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Helium Irradiation and 
Implantation Effects on the 
Structure of Amorphous Silicon 
Oxycarbide
Qing Su   1, Shinsuke Inoue2, Manabu Ishimaru2, Jonathan Gigax3, Tianyao Wang3, Hepeng 
Ding4, Michael J. Demkowicz4, Lin Shao3 & Michael Nastasi1,5,6

Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of 
their structure before and after irradiation/implantation remain unknown. Here we investigated the 
short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution 
function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC 
alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. 
TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in 
all irradiated samples. Irradiation results in a decreased number of Si-O bonds and an increased number 
of Si-C and C-O bonds. This study sheds light on the design of radiation-tolerant materials that do not 
experience helium swelling for advanced nuclear reactor applications.

The development of new, radiation tolerant materials is crucial to deploy the next generation fission reactors1–5. 
Different strategies have been explored to improve radiation tolerance of structural materials and suppress 
radiation induced dimensional and property changes. In particular, efforts have been made to introduce inter-
faces between nanoscale oxides particles and the metal matrix in oxide dispersion strengthened (ODS) steels as 
point-defect sinks to mitigate radiation damage and suppress swelling6, 7. Several incoherent interfaces in nanos-
cale metallic laminates, such as Cu/V8, Cu/Nb9, 10, and Fe/W11, have exhibited strong sink strength and suppressed 
He bubble formation. The grain boundaries in nanocrystalline metals, although facing challenges of grain stabil-
ity under irradiation, have shown to assist defect annihilation12, 13.

An alternate method to manage point defect is to develop thermally stable amorphous materials that inher-
ently do not exhibit point defects. Instead of generating vacancies and interstitials during irradiation, amorphous 
materials produce fluctuations in free volume or local bonding topology that can easily recover14. These materials 
may serve as the basis for developing a new class of radiation tolerant structural materials. Amorphous SiOC is a 
model material which consists of nanoscale structural units of SiOxC4−x with x = 0, 1, 2, 3 or 4. The collection of 
these tetragonal nanoscale building blocks gives rise to high crystallization temperature and high radiation toler-
ance. Previous results have demonstrated that amorphous SiOC possesses good thermal and irradiation stability 
over a wide range of compositions, irradiation doses, and irradiation temperatures15–20. The material showed no 
evidence of crystallization up to a temperature of 1200 °C for an annealing time of 2.0 hours. In addition, amor-
phous SiOC films remained amorphous after both light ion (He) and heavy ion (Kr) irradiation within a wide 
envelope of irradiation conditions.

Although previous X-ray diffraction (XRD), high resolution transmission electron microscopy (TEM) and 
electron diffraction results suggest that SiOC alloys retain their amorphous state after a wide range of irradia-
tion conditions15, 16, these techniques do not assess changes in atomic-level structure of this amorphous alloys 
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before and after irradiation/helium implantation. Such information is crucial for understanding irradiation 
effects and for establishing structure-property relationships in irradiated amorphous materials. One approach 
for examining structural information of amorphous materials is to measure PDF. The PDF is a pair correlation 
that represents the probability of finding atoms as a function of radial distance, r, from an average center atom. 
Structural information such as the distribution of interatomic distances, bond angles, and coordination number 
is embedded in the PDF peak positions, widths, and relative intensities. PDF has been widely used to examine the 
short-to-medium range order in different metallic glasses and covalent amorphous solid21–23. Therefore, in the 
present work, we use electron elastic scattering to obtain the radial distribution function of amorphous SiOC film, 
aiming to probe the amorphous structure information before and after irradiation/implantation.

Results
Experimental design.  In order to examine both irradiation and He implantation effect on the PDF of amor-
phous SiOC, 120 keV He ion irradiation was selected. Figure 1a presents the typical cross-sectional TEM image 
of as-deposited SiOC film. The thickness of the as-prepared film is approximately 1 micron. The selected area 
diffraction pattern (inset of Fig. 1a) shows no sign of long range order. The simulated depth profiles of implanted 
He concentration and He irradiation damage are shown in Fig. 1b which reveal the presence of two regions of 
interest. The first region is the top 400 nm area where almost no helium implantation occurs and the material 
mainly experiences irradiation damage; the second region is from 400 nm to 1 micron where both He implan-
tation and irradiation damage occur simultaneously. In this work, the PDF at 200 and 800 nm from top surface 
were chosen to examine the structure of these two representative regions. For an average 1 dpa irradiation in the 
200 nm region (0.04 at% He implantation), approximately 3 dpa of irradiation damage and a He implantation 
peak concentration of 11.3 at% are obtained at a depth of ~800 nm. Because the He irradiation damage and He 
implantation concentration in the film are proportional to the total He fluence, the damage and He depth profiles 
of other doses will scale accordingly.

