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Effect of impurity resonant states 
on optical and thermoelectric 
properties on the surface of a 
topological insulator
Min Zhong, Shuai Li, Hou-Jian Duan, Liang-Bin Hu, Mou Yang & Rui-Qiang Wang

We investigate the thermoelectric effect on a topological insulator surface with particular interest in 
impurity-induced resonant states. To clarify the role of the resonant states, we calculate the dc and ac 
conductivities and the thermoelectric coefficients along the longitudinal direction within the full Born 
approximation. It is found that at low temperatures, the impurity resonant state with strong energy de-
pendence can lead to a zero-energy peak in the dc conductivity, whose height is sensitively dependent 
on the strength of scattering potential, and even can reverse the sign of the thermopower, implying the 
switching from n- to p-type carriers. Also, we exhibit the thermoelectric signatures for the filling process 
of a magnetic band gap by the resonant state. We further study the impurity effect on the dynamic 
optical conductivity, and find that the resonant state also generates an optical conductivity peak at the 
absorption edge for the interband transition. These results provide new perspectives for understanding 
the doping effect on topological insulator materials.

In the last decade, the discovery of topological insulators (TIs), such as Bi2Se3 and Bi2Te3, has triggered great inter-
est in condensed matter physics due to their promising applications1. The topology property of the insulating bulk 
band in TIs protects metallic surface states, which are remarkably hallmarked by linear Dirac energy dispersion 
and spin-momentum locking nature2–4, immune from the backscattering off non-magnetic impurities. These 
surface states offer a unique platform to investigate the robustness of Dirac points against perturbations.

In order to manipulate the Dirac electronic properties, knowledge of the doping behaviors is of critical impor-
tance since the introduction of impurities, especially magnetic impurities, is a most natural way to reveal the 
topological properties of Dirac points5. Doping with nonmagnetic or magnetic impurities has been extensively 
applied6–17. They can lift the prohibited backscattering6–10 by opening an energy gap at the Dirac point or form res-
onant states11–17. Nevertheless, some works14, 18–21 demonstrated that the Dirac node remains immune from mag-
netic perturbations, challenging the gapped results6–10. To reconcile these conflicting claims, Black-Schaffer et al.22 
theoretically suggested an interesting explanation that the resonance state induced by the non-magnetic potential 
can fill the energy gap generated by the magnetic potential. Subsequently, this interesting mechanism was verified 
experimentally23, where a dual nature of magnetic impurities was proposed. However, Sánchez-Barriga et al.24 
addressed an opposite scenario about the resonance behaviors. They experimentally observed a large band gap 
(about 200 meV) in spite of doping with nonmagnetic impurity and attributed it to the strong resonant scattering 
processes. Thus, the behaviors of resonant state of impurities become ambiguous. Moreover, the formation of 
zero-energy resonance greatly destroys the pristine Dirac linear dispersion in TIs, which perhaps can act as an 
alternative approach to control the Dirac electron properties though lacking of backscattering, instead of opening 
a gap by magnetic doping. The appearance of the zero-energy resonance in recent experiments13 and numeri-
cal results12 challenges the existed theory11 and quantum impurity models15, 17 are put forward. One can notice 
that these impurity effects are usually discussed in the electronic band structure or energy spectrum of TIs. It is 
expected that the related transport properties, especially the thermoelectric properties which receives relatively 
less attention, would let one understand the impurity roles more deeply.
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As we know, topological insulators are also good thermoelectric materials and so have attracted great inter-
est25–30. The thermoelectric transports depend strongly on not only the thermal activation but also on the impu-
rity scattering mechanism. By introducing disorders or holes in the Bi2Se3 material31–33, the thermoelectric figure 
of merit can be remarkably enhanced due to the contribution from the topologically protected conducting sur-
faces and the suppressed phonon thermal conductivity. Inversely, the thermoelectric transports can provide new 
insights into electronic transports and even extract the information not accessible for electrical conductance 
measurements. For instance, the thermoelectric power26 demonstrates the expected linear dependence in TIs. 
From the behavior of the transverse Peltier (or Nernst) conductivity at low temperatures, one can estimate the 
magnitude of the gap induced by time-reversal symmetry breaking and so be used to map the Berry phase struc-
ture34. Thermoelectric effects is also applied to detect the local spin-orbit interaction in graphene35. Employing the 
thermoelectric properties36, clear signatures of the topological surface states are extracted from the bulk states. In 
fact, the impurity-induced resonance leads to steep energy dependence of the electronic density of states, which 
would significantly affect the thermal properties. In graphene, the enhanced thermoelectric effect by resonant 
states was discussed37 and the information about impurity scattering can be extracted from the thermopower, 
either directly measured or extracted via Mott’s relation38.

