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Pyroptosis, superinfection, and the 
maintenance of the latent reservoir 
in HIV-1 infection
Dominik Wodarz  1 & David N. Levy2

A long-lived reservoir of latently infected T cells prevents antiretroviral therapy from eliminating HIV-1 
infection. Furthering our understanding of the dynamics of latency generation and maintenance is 
therefore vital to improve treatment outcome. Using mathematical models and experiments, we 
suggest that the death of latently infected cells brought about by pyroptosis, or to a lesser extent 
by superinfection, might be key mechanisms to account for the size and composition of the latent 
reservoir. Pyroptosis is a form of cell death that occurs in a resting (and thus latently infected) T cell 
when a productively infected cell attempts cell-to-cell transmission of virus. Superinfection of latently 
infected cells by productive virus could similarly remove those cells through active virus replication 
and resulting cytopathicity. The mathematical models presented can explain a number of previously 
published clinical observations including latent reservoir size and the relationships to viral load in 
acute HIV infection, measurements of the latent reservoir in chronic infection, and the replacement 
of wild-type virus by CTL escape mutants within the latent reservoir. Basic virus dynamics models of 
latency that do not take into account pyroptosis, superinfection, or other potential complexities cannot 
account for the data.

A major obstacle to eradication of HIV-1 from patients (i.e. a cure) is the presence of a reservoir of long-lived 
latently infected cells, of which resting memory CD4 T cells are the best characterized1. According to one study, 
the latent reservoir has an estimated half-life of about 6 months in patients who have been on anti-viral treat-
ment for at least half a year and in whom there is no evidence of ongoing virus replication during therapy2. In 
other studies in which patients had been on anti-viral treatment for several years, the estimated half-life was 
much longer, about 31 or 42 months, respectively3, 4. These numbers indicate that current treatments are unable 
to deplete the latent reservoir during the life of an infected individual. In early attempts at developing eradica-
tion strategies, so-called shock and kill approaches have been used to activate latent HIV-1 during antiretroviral 
therapy5. The hope is that viral cytopathicity and/or immune responses will then allow elimination of the latent 
reservoir. While activation of some virus expression has been achieved6, this has so far not been translated into a 
reduction in reservoir size. A detailed understanding of the principles that govern the generation and persistence 
of the latently infected cell reservoir is vital to advance our ability to overcome this obstacle.

An aspect of HIV-1 that has not been discussed much in the context of viral latency is the infection or 
attempted infection of latently infected cells. Infection of cells with multiple copies of HIV-1 has been docu-
mented in a variety of settings7–9. The majority of the HIV-1 latent reservoir resides in resting CD4 T cells that, 
while historically have been viewed as refractory to HIV-1 infection, have more recently been shown both in vitro 
and in vivo to be permissive to infection, albeit with slower kinetics than activated T cells10. Productive super-
infection of a latently infected cell would result in the elimination of the latent virus genome through cell death.  
A similar effect, and perhaps more relevant, could arise from the induction of pyroptosis in the latently infected 
target cells during attempted direct cell-to-cell transmission through virological synapses11. It has been shown 
that attempted transmission of virus from a productively infected cell to a resting T cell can result in failure of 
transmission due to incomplete reverse transcription. The resulting partial DNA products of the virus trigger an 
innate immune response in the cell that leads to an inflammatory death process of the resting cell, called pyropto-
sis. This process has been implicated in the destruction of the resting T cell population during HIV-1 infection12. 
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Induction of pyroptosis in latently infected resting T cells during attempted superinfection could thus also poten-
tially impact the size of the latent virus reservoir. In principle, both pyroptosis (death due to attempted superin-
fection) and death due to actual superinfection of latently infected cells can affect dynamics in a very similar way, 
with the relative importance of the two mechanisms depending on the kinetic parameters. This paper examines 
the dynamics of generation and maintenance of the latent reservoir in the absence and presence of pyroptosis and 
superinfection of latently infected cells.

Materials and Methods
Virus dynamics are modeled with ordinary differential equations and agent-based models that track the time at 
which individual latently infected cells were generated. Details are provided in the main text and Supplementary 
Materials. Experiments are based on previous work7, and are summarized in Supplementary Materials.