TEM and PDF characterization.  Figure 2a and b show cross-sectional TEM micrographs of SiOC films 
after 5 and 10 dpa irradiation at 200 nm region, respectively. Both of micrographs exhibit uniform contrast 
throughout the whole film. No void formation, element segregation or crystallization are present in pure irradi-
ation region (200 nm), up to the highest radiation damage level (10 dpa). More interestingly, no helium bubbles 
are observed at the simulated He peak position (800 nm) where the damage levels are 15 dpa (Fig. 2a) and 30 dpa 
(Fig. 2b). The thickness of SiOC film before and after He irradiation/implantation is approximately the same, ~1 
micron. Under these conditions the SiOC alloy maintain its amorphous state with no helium bubble or void for-
mation observed after 30 dpa (an equivalent applied dose if retained would lead to a 113 at% He implantation). It 
should be noted that non-Rutherford proton backscattering results showed that He was not retained in the SiOC 
to the maximum fluence applied (data not show here) and that rapid He diffusion in SiOC occurs24. These results 
are further confirmed by the corresponding selected area diffraction pattern in the inset of each figure, which 
shows diffuse halo rings. Figure 2c shows a high resolution TEM image of SiOC film after 10 dpa irradiation and 
exhibits a maze-like pattern with no discernable structure. These data clearly demonstrate the superior room 
temperature irradiation tolerance of the SiOC.

In order to probe the structural information of amorphous SiOC, the electron diffraction patterns of SiOC 
samples before and after irradiation/He implantation are collected. The corresponding reduced PDF, g(r), of SiOC 
specimens before and after irradiation/He implantation are presented in Fig. 3a and b, respectively. The Fig. 3c and d  
show magnified PDF at the range from 2.2 to 3.2 Å. The bonding topology of the amorphous SiOC network is 
based on tetrahedral SiOxC4−x units (X = 0, 1, 2, 3, 4). In the first shell, there are two main characteristic bond 
distances due to Si-O and Si-C bonds. The PDF reveals two peaks located at 1.60 Å and at 1.88–1.89 Å which 

Figure 1.  (a) Cross-sectional TEM image of as-deposited SiOC film. The inset is the corresponding selective 
area diffraction pattern. (b) Simulated depth profile of helium concentration and irradiation damage for SiOC 
films after 120 keV He irradiation.
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correspond to Si-O and Si-C bonds, respectively25, 26. The features at 2.60, 2.99 and 4.10 Å are attributed to first 
nearest neighbor (NN) O-O, first NN Si-Si, and second NN Si-O pair distances. At larger radial distance over 5 Å, 
the PDF gradually converges to unity, indicating no long-range order/correlation exists in SiOC specimens before 
and after irradiation. For the as-deposited SiOC specimen, the value for the average bond angle O-Si-O (calcu-
lated from the Si-1st O and O-O distances) is approximately 109° which is in good agreement with a tetrahedral 
geometry. The calculated Si-O-Si bridging bond angle from the first NN Si-O and Si-Si distances is 139°. This 
value is slightly smaller than that observed for various forms of amorphous SiO2 which range from 144 to 151° 
in the literature27–29. The shoulder at 2.10 Å is due to the presence of SiOxC4−x units (X = 1, 2, 3) or oxygen hole 
centers (≡Si-O•: an unpaired electron on an oxygen atom)25. The two small peaks at 1.35 and 2.32 Å are assigned 
to C-O and Si-Si bonds, respectively. The bond types, average interatomic distances and bond angles obtained for 
SiOC before and after irradiation/He implantation are summarized in Table 1. All of the findings confirm that the 
regular topology for the SiOxC4−x units (X = 0, 1, 2, 3, 4) are present in the SiOC films before and after irradiation. 
As shown in Fig. 3 and Table 1, the change of peak location is very small suggesting very few structural variations 
or changes in atomic density before and after irradiation/He implantation.