In this paper, we focus on the influence of the impurity resonant state on electronic transport properties, 
where we calculate the dc and ac conductivities, the thermopower, and figure of merit. It is shown that although 
the scalar impurity cannot lead to the perfect backscattering, it can induce the resonant state and particle-hole 
asymmetry through skew scattering. The remarkable thermoelectric fingerprints manifesting impurity resonance 
are obtained. This paper is organized as follows. In Sec. II, a theoretical model is provided and the formula for 
thermoelectric coefficients are derived with impurity averaged Green’s function. We discuss the static dc trans-
ports in Sec. III and the dynamic ac transports in Sec. IV. A short summary is given in the last section.

Model and Method
We consider a TI surface doped with impurities, which are described as point-like potentials randomly distrib-
uted at the position rn and expressed in the framework of classic theory as σ δσ= ∑ − ⋅ −V Ur M r r( ) ( ) ( )im nr 0n

. 
Here U is a scalar potential while M = J〈S〉 is a magnetic component associated with average impurity spin 〈S〉 
and exchange coupling J, and σ〈σ0〉 is the vector of Pauli matrices (identity matrix). The Hamiltonian for the 
pristine surface state of TIs in the low-energy approximation is = ∑ †H c H ck( )TI s s TI sk k k  with

 µσ σ= − −H v k kk( ) ( ) , (1)TI F y x x y

where = ↑ ↓
† † †c c c( , )sk k k  is the creation operator of electrons with wave vector k = (kx,ky), and vF is the Fermi velocity. 

Diagonalizing the Hamiltonian gives the energy dispersion ε γ µ= −γ v kFk  with γ = ± referring to electron 
and hole bands, respectively.

The starting step for the calculation of transport properties is to obtain the impurity averaged Matsubara 
Green’s function G(k,iωn), which is given by the Dyson equation

ω ω ω ω= − Σ .−G i G i i G ik k k( , ) ( , )[1 ( ) ( , )] (2)n n n n0 0
1

Here, the bare fermion Green’s function in 2 × 2 spinor space is ω ω= −G i i Hk k( , ) 1/[ ( )]n n TI0  and its matrix 
elements are defined as ω = 〈 | 〉σσ

σ σ

′

′
†G i c ck( , )n k k0 . The self energy ∑(iωn) contributed by impurity scattering is 

calculated by using of the T-matrix approach15, 22, 39, and in the Born approximation up to first order in impurity 
concentration ni reads

ω σ ωΣ = − −i n V g i V( ) [ ( )] , (3)n i im n im0
1

which takes into account the multiple scattering of the electrons by a single impurity but neglects the effect of 
impurity correlations. In Equation (3), σ σ= − ⋅V U Mim 0  and
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with a cutoff energy Λ and a step function Θ(x). Proceeding the calculation for ∑(iωn), we can rewrite it in the 
Pauli matrix as

∑ω ω σ ω σΣ = Σ + Σ
=

i i i( ) ( ) ( ) ,
(5)

n n
j x y z

j n j0 0
, ,

where  a  sca lar  par t  ω ωΣ = − −i B U g U M( ) [ ( )( )]n0
2 2  and magnet ic  par ts  ωΣ =i BM( ) ,i n i  with 

ω ω= − − −B n g U g M{[1 ( ) ] ( ) }i
2 2 2 1 and M = |M| The self-energy is complex and energy-dependent, which will 

significantly modify the energy band structure or density of states as discussed below.
Substituting Eqs. (5) to (2), we rewrite the impurity averaged Green’s function as