Basic model. In the simplest form, the dynamics of latency generation in the context of multiple infection 
can be formulated by a system of three ordinary differential equations13. Denoting uninfected target cells by S, 
productively infected target cells by I, and latently infected target cells by I0, the equations are given as follows.
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Susceptible, uninfected target cells are produced with a rate λ, die with a rate d, and become infected with 
a rate β. Assuming that the virus population is in a quasi-steady state13, this can be considered as a composite 
parameter of free virus and direct cell-to-cell transmission through virological synapses, such that β = βfree + βsyn, 
where βfree and βsyn are the rate constants for the respective transmission pathways14. In vitro experiments have 
estimated both transmission pathways to contribute about equally to virus spread14.

Infection results in the generation of a productively infected cell with a probability q. Productively infected 
cells die with a rate a. With a probability 1-q, infection of uninfected target cells results in the generation of a 
latently infected cell. Latently infected cells die with a rate a0, and return to being productively infected with a 
relatively slow rate g. It is further assumed that latently infected cells can be successfully superinfected by pro-
ductive virus, which is described by the term fqγ. Because latently infected cells are mostly resting T cells and 
because recent work suggests that those can only be viably infected through free virus transmission10, 11, we set 
γ = β/214. Moreover, the productive infection rate of resting T cells is lower than that of activated cells10, and this is 
expressed by the parameter f < 1. Apart from superinfection of latently infected cells by productive virus, multiple 
infection of cells is not modeled.

If attempted infection of resting T cells, and thus latently infected cells, occurs through synaptic transmission, 
it has been shown that the resting T cells undergo a form of cell death called pyroptosis10. Hence, upon contact 
with a productively infected cell, pyroptosis of the latently infected cell occurs with a rate γ = β/2, using the esti-
mate that cell-to-cell transmission contributes about half to virus spread in vitro14. This modeling adds to previous 
mathematical work describing the process of pyroptosis15.

As outlined above, model assumptions are based on previously published data. As with any mathematical 
modeling study, however, it has to be remembered that results depend on assumptions and formulations, some of 
which remain uncertain. One aspect that has not been directly shown with data is that latently infected primary 
T cells in vivo can be superinfected. Superinfection of latently infected cells has only been shown in the context 
of cell lines in vitro16, 17. On the other hand, resting CD4 T cells are directly infected at relevant frequencies in 
vivo17–19, thus there is no a priori reason why a latently infected resting CD4 T cell should not be reinfected at a 
rate similar to infection of a previously uninfected cell.

This model is characterized by two equilibria that can potentially be stable. (i) The virus population is extinct 
and the target cell population is present at healthy levels. The equilibrium expressions are given by S(0) = λ/d, 
I(0) = 0, I0

(0) = 0. (ii) The virus successfully establishes an infection, leading to an equilibrium where all popula-
tions persist. This equilibrium is given by lengthy expressions that are solutions of second degree polynomials and 
are therefore not written down here. The virus infection persists if >βλ +

+
1a q g
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0
, obtained by stability analysis. It 

is unclear how this quantity relates to the basic reproductive ratio (R0) of HIV-1 that has been measured in 
patients20. Since those estimates have been performed using virus growth curves in vivo, they likely reflect only 
the contribution of productively infected cells. When choosing our parameter values to match R0 estimated in 
patients20 we will thus use R0 = (qβλ)/(da), which is the basic reproductive ratio of the virus in a corresponding 
model with only productive infection13. Model parameters used for computer simulations are discussed in the 
Supplementary Materials.

Equilibrium properties. First, we consider virus persistence at equilibrium. In particular, we investigate 
how the number of latently infected cells correlates with the number of productively infected cells (directly related 
to viral load) at equilibrium. One of the main parameters that determines the equilibrium level of productively 
infected cells in this model is the death rate of infected cells, a. A higher death rate of infected cells results in less 
virus production during the life-time of infected cells in our model, and thus leads to a reduced rate of virus 
spread, consistent with previously published work13. In our model, the death rate parameter can in principle be 
caused both by virus cytopathic effects or by immune responses including the cytotoxic T lymphocyte (CTL) 
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response, because immune responses are not explicitly included for now (see below for immune models). Thus, 
we varied the death rate of infected cells, a, in the model, and the correlation between the number of productively 
and latently infected cells at equilibrium is shown in Fig. 1A. We observe a one-humped relationship. At low virus 
loads, the number of latently infected cells is low, because less virus spread gives rise to fewer latently infected 
cells. At high virus loads, however, the number of latently infected cells is also low. The reason is that a relatively 
higher proportion of latently infected cells becomes either productively infected resulting in virus-induced cell 
death, or undergo pyroptosis upon attempted cell-to-cell transmission. This depletes the pool of latently infected 
cells at high virus loads. For intermediate virus loads, the number of latently infected cells is highest. There is 
enough virus spread to generate an abundance of latently infected cells, while only little pyroptosis or superinfec-
tion of those latently infected cells occurs.