Molecular dynamic simulation.  Some changes are observed for bond lengths and bond angles after irra-
diation, along with variations in several bond intensities, including Si-O, C-O, Si-Si and Si-C, indicating changes 
in the number of these bonds. As irradiation dose increases, the intensity of the C-O, Si-C peaks increases and the 

Figure 2.  Cross-sectional TEM micrographs of SiOC film after (a) 5 (15) and (b) 10 (30) dpa irradiation 
at 200 nm (800 nm) regions. No void formation, element segregation or crystallization are present in pure 
irradiation region. (c) High resolution TEM image of SiOC film in the 20 nm region after 10 dpa irradiation 
exhibiting a maze-like pattern with no discernable structure.
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Si-O bond peak height decreases indicating that there are higher numbers of C-O, Si-C bonds and a lower num-
ber of Si-O bonds. As shown in Fig. 3c and d, the intensity of Si-Si bond peak gradually increases at low dpa level 
(<10 dpa) but decreases at high dpa level (>15 dpa), accompanying a peak shift. The peak height shift for the 1st 
NN O-O and 1st NN Si-Si is believed to be associated with changes of C-O, Si-O, Si-C, Si-Si bonds and structural 
relaxation after irradiation. The He implantation specimen exhibit similar PDF trends in that the number C-O, 
Si-C bonds increase and the number of Si-O bonds decreases. Figure 4 presents the PDF results of the SiOC film 
before and after ~0.1 dpa irradiation obtained by first principles molecular dynamic (MD) simulation. The simu-
lated PDF plot of amorphous SiOC is almost the same as experimental obtained data, confirming the validity of 
the continuous random network model of bonding topology of SiOC films. The details about peak position and 
its representation are summarized in Table 2. The detailed structural variation as well as bonds formation and 
breaking at the atomic level in amorphous SiOC after irradiation can be found in ref. 30.

Discussion
Through analysis of TEM and PDF measurements on amorphous SiOC films, we make several observations:

	(1)	 He irradiation leads to net Si-O bond breaking and net C-O, Si-C bond formation.
	(2)	 There is no void formation, elemental segregation, or recrystallization for SiOC after He irradiation and 

implantation. The material retains its amorphous structure.

Figure 3.  The PDF of SiOC film before and after (a) irradiation and (b) implantation. The magnified PDF of 
SiOC film before and after (c) irradiation and (d) implantation at the range from 2.2 to 3.2 Å.

SiOC samples

Peak position (Å), and its representation

Si-O-Si Bond angle (°)

First shell Second shell

C-O Si-O Si-C Si-Si 1st NN O-O 1st NN Si-Si

As-deposited 1.34 1.60 1.86 2.32 2.62 3.00 139.3

5 dpa 1.34 1.60 1.87 2.32 2.62 3.00 139.3

10 dpa 1.35 1.60 1.87 2.32 2.62 3.00 139.3

15 dpa + 56 at% He 1.34 1.60 1.86 2.30 2.62 2.99 137.3

30 dpa + 113 at% He 1.37 1.61 1.87 2.28 2.63 2.99 135.5

Table 1.  Average peak position of neighbor shells and bond angles in SiOC before and after He irradiation/
implantation.
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	(3)	 No helium bubbles were observed and no volume swelling took place after even 130 at% helium implan-
tation and 30 dpa. The helium implantation/irradiation results in few detectable structure changes in 
amorphous SiOC.

In this study, 120 keV He can initiate maximum 52.5 keV Si, 76.8 keV O and 90 keV C primary knock-on 
atoms (PKA). These PKA energy are much larger than the threshold displacement energy for Si, O, C elements 
(20–40 eV)31, 32, giving rise to ballistic displacements of atoms within materials. It is generally known that nuclear 
stopping processes can lead to net bond breaking in irradiated materials. For example, 10 dpa irradiation indicates 
that all atoms, on average, have been displaced 10 times suggesting significant Si-O, Si-C, Si-Si bonds breaking. 
Unlike experimental observations in irradiated amorphous SiO2 (a-SiO2), where Si nanocrystalline clusters are 
formed33, 34, no elemental segregation was observed although similar atomic displacement events took place in 
SiOC matrix. The results suggest that the introduction of C into amorphous SiO2 dramatically changes the mate-
rials’ response under irradiation. The introduction of C into amorphous SiO2 system changes the kinetics of 
structural relaxation in this material. Although similar amount of under- and over-coordinated Si and O defects 
can be found in SiO2 and SiOC, there is less possibility for cooperative movement of Si atoms in SiOC compared 
to that in the SiO2 matrix to form silicon cluster.

