transformed. The typical 2-cycle ECG signal (length Γ) is taken as a sample, and is Fourier-transformed. 
According to Formula (12), the total energy of the high-pass component corresponding to the vanishing moment 
wavelet is obtained, and then the wavelet with the smallest energy is selected as the optimal choice.

Hierarchical processing in ECG signal wavelet transform
A filter with a different vanishing moment is selected according to the frequency characteris-
tics of the signal in each layer. After a layer of wavelet is decomposed, low-pass components enter a new 
layer of wavelet transform. In this wavelet decomposition, should the original filter or the more matched filter for 
processing be used? It is clear that the sampling frequency is reduced by a factor of two, and so is the frequency of 
the signal after the bisectional extraction. However, since the processed signal contains only the low-pass portion 
of the original signal, there is a significant difference in the spectral distribution between layers j + 1 and j. In 
order to let the high-frequency components contain less energy, we should reselect an optimally matched filter 
for processing. Figure 5b shows the frequency characteristics of the original signal. Figure 5d shows frequency 
characteristics of low-frequency signals after wavelet decomposition.

Figure 2. Real-time ECG image (a), and its frequency characteristics (b).
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As can be seen from Fig. 5, there is a clear difference between the original and filtered frequency distributions. 
In this paper, the decomposed low-pass signals are re-decomposed through the filter with vanishing moments of 
4, 6, 8, and 10. The high-pass components after such decomposition are shown in Fig. 6a,b,c and d, respectively. It 

Figure 3. High frequency components of ECG signals after 4- (above) and 6-order vanishing moments (below).

Figure 4. High frequency components of ECG signals after 8- (above) and 10-order vanishing moments 
(below).
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can be seen that there is a significant difference. At N = 4, the total energy of the decomposed high-pass compo-
nent is the smallest (the specific data are shown in Table 2). This indicates that, in the wavelet transform process, it 
is necessary to choose wavelets with different vanishing moments to deal with the different levels of wavelet trans-
form, so as to realize the optimization of energy distribution. In general, for the first and second layers, different 
filter banks should be used and the rest of the layers can be determined according to need.

Wavelet transform to remove power frequency interference. One of the main sources of noise is 
50 Hz frequency interference, which is generally removed prior to further signal analysis and processing. If using 
Fourier-transform for the mathematical signal processing, this problem can easily be addressed by setting the 
corresponding frequency component to 0. However, the problem of how to use wavelet transform for frequency 
notching has not been discussed in the literature. The general practice is to set the threshold for high-frequency 
components for filtering, but the desired accuracy of the results is difficult to achieve16, 17.

If the wavelet transform is made for signal f (x) with sampling frequency P0, then the high-pass component 
will contain the frequency component from 





,P P
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These two points are also a transition area from low frequency to high frequency. From the Fourier convolution 
theorem, we can see that the effect of G(ω), H(ω) on the signal is equivalent to the transfer function in the analysis 
of the filter circuit. In the following, we further analyze the suppression factor of the signal at these two critical 
points:
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. For any given positive ε close to 0, N0 is always present, such that:

DBN DB4 DB6 DB8 DB10

= ∑E di
2 0.316127 0.171010 0.203272 0.227824

Table 1. Total energy of the high frequency system after wavelet DBN decomposition.

Figure 5. Low frequency component and frequency characteristics of ECG signal after DB6 filter.
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So, when the appropriate vanishing moment (N) is taken, it is possible to make the suppression factor of the 
critical point infinitely small, so that the gain of the signal outside the region of this point is close to zero, theoret-
ically equivalent to the truncated state.

Let the sampling frequency of the signal at P0, which contains the noise at the frequency of =Ps
P
2
0 . Suppose 

that the frequency tolerated in denoising through notching is: ∆− + ∆P P P P[ , ]s s , where ΔP is the frequency 
bandwidth increment. After a wavelet transform, the high-pass component contains the frequency component 
from 





,P P
4

3
4

0 0 ; and the low-pass component contains ∪











P0, ,P P
4

3
4 0

0 0 . If this time the band of the high-pass com-
ponent is wide, and if this part of the signal is removed by setting at zero, then, undoubtedly, the effective fre-
quency will be removed; or if there is a cutoff according to the threshold, noise will not be filtered completely. 
Both of these conditions can cause signal distortion. It is clear that the high-frequency component can be contin-
uously decomposed by the wavelet, and the band of the high-frequency component is further narrowed and 
gradually approximated to − ∆ + ∆P P P P[ , ]s s . Obviously, the higher the order of the filter used for the notch 
processing, the smaller the overlapping region of high-pass and low-pass frequencies, the steeper the filter fre-
quency curve, and the more concentrated the energy18.