Infection multiplicity influences the latent pool: experimental data. Model (1) generated the 
hypothesis that superinfection of latently infected cells and induction of pyroptosis in latently infected cells might 
be important factors that influence the size of the latent reservoir. Both processes act in the same fashion: the 
(attempted) multiple infection of latently infected cells causes their death. We aimed to address this basic concept 
with in vitro experiments, using the infection of Jurkat T cells with fluorescently labeled HIV-1. In this experi-
mental system, pyroptosis is unlikely to be a significant process. However, a significant amount of latently infected 
cells is generated in cell culture, and those cells can be readily superinfected7, 21, 22. We infected Jurkat T cells 

Figure 1. (A) Basic properties of model (1). The death rate of infected cells, a, was varied (from a = 0.1d−1 to 
a = 1d−1), and the relationship between the equilibrium number of latently and productively infected cells was 
plotted. λ = 10 d−1, d = 0.015 d−1, a0 = 0.003 d−1, g = 0.001 d−1, β = 0.0057/(dayxcells), q = 0.95, f = 1/7. Higher 
values of the death rate parameter a can be thought of representing a CTL response that reduces the life-span of 
infected cells. (B) In vitro latency following infection of Jurkat T cells with fluorescent reporter viruses. Plotted 
is the calculated percentage of latently infected cells (those without a productive virus) among all cells that are 
singly, doubly, and triply infected. Details of data and calculations are given in the Supplementary Materials. 
The average from six replicas of the experiment was determined, and standard errors are shown. According 
to t-tests, the difference was significant comparing the average percentage among singly and doubly infected 
cells (p = 0.039), among singly and triply infected cells (p = 0.00049), and among doubly and triply infected 
cells (p = 0.032). (C) Acute infection dynamics, predicted by model (1). λ = 10 d−1, d = 0.015 d−1, a = 0.45 d−1, 
a0 = 0.003 d−1, g = 0.001 d−1, β = 0.0057/(dayxcells), q = 0.95, f = 1/7. (D) Data replotted from reference 24: As 
in the original paper, a straight line was fitted through these data (p = 0.04). Also, a polynomial function can 
be fit through these data, describing a one-humped relationship (p = 0.006). The linear model has a slightly 
lower Akaike information criterion (AIC) value than the polynomial model, with a difference of only Δ = 0.38. 
(E) Relationship between the number of latently infected cells and the area under the virus growth curve, 
according to stochastic Gillespie simulations36 of model (1). For each realization of the simulation, parameters 
were chosen randomly from a uniform distribution, assuming a range of +/−10% of the base values. Each 
dot represents one realization. The time at which measures were determined was also randomly chosen in the 
range between 1 and 11 days. The base parameters are: λ = 100 d−1, d = 0.003 d−1, a = 0.45 d−1, a0 = 0.003 d−1, 
g = 0.001 d−1, β = 0.000114/(dayxcells), q = 0.95, f = 1/7. Parameters were adjusted compared to other figures to 
ensure persistence in the stochastic setting.
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with equal amounts of three single round reporter viruses of different fluorescent color (GFP, YFP, and CFP)7, as 
described in the Supplementary Materials. Three days after infection, the percentage of cells fluorescent in each 
color or combination of colors, and the total number of fluorescent cells, was assessed by flow cytometry. The 
fluorescing infected cells correspond to productively infected cells, but it is not possible to determine infection 
multiplicity because a cell can be infected with multiple copies of a virus fluorescing in the same color. By assum-
ing that infection follows a modified Poisson distribution, we can calculate the number of cells that are infected 
with 1, 2, or 3 viruses, at least one of which is productive. Details are provided in the Supplementary Materials. 
Similarly, we can calculate the number of cells infected with 1, 2, and 3 viruses, none of which is productive, 
corresponding to latently infected cells with a long life-span. The latter is of interest with respect to our theory, 
and plotted as a function of infection multiplicity in Fig. 1B. The calculated percentage of latently infected cells 
(infected cells that contain no productive viruses) among all infected cells was found to be significantly smaller 
among the population of doubly and triply infected cells, compared to the population of singly-infected cells. This 
supports our theoretical notion that multiple infection, which correlates with the extent to which latently infected 
cells are superinfected, can significantly impact the size of the latent reservoir, leading to its reduction through 
cell death.