Nuclear stopping of Si, O, and C PKAs is sufficient to produce collision cascades and possibly thermal spikes, 
especially at the PKA’s end of range. Under these conditions the local temperature rises rapidly for several pico-
seconds then quenches to ambient temperature. Both ballistic displacements and thermal spikes give rise to irra-
diation damage in crystalline solids. However, in amorphous materials collision cascades may induce net bond 
formations and allow the amorphous material to undergo high-temperature structural relaxation35. It is expected 
that amorphous SiOC will go through significant structural relaxation after a 30 dpa irradiation. Interestingly, 
the structural relaxation of irradiated amorphous SiOC matrix seems to transform it from the as-deposited 
sputter-quenching metastable state to a more relaxed state. This relaxation process is associated with free volume 
and structure rearrangements. It is reported that the SiO4 tetrahedral unit that makes up a continuous random 
network can easily tilt, accommodating local mechanical strain in SiO2

36. A similar response is expected in SiOC 

Figure 4.  The first principles MD simulated PDF of SiOC before and after 0.1 dpa irradiation.

Partial PDF Peak position (Å), and its representation

Si:O 1.67, Si-O bond 4.12, the 2nd nearest neighbor (NN) O to Si distance

Si:C 1.86, Si-C bond 2.74, the 2nd NN C to Si distance; 4.27, the 3nd NN C 
to Si distance (similar to 2nd NN O to Si)

Si:Si 2.35, Si-Si bond 3.06 (4.50), the 1st (2nd) NN Si to Si distance

O:O 1.52, O-O bond 2.65 (4.98), the 1st (2nd) NN O to O distance

C:O 1.36, C-O bond 2.87 (5.10), the 2nd (3rd) NN C to O distance (similar 
to 1st (2nd) NN O to O)

Table 2.  MD simulated peak position and its representation.



www.nature.com/scientificreports/

6Scientific Reports | 7: 3900  | DOI:10.1038/s41598-017-04247-x

during the irradiation process. Interestingly, Shojaee et al. reported that sol-gel synthesized SiOC films evolved 
into a steady-state composition after heavy-ion irradiation which is quite closed to the composition of the SiOC 
film in this work which is Si-30 at%, O-40 at%, C-30 at%.

Compared to the region of the film which experienced just irradiation, the PDF for the deeper region which 
experienced both irradiation plus implantation showed no further change of the SiOC amorphous structure. 
These findings indicate that the amorphous SiOC structure reaches an energetic favorable state. He atomic diffu-
sion appears to play a minimum role in changing the amorphous structure. Therefore, it is our hypothesis that the 
He atoms diffuse through the free volume of SiOC amorphous structure, exhibiting an interstitial-like diffusion 
mechanism. Future work is warranted to explore this idea.

Conclusion
The structural information of amorphous SiOC before and after He irradiation/implantation has been examined 
by PDF study. He irradiation leads to Si-O net bonds breaking and C-O, Si-C net bonds formation. However, 
the material retained its glassy properties and no void formation, elemental segregation or recrystallization for 
SiOC was observed after 10 dpa irradiation. No helium bubbles were observed and no volume swelling took place 
even after an effective 113 at% helium implantation plus 30 dpa. The observations suggest that atomic displacing 
processes and helium implantation do not lead to SiOC degradation. This study, for the first time, provides struc-
tural information about amorphous SiOC after He irradiation/implantation. The understanding of irradiation/
implantation effects on amorphous materials benefits the design of radiation-tolerant and helium-swelling resist 
materials for potential nuclear energy applications.