∑ω ωσ= 
 + ⋅ 


γ

γ γ
=±

G i G ik n k( , ) 1
2

1 ( , ),
(6)

n nk

where we define a band-dependent Green’s function ω ω µ ω ε= 
 + − Σ − 

γ γ
−

G i i ik( , ) ( )n n n k0
1
 and an effective 

m o m e n t u m  u n i t e  v e c t o r  ω ε= Σγ γ
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= + Σ + Σ k v k vk ( / , / )x x F y y F  . Note that ∑z(iωn) directly opens a band gap while ∑0(iωn) modifies the chem-
ical potential μ.

With the impurity-averaged surface Green’s function derived above in hand, in this section we will calculate 
the thermoelectric coefficients. To proceed, we first define a current-current correlation function in the Matsubara 
representation ∫ τ τΠ Ω = −

β Ω τ
τ

†i d e T j j( ) ( ) (0)ij n
i

i j0
n , where τ is the imaginary time and Tτ is the time ordering 

operator. In the one-loop approximation and neglecting vertex corrections40, one can write it as

∑β
ν νΠ Ω = 


Ω + 


.i e Tr G i j G i i jk k k k( ) ( , ) ( ) ( , ) ( )

(7)
ij n

m
m i n m j

k

2

,

where β = k T1/ B  with T temperature and Matsubara fermion frequency ν π β= +m(2 1) /m . If one defines a 
spectral function A(k,ω) related to the Green’s function41 through ∫ω ω= ω

ω ω−∞

∞

−
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1
, Equation (7) can be 

reexpressed as
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where we have used40 ∑ =
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 and the Fermi distribution function 

ω ω µ= − + −n exp T( ) [ ([ ]/ ) 1]F
1. For static transports Ω = 0, inserting in Equation (8) the electric current oper-

ator = − ∂ ∂j e H kk( )/i
e

TI i or thermal current operator ω µ= − ∂ ∂κj H kk( ) ( )/i TI i, one can find the linear 
response functions from the imaginary part of correlation function40 δ

Π Ω → Ω + 
Ω−>

−
Ω

i ilim Im ( )ij n0
1 . As a 

consequence, when a temperature gradient is applied, all the thermoelectric coefficients can be computed with 
Lij

n, given by

∫
π ε ω

ω
ω µ ω=
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∂
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(9)ij
n n

ij

with the response kernels ω ω ω= ∑K Tr A j A jk k k k( ) [ ( , ) ( ) ( , ) ( )]ij i
e

j
e

k . Here we are interested in the longitudinal 
transports and the specific coefficients are, respectively, defined with the electric conductivity σ = e Lxx

2 0 , the 

Figure 1. Evolution of (a) real and imaginary parties of impurity self-energies ∑0(ω) and of (b) DOS with 
impurity potential U, where a resonant state is developed remarkably. (c) The position of DOS resonant peak as 
a function of U. (d) The electron spectrum function A(k, ω) as functions of k and ω for U = 0 (left side) and 
U = 1 (right side). The other parameters are Λ = = . = =T M v300, 0 01, 0, 1F , and ni = 0.01.
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thermopower = −S L eTL/xx xx
1 0 , and the figure of merit σ κ=ZT S T / el

2  where κ = −L L L T[ ( ) / ]/el xx xx xx
2 1 2 0  is the 

electron heat conductivity and the phonon contribution is ignored for simplicity.

Static DC transports. Impurity effect on transports for gapless topological surfaces. We begin our discus-
sions on thermoelectric properties in the dc limit Ω = 0. Since the impurity scattering affects the electron trans-
ports by generating the extra self-energy, it is necessary to know the energy dependence of the self-energy. First, 
we discuss the case of doping only with finite scalar potential U but the magnetic potential M = 0.