Modeling acute infection dynamics. Next, we consider the dynamics of acute infection, that is, a rise 
of virus load up to a peak, followed by a decline and convergence to an equilibrium. We are interested in how 
the population of latently infected cells develops over time as virus load rises and declines. This is explored with 
model (1) above and shown in Fig. 1C. At first, as virus load rises from low levels, the population of latently 
infected cells also increases. When virus load reaches relatively high levels and approaches its peak, however, the 
number of latently infected cells declines (Fig. 1C). The reason is that at high virus loads, a relatively large amount 
of pyroptosis/superinfection of latently infected cells occurs, resulting either in cell death caused by productive 
virus replication or in pyroptosis. As overall virus load declines and the system converges to an equilibrium, the 
population of latently infected cells rebounds and rises to a certain extent (Fig. 1C). This is because new latently 
infected cells are being generated by virus replication, while the lower virus loads ensure that only a small amount 
of pyroptosis/superinfection occurs, thus preserving the pool of latently infected cells.

Data from HIV-infected patients indicated that a smaller pool of latently infected cells was present during 
the acute phase than later in chronic infection, suggesting the accumulation of more latently infected cells as a 
function of time since transmission23. Our modeling results suggest an alternative interpretation: In our model, 
during the initial stages of virus growth, the number of latently infected cells correlates with virus load, while the 
relatively low number of latently infected cells found during the peak of acute infection is caused by high levels 
of pyroptosis/superinfection of latently infected cells during the period of high virus loads. In accordance with 
data, the model predicts that during chronic infection, when virus loads are lower, more latently infected cells are 
present. This is not because the virus has had more time to generate them, but because at lower virus loads during 
chronic infection, less pyroptosis/superinfection of latently infected cells preserves this population.

A previous study estimated the size of the latently infected cell population during acute infection among a 
cohort of patients24. The authors correlated this measure with virus load, specifically with the area under the virus 
growth curve, before therapy was initiated. A statistically significant positive correlation was observed (p = 0.04) 
and these data are replotted in Fig. 1D. Apart from fitting a straight line through these data, as was performed in 
ref. 24, it is also possible to fit a polynomial function as we do in Fig. 1D. The best fit (p = 0.006) is a one-humped 
curve, where the number of latently infected cells first rises with a larger area under the virus growth curve, but 
then declines. The Akaike information criterion (AIC) indicates that although the linear relationship cannot be 
rejected, the polynomial model can also be a relevant description of the data. While the AIC is lower for the linear 
model, the difference in AIC is only Δ = 0.38. The interpretation of this small difference is that the polynomial 
model is a reasonable alternative to the linear model. The one-humped relationship is consistent with our theory 
presented above. To demonstrate this, we simulated this kind of data set with a variant of model (1) (Fig. 1E). 
Each point corresponds to one “patient”, i.e. one simulation with parameters that were randomly chosen around 
defined values (see Fig. 1E for details). In addition, the time when the latently infected cell population size was 
determined during the acute phase of the infection was varied randomly in the same way. We find that the num-
ber of latently infected cells does not show a linear correlation with the area under the virus growth curve, but that 
it displays a one-humped relationship instead (Fig. 1E).

Latency and immune responses in chronic infection. In the following section we explore the number 
of latently infected cells present during chronic infection and how this can depend on the strength of immune 
responses that regulate virus load. Particular emphasis is placed on the relative abundance of productively and 
latently infected cells, comparing model predictions with and without pyroptosis/superinfection of latently 
infected cells.

Model without pyroptosis/superinfection. Over the short term during chronic infection, the CD4 T cell popula-
tion stays relatively constant; thus, we can simplify the models by assuming a c onstant overall CD4 T cell popula-
tion. Moreover, immune responses limit virus load during chronic infection by both lytic (e.g. CTL) and non-lytic 
(antibodies and other inhibitory factors released by cells) mechanisms. Lytic immune responses eliminate pro-
ductively infected cells, reducing virus output, while non-lytic responses inhibit new infection events. Taking into 
account these assumptions, the model without pyroptosis/superinfection can be formulated as follows25.
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where the susceptible cell population is given by S = 1 − I − I0. The anti-viral immune response is denoted by 
Z, and represents a generic adaptive immune response, without specifying the exact identity. This response can 
inhibit viral replication by non-lytic means with a rate p1, and can lyse productively infected cells with a rate p2

25. 
This response can thus represent either CD8 T cell or B cell responses. The specific immune cell population, and 
thus the strength of this response, increases in reaction to antigenic stimulation with a rate c, and decays with 
a rate b in the absence of antigenic stimulation. The condition for infection establishment is identical to that of 
model (1). If an infection is successfully established, the system converges to an equilibrium where all populations 
persist.