Methods
Specimen preparation.  Amorphous SiOC alloys with composition of Si-30%, O-40%, C-30%; were syn-
thesized via radio frequency (RF) co-sputtering from SiO2 and SiC targets at room temperature. Both the SiO2 
(purity 99.995%) and the SiC (purity 99.5%) targets were obtained from AJA International, Inc. All of the SiOC 
films were deposited on surface oxidize Si substrates with a 300 nm top SiO2 layer. The thickness of SiOC film was 
approximate 1 micron. Prior to the sputtering deposition, the base pressure was 9.8 × 10−6 Pa or lower. The Ar 
partial pressure for SiO2 and SiC deposition was 0.65 Pa.

Helium irradiation and PDF characterization.  The SiOC films were subjected to 120 keV He ions irradi-
ation at room temperature. The total fluences of 9.5 × 1017 and 1.9 × 1018 ions/cm2 were used to obtain averaged 5 
and 10 dpa of damage at the pure irradiation region, respectively and 15 and 30 dpa in the irradiation plus implan-
tation region, respectively. The depth-dependent damage and He concentration profiles were simulated by using 
the Stopping and Range of Ions in Matter (SRIM)-2008 software with the ion distribution and quick calculation 
of damage option32. A JEOL JEM-3000F Transmission Electron Microscope (TEM) with 300 kV operation voltage 
was employed to obtain high resolution images and electron diffraction patterns of SiOC thin films before and 
after irradiation. For atomic pair-distribution analysis, the samples were cooled by liquid nitrogen holder.

The cross-sectional TEM samples of SiOC films before and after irradiation were prepared by mechanical polishing 
and ion milling with a low glancing angle (5 degree). The acceleration voltage for Ar ion milling first adopted 4 keV and 
decreased to 1 keV at final stage (GATAN, PIPS) in order to minimize ion milling damage. The details about collecting 
electron diffraction pattern for atomic pair-distribution analysis have been described in previous works23, 37.

Molecular dynamic simulation.  The first principles molecular dynamics calculations were performed in 
SiOC, as described in ref. 30 Supercells containing 864 atoms with 18.75% C doping (21 Å × 21 Å × 28 Å) were 
simulated using VASP38, a plane wave based first-principles DFT code. We employed the Perdew-Burke-Ernzerhof 
(PBE)39 exchange-correlation functional within projector-augmented-wave approach40, a gamma-point only K 
point mesh, a 550 eV plane wave kinetic energy cutoff, and an energy convergence threshold of 10−4 eV for elec-
tronic self-consistent loop. Hard pseudopotentials of oxygen, carbon, and hydrogen, as well as standard pseudo-
potential for Si were used (O_h, C_h, H_h, and Si in VASP’s nomenclature, respectively).

To study material response under ion irradiation, a 100 eV primary knock-on atom (PKA) is introduced to 
simulate the unit displacement process. The PKA was initiated at a randomly selected Si atom because Si has 
large elastic scattering cross section and is therefore likeliest to suffer a collision with an incoming ion or neutron. 
A 0.25 femtosecond (fs) time step and NVE ensemble were used for PKA thermal equilibration process with 
duration of 0.375 picosecond (ps). A 1 fs time step and NVT ensemble with Langevin thermostat were used for 
annealing41, for which the process was performed in 100 K increments or decrements with a 0.5 ps equilibration 
after each temperature increment or decrement. Radial distribution functions (PDFs) at 300 K before PKA and 
after PKA are obtained.

We acknowledge that our simulation has been performed using a PKA with a 100 eV kinetic energy, so that 
it cannot represent a full-scale collision cascade. However, our simulation is representative of the mechanisms 
responsible for radiation damage in experiments that use much higher PKA energies, because the PKA initiates 
a localized, unit displacement process, which is responsible for most displacement-induced damage, according 
to the Kinchin-Pease (K-P) model40. Under K-P model, when a collision of an incident neutron with an atom 
transfers a kinetic energy larger than the displacement threshold, the atom displaces permanently from its orig-
inal location, becoming a PKA. If this PKA has sufficiently high kinetic energy, it travels through the material 
producing higher-order knock-ons. However, if the PKA energy is close enough to the displacement threshold, 
it rapidly comes to rest, dissipating its remaining energy in a matter of picoseconds and generating a localized 
zone of dense structural damage. Consequently, most radiation-induced damage is created by knock-on atoms 
with relatively low energies close to the displacement threshold, which is the “unit displacement process” that we 
modeled here. Additional details about our modeling work may be found in ref. 30.
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