In Fig. 1(a) we plot the real and imaginary parties of the impurity self-energy ∑0(ω) as a function of energy for 
different impurity potentials. Without U the self-energy ∑0(ω) vanishes. With finite U the most prominent feature 
for the self-energy is the energy dependence, especially in the vicinity of the Dirac point, where the imaginary 
part develops a dip which becomes remarkable with the increase of U. We know that the electron relaxation time 
is approximately proportional to the inverse of Im[∑0(ω)], so the enhanced dip with U implies the emergence of 
a resonance state. This point is verified in Fig. 1(b) where the density of state (DOS), defined as ρ ω = −

π
( ) 1  Im 

ω ω∑ → + +Tr G i ik[ ( , 0 )]nk , is displayed as a function of energy. It is clearly visible that a pronounced resonance 
peak is caused by large U and its height is enhanced by U. The energy position ωc of the resonant state is corre-
sponding to the dip of Im[∑0(ω)], which is in turn determined by the real part of denominator of T matrix, i.e., 
Re[1 − Vimg(ωc)] = 0. In Fig. 1(c), we illustrate the resonant position as a function of the impurity potential, from 
which one can find that with increase of U, ωc quickly moves towards the Dirac point. For negative potential U < 0 
the same resonance appears but at the side of positive energy. The result is in agreement well with ref. 11. It is 
interesting to compare the impurity-induced self-energy with phonon-induced one42 or spin inelastic-induced 
one15, 43, 44, where Im[∑0(ω)] is symmetry with respect to energy ω = 0 and Re[∑0(ω)] is asymmetry due to the 
electron-hole symmetry. But here, this symmetry is not abided by still, meaning that the impurity effect breaks the 
electron-hole symmetry. In Fig. 1(d), we plot the electron spectrum function ω ω= − +

π
+A Tr G ik k( , ) Im [ ( , 0 )]1  

as functions of k and ω. For no disorder U = 0, the spectral function A(k,ω) is a simply Dirac delta function at 
ω = εkγ and the energy dispersion shows the behavior of linear Dirac cone. The introduction of impurities shifts 
the energy band away from the Fermi level, leading to a large electron-hole asymmetry accompanied by the 

Figure 2. (a–c) Dependence on chemical potential μ of the electric conductivity σ, the thermopower S, and the 
figure of merit ZT for different scalar potential U = 0, 1, 2, 4. The other parameters are the same as in Fig. 1.
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broaden spectrum. These unique features from the impurity effect will impact remarkably on the thermoelectric 
response as discussed below.

In Fig. 2(a–c) we plot the electric conductivity σ, the thermopower S, and the figure of merit ZT as a function 
of chemical potential μ, respectively. Figure 2(a) shows that the electric conductivity σ strongly depends on the 
impurity potential U. In the absence of impurities, σ exhibits a V-shaped structure, directly reflecting the Dirac 
linear dispersion, and the electron scattering happens only exactly at ω = εkγ. When impurity potential U is intro-
duced, σ presents a non-monotonous dependence on μ owing to the formation of resonant state. As a conse-
quence, there develops a resonance peak, which becomes narrow and high with the increase of U, accompanied 
by the minimum point of conductivity shifted to the high energy region. This scenario is greatly different from 
that in graphene38, 45 where the conductivity reaches a constant universal value 4e2/πh at low temperatures. In this 
situation, the position of resonance state is not only determined by the real part of 1 − Vimg(ω) but also by its 
imaginary part. This makes the resonance position ωc moves towards μ = 0 much faster. At the same time, the 
bro a d e n  b an d w i dt h  m a ke s  t h e  e l e c t ron  s c at t e r i n g  p o s s i b l e  i n  an  e n e r g y  r an g e  o f 
ω ε ω ε ω∈ 

 − Σ 



 + Σ 

γ γIm Im( ) , ( )k k0 0 . Even for electrons at μ = 0, there is large probability to scatter with the 
nearby electrons, producing the zero-point resonant peak of conductivity.