First, we investigate the regime in which immune responses are non-lytic, i.e. p2 = 0. In this case, the equilib-
rium is given by the following expressions:

β
β β

β
β β

β
β β

=
+ − +

− + + + +

=
− + − +

+ − + + + +

=
+ − +

− + + + +
.

⁎

⁎

⁎

I b qa g a a g
b a q b qa g p ca a g

I ab q qa g a a g
a q g b a q b qa g p ca a g

Z c qa g a a g
b a q b qa g p ca a g

[ ( ) ( )]
(1 ) ( ) ( )

(1 )[ ( ) ( )]
( )[ (1 ) ( ) ( )]

[ ( ) ( )]
(1 ) ( ) ( )

0 0

0 1 0

0
0 0

0 0 1 0

0 0

0 1 0

We investigated the equilibrium number of latently infected cells relative to the number of productively 
infected cells in this model, as a function of the rate of immune cell expansion, c. This is because this parameter 
has a strong impact on equilibrium virus load in this model13, 25. Data indicate that latently infected cells make up 
about 4% of all infected T cells in untreated chronic infection26. In this part of the paper, the latently infected cells 
are assumed to die with a rate a0 = 0.003, and the latent virus within can become spontaneously active with a rate 
g = 0.001. This corresponds to the shorter measured half-life of the latently infected cell population (about 6 
months). Other parameters are the same as discussed before. Immune parameters are set arbitrarily and presented 
results do not depend on this on a qualitative level. Figure 2Ai shows the equilibrium number of productively and 
latently infected cells as a function of the immune responsiveness parameter c. With higher immune responsive-
ness (larger c), both populations become lower. The important finding, however, is that the number of latently 
infected cells is always significantly larger than the number of productively infected cells, regardless of the 
immune responsiveness. This is clearly in contradiction to biological data26. In the model, latently infected cells 
are less abundant than productively infected cells if = <−
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productively infected cells, a, is most likely one or two orders of magnitude larger than the death rate, a0, or acti-
vation rate, g, of latently infected cells, this threshold for q is very close to one. Therefore, unless the probability 
for the virus to enter latency upon infection is very small (q very close to one), this model makes the unrealistic 
prediction that most infected T cells in the chronic phase will be latently infected. Even if the probability of pro-
ductive infection, q, is sufficiently close to one such that there are more productively than latently infected cells, 
the value of q has to be even closer to one in order to obtain the prediction that latently infected cells make up 
only about 4% of all infected T cells, as observed in patients26. In vitro estimates from single-round HIV infection 
of cell lines reported latency occurrence in about 5–15% of infection events16, which is in contrast to the very low 
latency generation probability required in our current model to yield realistic fractions of latently infected cells. 
This measure of course needs to be still examined in vivo, but it can be argued that latency generation in cell lines 
is less likely than in primary T cells because cell lines do not enter resting states.

We previously mentioned that the infection rate β can be considered a composite of free virus and synaptic 
virus transmission. Synaptic transmission has been associated with the transfer of multiple viruses from one cell 
to another, which can lead to multiple infection of the target cell, and which can thus lead to a high probability 
that at least one of the these viruses will be productive. We re-did the above calculation assuming that latency can 
be generated with a probability q upon free virus infection, but that at least one virus always becomes productive 
upon synaptic transmission. While this reduces the latent pool to a certain extent, the above conclusions remain 
essentially unchanged (Supplementary Information).

