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Suppression of collapse for two-
dimensional Airy beam in nonlocal 
nonlinear media
Qian Kong, Ning Wei, Cuizhi Fan, Jielong Shi & Ming Shen

Dynamics and collapse of two-dimensional Airy beams are investigated numerically in nonlocal 
nonlinear media with split step Fourier transform method. In particular, the stability and self-healing 
properties of the Airy beams depend crucially on the location and topological charge of the vortex when 
the beams carry angular momentum. The propagation of abruptly autofocusing Airy beams is also 
demonstrated in local and nonlocal media. In strongly self-focusing regime, with the help of nonlocality, 
stationary propagation of two-dimensional Airy beams can be obtained, which always collapse in local 
nonlinear media.

Self-accelerating Airy beams1, 2 have been a hot topic3–5 during the past decade, which shown that Airy beams 
have potential applications in different physical settings, such as particle clearing6, surface plasmon7, and gen-
eration of electron Airy beam8, etc. On the other hand, the dynamics of Airy beam propagating in nonlinear 
media9–13 have also drawn considerable attention, e.g., nonlinear generation of Airy beams14, spatial Airy sol-
itons15, 16, spatiotemporal Airy light bullets17, 18, as well as interactions and manipulation of Airy beams19–23. 
Furthermore, another interesting phenomena of collapse may happen when the effect of nonlinearity impact on 
an two-dimensional Airy beam24–26. In particular, Airy beams with higher powers in the main lobe were reshaped 
into a multifilamentary (collapse into particles) pattern induced by strong nonlinearity, which will affect the 
acceleration of the main Airy lobes25. When a vortex Airy beam propagating in a nonlinear media, the locations 
of collapse can be controlled by the initial power, vortex order, and modulation parameters26. In three dimension, 
under the action of strong self-focusing Kerr nonlinearity, the rapid collapse of three-dimensional Airy-vortex 
wave packets imposes a severe limitation on the propagation of the beam27.

In general, the collapse effect represents a strong mechanism for energy localization28, 29, which is a funda-
mental physical phenomenon well known in different physical subjects, such as plasma30, optics31, Bose-Einstein 
condensates32, and black hole of stars33. Different suggestions have been made on how to arrest the collapse, e.g., 
saturation of the nonlinearity29, alternating focusing-defocusing layers34, and optical gain35. Besides, recent stud-
ies have demonstrated that the application of nonlocal response (nonlinearity) is an effective way to prevent the 
catastrophic collapse of high-dimensional waves in nonlinear media36.

In optics, nonlocality means that the light-induced refractive index change of a material at a particular loca-
tion is determined by the light intensity in a certain neighborhood of this location37. Nonlocal nonlinearity exists 
in nematic liquid crystals38 and thermal media39. For the Airy beams, nonlocal nonlinear affect deeply the prop-
agation dynamics of self-accelerating Airy beams40–42 and their interactions42–44. What’s more, one of the most 
important properties of nonlocal nonlinearity is that it eliminates collapse in all physical dimensions for arbitrary 
shapes of the nonlocal response, as long as the response function is symmetric and has a positive definite Fourier 
spectrum36.

In this paper, we investigate numerically dynamics and collapse of two-dimensional Airy beam in nonlocal 
nonlinear media. The stability and self-healing properties of the beams depend crucially on the location and top-
ological charge of the vortex when the Airy beam carrying angular momentum. We also demonstrate the propa-
gation of abruptly autofocusing Airy beam in detail. In strongly self-focusing regime, with the help of nonlocality, 
we obtain the stationary propagation of two-dimensional Airy beams, which always collapse in local nonlinear 
media.
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Results
Dynamics of two-dimensional conventional Airy beam in nonlocal nonlinear media. In this sec-
tion, we study the dynamics of conventional two-dimensional Airy beam in nonlocal nonlinear media by direct 
numerical simulations with split-step Fourier transform method42. The profile of the nonlocal response function 
and its Fourier transform are shown in Fig. 1(a,b), respectively. We also assume the Airy beam is in the following 
form carrying optical vortex characterized by the topological charge m45, 46

ψ = = ⋅ + × + + +x y z A Ai x w Ai y w a x w y w x x i y y( , , 0) ( / ) ( / )exp[ ( / / )] [( ) ( )] , (1)
m

0 0

where A is the amplitude of the Airy beam, Ai(x/w) and Ai(y/w) denote the Airy functions, w is the beam width 
of the Airy beam, x0 and y0 denote the dislocation of the optical vortex from the origin along the x and y axes45, 46, 
and a > 0 is the the decaying factor to ensure containment of the infinite Airy tail and the finite power of the Airy 
beam1. For simplicity, we set w = 0.5 and a = 0.05 throughout this paper.

Firstly, the dynamics of two-dimensional fundamental Airy beam (the topological charge is m = 0) with lower 
power (smaller amplitude) propagating in linear media (free space) at different propagation distances z are dis-
played in Fig. 2(a). Here the propagation distances z is scaled by the diffraction length (Rayleigh range) d = w2/2. 
For comparison, we also show in Fig. 2(b) the intensity distributions of such beam in local self-focusing nonlinear 
media (σ = 0). From Fig. 2(a,b), it is obviously that the Airy beams self accelerate and travel along the identical 
accelerating trajectory during propagation in local nonlinear medium and free space24. However, the field dis-
tributions of the Airy beam during propagation in local nonlinear medium are different from that in free space. 
When the beam propagates in a local nonlinear medium, the intensity distribution of the central parts of the Airy 
beam becomes more intensive and the intensity distribution of the sides of the Airy beam becomes weaker than 
that of the beam during propagation in free space24, as shown in Fig. 2(a,b).