The Seebeck coefficient (or thermopower) S as a function of μ is displayed in Fig. 2(b), where a typical struc-
ture is presented for U = 0, namely, the thermopower is positive below the fermi level due to electrons dominating 
the transports while it is negative above the fermi level due to dominant hole traveling. At μ = 0, the thermopower 
vanishes, corresponding to the zero slope of the minimum point of conductivity. However, the existence of impu-
rities changes this scenario by shifting the position of S = 0 to the high energy and even reversing the sign of S for 
large U (e.g., U = 4) in the low energy regime, exhibiting a broad hole-type region in pristine electron-type region. 
The former is attributed to the breaking of electron-hole symmetry while the latter is due to the contribution from 
the resonant peak, whose negative and positive slopes at either side corresponds to the sign of S. With the change 
of S sign, besides the zero point of S at the Dirac point, a new zero point of S appears, whose position is corre-
sponding to the conductivity peak. At this point the conductivity contributed by electrons is just compensated by 
the conductivity due to holes.

Figure 3. (a–c) The electric conductivity σ, the thermopower S, and the figure of merit ZT, respectively, at 
the Fermi level μ = 0 as a function of temperature T for various impurity potential U as indicated. The other 
parameters are the same as in Fig. 1.
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In Fig. 2(c), we plot change of the figure of merit ZT with the impurity potential U. As U is increased, the line-
shape of ZT varies remarkably because the Wiedeman-Franz law, which is an universal feature of conventional 
metals, is violated by the resonance state, i.e., ≠κ

σ
π

T
k

e3
el B

2 2

2 . When strong impurity potential is introduced (e.g., 
U = 4), a most remarkable change is that there develops a double-dip structure, distinguished from the single dip 
for impurity-free case. The positions of two dips correspond to the position of S = 0.

For finite temperature, we in Fig. 3(a–c) plot the numerical results, respectively, for σ, S, and ZT at the Fermi 
surface μ = 0 as a function of temperature T. The electric conductivity σ is linear for undoped case U = 0, but they 
quickly deviates from this linear behavior for finite U with decreasing slop. By contrast, the thermopower S and 
the figure of merit ZT exhibit the non-monotonous dependence on the impurity potential U sensitively. For 
U = 0, the electron-hole symmetry leads to the vanishing S and ZT at the Fermi surface μ = 0. With the enhance-
ment of US increases fast first at low temperatures and then decreases to a saturated value at high temperatures. 
Especially at T≈0, S appears a negative dip, which first becomes deeper and deeper and then is lifted to zero. This 
behavior is a consequence of the joint of the resonant state and the breaking of particle-hole symmetry. Figure 1(a) 
shows that with the increase of U, the conductivity resonance develops fist below the Fermi level and then moves 
to μ = 0 for large potential. From the Mott relation σ µ µ∝ −S d T d( , )/ , we can understand this behavior easily. 
The nonlinear dependence on U for S and ZT is significantly distinguished from the case of no resonance26, in 
which the impurity self-energy is treated simply as an energy-independent constant.

Impurity effect on transports for gapped topological surfaces. Above discussions are for gapless topological sur-
faces. In this section, we extend them to the gapped band structure. If a surface state of TIs is doped with magnetic 
potential M, the electron dispersion of the surface state can open an energy gap at the Dirac point. In Fig. 4(a–d) 
we display the evolution of the band gap in spectral function A(k,ω) for increasing scalar potential U with fixed 
magnetic potential M. Without U, a distinct band gap appears, centered around the Dirac point, due to the mas-
sive energy band ε γ ω= Σ +γ

v k( ) ( )z Fk
2 2 . As U is introduced gradually, accompanied with the Dirac point of 

the band structure moving overall upwards, the band gap becomes narrower and narrower and finally disappears 
completely, seeing Fig. 4(d). The presence of an impurity resonance is characterized by the flattening and broaden 
part below the Dirac point, whose spectral edge is enough to fill the band gap completely for large U. The filling 
threshold is determined by the relative size between scalar potential and magnetic potential. For a typical TI 
Bi2Se3, the bulk energy gap is Dc = 0.3 eV. With this, U = 4 meV is needed in Fig. 4(d) to fill the band with gap of 