Going back to the original model formulation, similar results are obtained if we assume that all immune activ-
ity is lytic (p1 = 0, p2 > 0). The equilibrium number of latently and productively infected cells as a function of the 
immune responsiveness, c, are plotted in Fig. 2Bi (the equilibrium expression are very lengthy and not written 
down here). As before, the majority of the infected T cells in this model are latently infected. We can again define 
the ratio = β β

β
− − + −

+ +

⁎

⁎
I
I

pc a g b a g
b a a pc

( ) 2 ( )
[2 ( ) ]

0 0

0
. From this, it follows that the equilibrium number of productively infected 

cells only exceeds the number of latently infected cells if the probability of productive infection, q, crosses a 
threshold, defined by
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. Under the realistic assumption that a ≫ a0 + g, and hence β ≫ a0 + g, this expres-

sion converges to one. Thus, again, in order to predict that latently infected cells only make up a small fraction of 
all infected T cells, the value of q has to lie very close to one, which means that the probability for a virus to 
become latent upon infection must be very small.

Note that we chose the larger of the two measured decay rates of the latent reservoir2, 3 for the computational 
simulations, because this results in a lower abundance of the latent reservoir. The slower estimated decay rate of 
the latent reservoir might be more realistic, and would strengthen the results reported in this section.

Model with pyroptosis/superinfection. Here, the above analysis is repeated assuming that latently infected cells 
can become superinfected with productive virus (resulting in its elimination) and that attempted superinfection 
of latently infected cells through virological synapses can result in pyroptosis of the latently infected cell. The 
above model can thus be re-written as follows.
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Since the total target cell population is assumed to be constant, we again have S = 1-I-I0. Pyroptosis and super-
infection of latently infected cells is described in the same way as in model (1), with the addition that both pro-
cesses are inhibited by non-lytic immunity (both are related to infection processes).This model is analytically 
intractable, so equilibrium values were determined numerically in the following analysis. Similar patterns are 
observed for both lytic and non-lytic immune activity (Fig. 2Aii and Bii). First, we note that in contrast to the 
model without pyroptosis/superinfection, there is now a wide parameter region in which the latently infected cells 
are much less abundant than the productively infected T cells. The relative abundance of these two populations 

Figure 2. Exploring the relative equilibrium abundance of productively (solid line) and latently infected 
(dashed line) cells in chronic infection models (2/3). The graphs plot the equilibrium cell populations as a 
function of the immune responsiveness parameter c. Model (2) without pyroptosis/superinfection is compared 
to model (3) with pyroptosis/superinfection of latently infected cells. (A) The models assume a non-lytic 
immune response. Parameters were chosen as follows: a = 0.45 d−1, a0 = 0.003 d−1, g = 0.001 d−1, β = 3.6/
(dayxcells), q = 0.95, p1 = 1/(dayxcells) b = 0.1 d−1, f = 1/7. (B) The models assume a lytic immune response. 
Parameters were chosen as follows: a = 0.45 d−1, a0 = 0.003 d−1, g = 0.001 d−1, β = 3.6/(dayxcells), q = 0.95, 
p2 = 1/(dayxcells), b = 0.1 d−1, f = 1/7.
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depends on the immune responsiveness, c (Fig. 2Aii and Bii). If the immune responsiveness is strong and the 
value of c lies above a threshold, then the number of productively infected cells is very low, and there are more 
latently infected cells than productively infected cells. This corresponds to a scenario where the infection is con-
trolled very efficiently in the chronic phase, resulting in extremely low virus loads. Latently infected cells are not 
recognized by the immune response and therefore persist. As the immune responsiveness is lowered, the number 
of productively infected cells rises, and so does the number of latently infected cells. This is because higher virus 
load leads to the generation of more latently infected cells. When the immune responsiveness, c, falls below a 
threshold, the productively infected T cell population becomes dominant compared to the number of latently 
infected cells (Fig. 2Aii and Bii). The reason is that in this regime, virus load is higher, leading to the occurrence 
of more pyroptosis/superinfection. This leads to the death of more latently infected cells. This is also reflected by 
the observation that a further reduction in the immune responsiveness and the consequently higher number of 
productively infected cells leads to a reduction in the number of latently infected cells. More productively infected 
cells means more pyroptosis/superinfection of latently infected cells, which in turn translates into a lower number 
of latently infected cells.

This analysis has shown that in contrast to the model without pyroptosis/superinfection, the model with 
pyroptosis/superinfection can easily account for the clinical observation that the latently infected T cell pool 
constitutes only a small percentage of the overall population of infected T cells.

Latency and the archiving of viral genomes. Persistent viral latency in long-lived cells, in combination 
with ongoing virus evolution, means that the latent reservoir represents an archive of genotypes that were prev-
alent at earlier stages of infection27. In contrast to this notion, recent data28 observed replacement of the latent 
reservoir with CTL-resistant virus variants during chronic infection, while during the earlier stages of infection, 
the latent reservoir had been largely made up of CTL-sensitive viruses predominant in this phase. The reasons for 
this almost complete replacement of viruses in the latent reservoir remains unexplained.