In order to facilitate the calculation, this paper uses the normalized frequency as the unit. The normalized 
frequency R of the actual frequency Pt in the frequency interval [P1, P2] is defined as follows:

=
−
−

R P P
P P (18)

t 1

2 1

Any frequency range [P1, P2] can be expressed as a real number domain [0, 1] after the normalized processing. 
It can be known from Shannon’s Theorem that the sampling frequency should be no less than twice of the maxi-
mum frequency in analog signal spectrum. So the normalized frequency R should be in the range of [0, 0.5] when 
the sampling signal is directly filtered and [0, 1] for the second layer and above filtration.

Figure 6. High frequency component of the ECG signal through the N-order vanishing moment filter.

DBN DB4 DB6 DB8 DB10

= ∑E di
2 1.841969 2.00026 1.965258 1.862453

Table 2. Total energy of the high frequency coefficients after wavelet DBN decomposition.
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Theorem 3, Let the range of normalized frequency of Signal S is [0, Pt], for normalized frequency ∈P P[0, ]s t , if 
≈ . ± ∆⁎P P2 0 5 ,s

N  Then the signal of the frequency interval D can be extracted by band-pass filtering from [P1, 
P2] by N wavelet transform.

Proof: Perform a wavelet transform on Signal S, SD represents the transformed low-pass component, and SH 
represents the transformed high-pass component; the following operations can be carried out as discussed 
above:

If . − ∆ ≤ ≤ . + ∆P P P0 5 0 5s , it indicates ⊆D DH , and returns the result DH, and the algorithm ends.
If Ps < 0.25, it indicates ⊆D SD, and needs to perform a wavelet transform on Signal SD. = ∆ = ∆∗ ∗P P P P2 , 2s s . 

Repeat the algorithm.
If . < < .P0 25 0 75s , it indicates ⊆D SH , and needs to perform a wavelet transform on Signal sD. 

= − . ∆ = ∆∗ ∗P P P P2 ( 0 25), 2s s . Repeat the algorithm.
As shown in Fig. 7, the ECG signal has high frequency noise with a normalized frequency Freq = 0.4. Since 

0.25 < Freq < 0.75, the noise is distributed in the high frequency component. The high-pass component is set to 
zero to complete band-pass denoising, and the effect is shown in Fig. 8a. Because the bandwidth of denoising is 
[0.25, 0.75], many signal details are lost. The frequency characteristics of the denoised signal are shown in Fig. 8b. 
The component of the signal frequency is basically zero in [0.25, 0.75].

Therefore, there is a need for secondary filtering to implement band-pass denoising: the high-pass compo-
nent after the first filtering is decomposed by the wavelet; then, the low-pass component after the secondary 
decomposition contains the bandwidth [0.25, 0.40] and the high-pass component contains the bandwidth [0.375, 
0.500]. So, this part of the high-pass component is set to 0 to complete filtering. Afterwards, the two-part signal is 
recombined into the detail signal of the first layer, as shown in Fig. 9. The final filtering effect is shown in Fig. 8b. 
If ΔP = 0.100; the notching can be implemented in a very narrow area, thus preserving some of the key details of 
the high frequency signal.

Experimental result
Based on the above discussion, the two key steps of the wavelet-based denoising algorithm proposed in this paper 
are as follows: First, the amplitude-frequency characteristic of the ECG signal is analyzed to determine the wave-
let loss moment order, and on this basis, the optimal wavelet basis function is selected for different levels of wave-
let decomposition. Second, by analyzing the noise frequency characteristics, determining the level and coefficient 
of band-pass filter, so as to realize the fixed-point removal of noise in the process of wavelet decomposition. Ten 
sampling records (data of the first 10 minutes for each record) are selected from ECG ID database for a contrast 
experiment. The adaptive genetic algorithm based on EEMD (Genetic EEMD), the adaptive threshold denoising 
algorithm based on discrete wavelet transform (Threshold DWT) and the wavelet denoising algorithm which is 
optimized by this paper (Proposed DWT) are applied for filtering processing. The filtering effect is evaluated from 
the aspects of filtering time consumption, denoising effect, signal loss and so on. To explain the effective energy 
loss procedure after signal denoising, mean squared error (MSE) was used to explain the difference between the 
denoised signal and the original signal. The smaller the MSE, the smaller the signal loss, the better the signal 
reduction effect. NSR (Noise Suppression Ratio) is defined to reflect the noise suppression effect. The smaller NSR 
is, the better the denoising effect achieved16.