Figure 4. (a–d) Evolution of energy dispersion with impurity potential U = 0, 1, 2, 4 for gapped surface states. 
Dependence of (e) ∑z(ω) and (f) ∑0(ω) on U. The magnetic potential is chosen as M = 0.8 and the other 
parameters are the same as in Fig. 1.
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M = 0.8 meV, in the range of experiment parameters23. Notice that U-induced filling effect for gap is not through 
modifying the energy gap Δ directly but through the energy dependence of Re [∑0(ω)]. To clarify this point, we 
plot the dynamic self-energy ∑z(ω) and ∑0(ω) as a function of energy in Fig. 4(e–f), respectively. At the Dirac 
point ω = 0, the gap ε ε∆ = − = Σ =+ −  e M n2R (0) 2z z ik k  is independent of U, so the bandgap is not modified 
by U through ∑z(ω), as shown in Fig. 4(e). As aforementioned, the real part of ∑0(ω) is to modify the chemical 
potential. It is noted that Re[∑0(ω)] in Fig. 4(f) always keeps asymmetric and Im [∑z(ω)] is symmetric until the 
scalar potential U is added, which transfers the weight from positive to negative energy to formate the resonance. 
As a consequence, Re [∑0(ω)] pushes the valence band edge moving toward high energy faster than the conduct-
ing band edge, thus effectively crowding out the band gap and even completely filling it. Similar mechanism is 
addressed for the gap filling by the spin inelastic scattering44.

The magnetic impurity induced band gap is also visible in the conductivity σ, as shown in Fig. 5(a), where a 
zone of zero conductivity appears around the Dirac point (see black dashed line). Interestingly, as U is introduced, 
the resulting resonant structure at the low energy regime narrows the range of zero-conductivity zone, and for 
large magnitude (e.g., U = 4), the gap is completely filled and finite conductivity exists. In Fig. 5(b), we display the 
variation of thermopower S for different U values. Compared with gapless case in Fig. 3(b), the gaped conductiv-
ity can significantly enhance the magnitude of S though the pattern structure remains unchanged. Nevertheless, 
when the extra nonmagnetic potential U is added, the filling of the band gap causes the remarkable reduction 
in S size, and for large U, e.g., U = 4, S restores the gapless situation. In Fig. 5(c) we present the development of 
the figure of merit ZT with gap filling. Similarly, the fast reduction of ZT by the increase of U characterizes the 
gapped-to-gapless transition induced by the impurity resonant state. For large U, ZT also restores the double-dip 
gapless case. Therefore, the thermoelectric coefficients are sensitive to the gap filling or the competition between 
scalar and magnetic potentials.

Figure 5. (a–c) The electric conductivity σ, the thermopower S, and the figure of merit ZT as a function of μ for 
U = 0, 1, 2, 4. We chose M = 0.8 and the other parameters are the same as in Fig. 1.
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If one rises the temperature T, the conductivity gap is easily smeared out by the joint contribution of the reso-
nant state and thermal excitations. The dependence of the thermoelectric coefficients on temperature resembles 
to the gapless case as in Fig. 3.

Dynamic AC transports. In this context, we consider the optical conductivity σ(Ω) in finite frequency, 
which can be probed by reflectivity experiments on the sub-THz to mid-IR frequency range. σ(Ω) gives the 
absorption spectrum for light with frequency Ω and also provide specific signatures for conducting electron 
scattering off impurities. It can be calculated from

σ δΩ =
−
Ω

Π Ω → Ω + .i i( ) 1 Im [ ( )] (10)xx n

With the Green’s function replaced by its spectrum function, Eq. (10) reduces to be41, 46

∫ ∑
π

ω ω ω ω σ ωσ Ω =
Ω

− + Ω 
 + Ω σ .

−∞

∞v e d f f Tr A Ak k( ) ( ) [ ( ) ( )] ( , ) ( , ) ]
(11)