Here, we model the persistence of archival forms in the context of pyroptosis and superinfection. To do so, 
we construct a stochastic agent-based model that tracks individual virus genomes in individual cells over time, 
and also includes immune responses. This allows us to record the time when a viral genome becomes part of the 
latent reservoir and thus document the kinetics of viral archiving and removal from the virus pool. The model is 
described in Supplementary Information.

The computer simulations were started with populations around equilibrium levels, and was run for a dura-
tion of 1000 days. At the end of the simulation, the distribution of times at which existing latent virus genomes 
were generated was determined. The latent genomes were only counted in cells that did not contain productive 
virus, because this represents the latent reservoir that is relevant for virus persistence. Parameters were chosen 
as previously described for the ODE models. Simulations were run for both the shorter and longer half-life of 
the latent cell population estimated in the literature2, 3. We compared a strong response resulting in low numbers 
of infected cells with a weak response resulting in higher virus load. This was achieved by varying the immune 
parameters C and F (Supplementary Information).

We compared simulations where pyroptosis and superinfection of latently infected cells did and did not occur. 
First consider a regime where the immune response is relatively weak (and thus virus load was relatively high, 
lower values of C and F in Supplementary Information, see Fig. 3). In simulations without pyroptosis and super-
infection of latently infected cells, we observed that a significant amount of viral archiving occurred in the pool 
of latently infected cells (Fig. 3Ai,Bi). That is, viral genomes were present that had been generated at significantly 
earlier time points. As expected, this effect was more pronounced for the longer half-life of the latently infected 
cell population. In contrast, in simulations with pyroptosis and superinfection of latently infected cells, almost 
no archiving was observed, even for the longer half-life of the latent reservoir (Fig. 3Aii,Bii). That is, there was 
rapid replacement of the archived genomes with replicating viruses so that the latent cell reservoir contained only 
viral genomes that infected the cells very recently. The reason is that at higher virus loads, a significant amount of 
pyroptosis/superinfection of latently infected cells occurs, resulting in the elimination of the latent viral genomes 
that have entered the cells previously. This difference between simulations with and without pyroptosis/superin-
fection was greatly diminished if we assumed a stronger immune response that resulted in much lower virus loads 
(Fig. 4). In this case, significant viral archiving is still observed even in the presence of pyroptosis/superinfection. 
This makes sense, because less pyroptosis/superinfection occurs at lower virus loads that are maintained by the 
stronger immune response. With less pyroptosis/superinfection, the previously generated latent virus genomes 
are depleted to a lesser extent, allowing for more archiving.

These results reveal that in the presence of pyroptosis/superinfection of latently infected cells, the degree to 
which viral genomes are archived in the latent cell reservoir can depend on the strength of immune responses and 
the level of virus load. If virus load is relatively high, little archiving occurs. If virus load is suppressed to lower 
levels, more archiving occurs. During the long-term course of chronic HIV infection, virus load is at first rela-
tively low and over time can increase due to a variety of factors, such as immune escape. This leads to the model 
prediction that the degree of viral archiving can become less pronounced over time. Particularly, events such as 
immune escape can lead to an increase in virus load, and this can lead to a deletion of the previously maintained 
viral archive, and the dominance of the recent escape mutants in the latent reservoir. As mentioned before, a 
dominance of CTL escape mutants in the latent reservoir has been demonstrated in clinical data28, and our theory 
provides a plausible explanation. This is demonstrated specifically in the Supplementary Information, using an 
extension of our agent-based model (see Figure S1).

Discussion and Conclusion
Our work suggests that pyroptosis and/or the superinfection by productive virus of latently infected cells might 
be an important force that determines observed patterns of viral latency in HIV-1 infection, including the size 
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Figure 3. Archiving of viral genomes in the agent-based model assuming a relatively weak immune response 
against the virus. Computer simulations with and without pyroptosis/superinfection of latently infected cells 
are compared. The simulation tracks the time when latent genomes are generated during the course of the in 
silico infection, and the graphs are frequency distributions of the creation times of all latent virus genomes that 
are present at 1000 days post infection (in the latent reservoir, i.e. in cells that do not contain productive virus). 
(A) It is assumed that the latent reservoir has a half-life of about 6 months2. Each time step of the simulation 
corresponds to 0.1 days, and the probabilities per time step are given as follows. A = 0.045, A0 = 0.0003, 
G = 0.0001, B = 0.36, H = 0.01. During infection, Q = 0.95 is the probability of productive infection. The 
probabilities of CTL proliferation and CTL-induced inhibition of virus replication are determined by 
parameters C = 0.5, and F = 0.1, respectively. (B) Same simulation, assuming that the latent reservoir has a half-
life of about 31 months3. Parameters were the same, except A0 = 0.00006, G = 0.000015.