∑= −
=

MSE
N

y x1 ( )
(18)i

N

i i
1

2

Figure 7. ECG signal with high frequency noise and its frequency characteristics.
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From the experimental results shown in Table 3, the Proposed DWT algorithm is significantly superior to 
the other two representative denoising algorithms in terms of MSE, NSR and TIME. For the denoising effect, 
Proposed DWT has especially obvious advantages compared with Threshold DWT. For the CPU time consump-
tion, the optimistic algorithms save half the time of Genetic EEMD. Figure 10 illustrates the comparison of the 
results after denoising of the first 10 seconds of data recorded by Person_01/rec_1.

Conclusion
Although a classic method of processing an ECG signal is by using wavelet transform, there is still much con-
fusion about ECG signal processing with wavelet. For example, on the premise that wavelet supporting width 

Figure 8. Original ECG signals filtered once (a,b) and twice (c,d) through the band-pass filter.

Figure 9. Original ECG signals twice filtered through the band-pass filter.
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can be tolerated, is it true that the larger the order number of the vanishing moment, the more concentrated 
the energy generated when the signal is decomposed by the wavelet? How can we realize the precise filtering 
of ECG signal by wavelet transform and keep the singular point in the signal? In this paper, a quantitative 
analysis was performed to study the correlation between the vanishing moment and frequency characteristics 
of the wavelet, an optimal wavelet base function was selected based on the amplitude frequency characteristics 
of ECG signals, and wavelet bases of different orders were used to deal with different wavelet spaces. We also 
found that the accurate bandpass filtering could be realized in the process of wavelet transform according to 
the different frequency characteristics of noise, which effectively avoided the damage to the signal during the 
denoising process. Experimental results showed that the proposed wavelet transform with optimized parame-
ters had a remarkable effect on ECG signal denoising and has a strong practical significance, including the ECG 
monitoring watch developed by myself.

Threshold DWT Genetic EEMD Proposed DWT

MSE NSR TIME(us) MSE NSR TIME MSE NSR TIME

Person_01/rec_1 0.116 0.101 48.2 0.087 0.073 78.1 0.067 0.051 37.9

Person_02/rec_1 0.117 0.102 48.1 0.077 0.064 78.2 0.067 0.057 37.5

Person_03/rec_1 0.116 0.101 48.3 0.097 0.082 78.2 0.087 0.069 38.6

Person_04/rec_1 0.117 0.103 48.2 0.077 0.073 78.1 0.087 0.065 39.6

Person_05/rec_1 0.115 0.102 48.1 0.087 0.089 78.3 0.077 0.073 37.4

Person_06/rec_1 0.116 0.101 48.2 0.077 0.079 78.2 0.087 0.065 39.7

Person_07/rec_1 0.117 0.101 48.3 0.077 0.068 78.1 0.067 0.059 37.9

Person_08/rec_1 0.116 0.103 48.2 0.097 0.097 78.1 0.077 0.082 36.4

Person_09/rec_1 0.115 0.101 48.3 0.077 0.085 78.3 0.067 0.078 37.6

Person_010/rec_1 0.116 0.103 48.1 0.097 0.077 78.2 0.077 0.069 38.5

average 0.1161 0.1018 48.2 0.085 0.0787 78.18 0.076 0.0668 38.11

Table 3. Comparison of the effect of three different denoising algorithms.

Figure 10. Comparison of denoising results with different denoising algorithms. A is the original ECG, B is 
the ECG containing noise, C is the ECG after processed by Threshold DWT, D is the ECG processed by Genetic 
EEMD, and E is the ECG processed by the algorithm in the paper.
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