F
y y

k

2

In Fig. 6(a), we show the optical conductivity σ(Ω) for gapless TI surface as a function of positive frequency Ω. 
The system is set at μ = 0 at the Dirac point and low temperature T = 0.01. For undoped case U = 0 (black dashed 
line), the Drude conductivity is zero due to vanished DOS at the Dirac point, but it quickly reaches a steady value 
as long as Ω slightly deviates away from Ω = 0. This is characteristic of a metallic response when the Fermi energy 
crosses a band. With the increase of U, there develops a Drude conductivity peak, which increases quickly starting 
from zero, as shown in the inset of Fig. 6(a). Meanwhile, the absorption jump is pushed towards the high fre-
quency. One recalls that the onset of the absorption band comes from the interband transitions which starts at 
ω = 2μ. But here, though μ = 0 is set, there still exists an effective chemical potential μ contributed by 
impurity-induced self-energy Re[∑0(ω)]. Thus, the position of jump is located at µΩ = 2  which becomes large 
with increase of U. Between the Drude peak and the jump, there appears the Pauli blocked region of the optical 
response where the optical conductivity is heavily suppressed due to less electron-hole pair excitations. Besides 
the movement of absorption edge, another profound feature is that just above the jump frequency, there emerges 
a new conductivity peak. This interband conductivity peak becomes prominent with the increase of potential U 
and can characterize the formation of impurity resonant state. The underlying physics is that the resonant state 
enhances the absorption of light through the creation of an electron–hole pair. In high frequency limit Ω → ∞ all 
curves tend to a saturated constant, regardless of the potential strength. This is a typical characteristic of 2D Dirac 
materials47, different from 3D Dirac or Weyl system41, 46 where σ(Ω) exhibits a linear increase with Ω after the 
jump.

Figure 6. The optical conductivity σ(Ω) as a function of photon frequency Ω for gapless case M = 0 (a) and 
gapped case M = 0.8 (b). Insets are the blowup in the vicinity of Ω = 0 for corresponding main frame. The other 
parameters are the same as in Fig. 1.
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The dependence of the optical conductivity on photon frequency for gapped case is illustrated in Fig. 6(b), 
where M = 0.8 and the other parameters are the same as in panel (a). Even in absence of U, there also appears a 
jump located at Ω = 2Δ, characterizing the magnetic impurity induced bang gap. Below the jump frequency, the 
optical conductivity vanishes, corresponding to the gapped regime, but above the jump the optical conductivity 
exhibits a large peak. With the increase of U, the self-energy Re[∑0(ω)] play a role. In comparison with gapless 
case, the absorption edge for gapped case moves more slowly for small U, e.g., U = 1, due to existence of gap. 
For large U = 4, the magnetic gap is almost completely filled and recover the gapless pattern. The corresponding 
Drude conductivity is shown in the inset in Fig. 6(b), where the value increases slowly first and quickly after gap 
is filled.

As temperature increases, the slope of absorbtion jump becomes smooth and the low frequency region of the 
curve is lifted due to the transfer of spectral weight from the interband to the intraband, relieving Pauli blocking 
in the conduction band and increasing the probability of occupation in the valence band.

Conclusions
We have presented a comprehensive study of electronic properties on a TI surface in the presence of impuri-
ties, with particular attention paid to the role of resonant scattering on impurities. We calculate the dc and ac 
conductivities, the Seebeck coefficient, and the figure of merit within the full Born approximation in the longi-
tudinal direction. It is found that the dc conductivity at low temperatures is not of linear dependence but shows 
a zero-bias peak, whose height is sensitively dependent on the scattering potential, different from the constant 
results in graphene38, 45. The underlying physics is that the impurities create the complex energy dependence 
of self-energy with the formation of resonant state close to the Fermi level. The sharp structure of the impurity 
resonant state near the Fermi level also modifies significantly the behavior of thermopower, which exhibits an 
interesting switch from n-type to p-type carriers. In the low energy regime, the resonant state makes the Lorenz 
number deviate the Wiedemann-Franz ratio, and is manifested by the dip in the figure of merit. The transports 
through the gapped TI surface are explicitly analyzed, where the filling process of a magnetic gap by the resonant 
state is featured with remarkable change of thermoelectric signatures. Finally, We further study the impurity effect 
on the dynamic optical conductivity. It is found that the resonant state also generates a conductivity peak above 
the absorption edge for the interband transition. The frequency position of the absorption edge can be controlled 
by the doping as a consequence of impurity-induced breaking of particle-hole symmetry. The thermoelectric 
transports provide a new approach to probe the impurity effect on TI materials.
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