Figure 4. Influence of a stronger immune response on the archiving of viral genomes. Computer simulation 
was the same as in Fig. 3, except for the two parameters C = 10 and F = 10, which simulate a stronger immune 
response.
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of the latent reservoir in the acute and chronic phases of infection, and the replacement of CTL-sensitive with 
CTL-resistant virus in the latent reservoir. Both mechanisms (pyroptosis and productive superinfection of latently 
infected cells) act in the same way and are to a first approximation interchangeable with respect to the aspects 
studied here. It is likely that pyroptosis is the dominant mechanism that drives the dynamics, because the produc-
tive infection of latently infected cells is thought to be a relatively unlikely event, although an appropriate cytokine 
environment can significantly promote this process10. The concept that resting T cells are not infectible arises 
from studies utilizing blood-derived cells, which are highly quiescent and refractory to infection29. However, 
HIV-1 replicates in lymphoid and mucosal tissues, where an abundance of factors such as cytokines, chemokines 
and stromal cells induce a higher level of permissiveness to HIV replication30. Further experiments remain to be 
done to quantitatively investigate the importance of both processes for shaping the dynamics and composition of 
the latent reservoir.

However, even if neither pyroptosis nor superinfection of latently infected cells is eventually shown to occur at 
sufficient levels to impact the size and composition of the latent reservoir in HIV-1 infection, our model suggests 
that other, yet to be identified, mechanisms must likely be invoked to explain experimental and clinical data. 
Basic infection models without additional complexities, such as model (2), have difficulty to account for the data 
discussed here. Even if pyroptosis/superinfection are shown to be significant factors that influence the dynamics 
of latency, additional mechanisms might very well further make contributions (e.g. abortative infections, a higher 
activation status of cells due to high virus load, or a carrying capacity of the latent reservoir31). More work needs 
to be done to investigate the forces that shape the size and composition of the latent virus reservoir in HIV-1 
infection.

Any modeling result needs to be considered in the context of the assumptions that underlie the equations and 
the associated uncertainties (similar to experimental results depending on the underlying methodologies). Thus, 
we would like to highlight some uncertainties that are relevant in our models. (i) Latency generation: The prevail-
ing model of latency envisions infection of an activated T cells immediately before entry into quiescence26. This 
model has virtue of concordance with the observation that most latently infected cells are memory T cells that 
have been previously activated32. Our model is consistent with this mechanism. A higher degree of complexity in 
the pathways associated with the generation of latent viral genomes, however, has recently been demonstrated10, 
and could potentially result in the need for more complex modeling approaches. (ii) Latency maintenance: Our 
model assumed that in the absence of pyroptosis and superinfection, the maintenance and decline rate of the 
latent virus reservoir is governed by the basic death rate of latently infected cells, and their activation rate. More 
complex processes, however, might be at work31, 33. An emerging literature31, 32, 34 argues that additionally, home-
ostatic proliferative mechanisms in the memory T cell compartment can also contribute to this process. This 
includes the notion of a “carrying capacity” for the latent reservoir31, which by itself might account for a limited 
size of the latent reservoir. While the effect of proliferative processes can potentially be captured in our model 
through a reduction of the death rate parameter, these concepts can be explicitly incorporated into the models 
discussed here, should they turn out to be dominant drivers of the dynamics. (iii) Immune responses: The dynam-
ics of antiviral immune responses have been studied here in the context of minimally parameterized equations 
that have been extensively used in the literature13, 25. Differences in the formulation of the terms that characterize 
immune expansion can potentially result in different dynamics35. On the level of our investigation, however, this 
is unlikely to change results. We varied parameters that determine the strength of the immune response, which 
in turn have a major impact on the level of virus load at equilibrium. This has been shown to be a robust feature 
across many different immune responses models13, 35, thus indicating that the results reported here are robust in 
this respect.
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