It is interesting that with further increasing initial amplitude (power) of the Airy beam in local nonlinear 
media, the intensity at the central parts of the major lobe dominates and eventually leads to a catastrophic collapse 
of the Airy beam, while the beam width still remains constant, as displayed in Fig. 2(c). This is because the linear 
effects, including diffraction, self-accelerating, and self-healing, can not balance the effect of strong self-focusing. 
In the regime of strongly nonlinear media, the nonlinearity may show manifestations of linear dynamics of the 
Airy beam, where part of a linearly propagating Airy beam profile was obscured and observed to be reconstructed 
after a few propagation distances25. Thus the Airy beam eventually undergoes a collapse into a multi-filaments 
pattern.

The collapse behavior of the Airy beam can be effectively prevented with the help of nonlocality, as shown in 
Fig. 2(d). It has been shown that nonlocality eliminates collapse in all physical dimensions for arbitrary shapes 
of the nonlocal response, as long as the response function is symmetric and has a positive definite Fourier spec-
trum36. In this paper, the Fourier transform of a Gaussian response function indeed has a positive definite Fourier 
spectrum, as shown in Fig. 1(b). Thus the nonlocality induces an effective attractive potential, which can com-
pletely suppress the collapse of the Airy beam, leading to the stable propagation of Airy beam even when their 
power is large enough. Besides the suppression of the collapse, we also numerically study the effect of nonlocality 
impacts on the propagation of Airy beams (not shown). The dynamics of Airy beams in weakly nonlocal media 
are similar with that in local Kerr media47. However, in the regime of strong nonlocality, the change of nonlinear 
refractive index of the media trends to linear48, and the dynamics of Airy beams are similar with that in free space.

When m ≠ 0, Eq. (7) represents an Airy beam carrying an optical vortex, which carries an orbital angular 
momentum45, 46. In Fig. 3(a–c), we show the propagation dynamics of the lower powered vortex Airy beam in 
local nonlinear media with the topological charge m = 1, m = 2, and m = 3, respectively. We also assume that the 
vortex centers are located at the position of the main lobe of the Airy beam, i.e., x0 = 0 and y0 = 0. We also numer-
ically check that these dynamics of the vortex Airy beams are almost similar with that in free space (not shown), 
for that, in the weakly nonlinear regime, the linear dynamics prevails and the parabolic trajectory of the Airy 

Figure 1. The profile of the Gaussian nonlocal response function (a) and its Fourier transform in (b).
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peak is unperturbed25. Many works have investigated the transverse acceleration velocity or speed of these vortex 
Airy beam45, however, we mainly focus on the self-healing properties49–51 of the vortex Airy beam in this paper.

From Fig. (3), the self-healing of the vortex Airy beam is apparent during the propagation. The main lobe is 
reborn at the corner again and persists undistorted. The vortex Airy beam evolves into a new fundamental-like 
Airy beam after the reconstruction during the self-healing process. In particular, the self-healing properties of the 
vortex Airy beam depend crucially on the topological charge m. To ensure that the vortex Airy beams could prop-
agate stably and the self-healing could happen, the amplitudes (power) of the beams should be smaller (larger) for 
larger (smaller) topological charges m. Furthermore, for vortex Airy beam with smaller topological charge m = 1, 
the beam is very easy to realize self-healing after few propagation distances, as shown in Fig. 3(a). While for the 
vortex Airy beam with larger topological charge, it is hard to realize self-healing at the same propagation distance, 
as shown in Fig. 3(b,c). It always requires larger distance for vortex Airy beam carrying larger topological charge 
to realize self-healing (not shown) due to the fact that the stability of optical vortex will become worse when its 
topological charge m increases.

We also find that the self-healing properties of the vortex Airy beam depend on the location of the optical 
vortex center. In Fig. (4), we show the properties of self-healing of lowest order vortex Airy beam (the topological 
charge m = 1, higher order topological charge can be treated in similar way) with different vortex positions x0 and 
y0 in local nonlinear media. After self-healing process, the vortex Airy beam turns into fundamental Airy beam, 
however, their intensity distributions are different with different x0 and y0. When x0 = 0 and y0 = 2, the optical 
vortex is located at minus y axis, the intensity along x axis is obviously stronger than that along y axis. At the 
propagation distance z = 8d, the beam realizes self-healing. Whereas, the intensity along y axis is stronger than 
that along x axis after self-healing, as shown in Fig. 4(a).

This phenomena can be explained by studying the internal transverse power flow of the vortex beam49. The 
power flows from the lobes along x axis towards the lobes along y axis in order to facilitate self-healing. The 
similar result with the parameters x0 = 2 and y0 = 0 is shown in Fig. 4(c). Another strange and interesting result 
happens when x0 = 2 and y0 = 2, as shown in Fig. 4(b), the main lobe disappears instead of two secondary lobes 
after self-healing. On the contrary, the intensity distributions along both x axis and y axis increase accordingly. 

Figure 2. The intensity distributions of two-dimensional fundamental Airy beam at different propagation 
distances in (a) free space, (b,c) local self-focusing nonlinear media (σ = 0), and (d) nonlocal nonlinear media, 
respectively. The initial parameters are m = 0, x0 = y0 = 0, A = 5 (a,b), and A = 10 (c,d). The degree of nonlocality 
of Fig. 2(d) is σ = 2.
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This indicates that when the vortex is located at the internal lobes, the power of the main lobe will flow towards 
the vortex along the 45° axis during self-healing process49.

With increasing the amplitude of the vortex Airy beam, the beam will also suffer from catastrophic collapse 
due to strong self-focusing effect, as displayed in Fig. 5(a). Here we only consider the case of m = 1 and x0 = y0 = 0. 
It should be emphasized that the detailed collapse dynamics of the vortex Airy beam in local nonlinear media 
have been extensively demonstrated by R. Chen et al.26, which shown the possibility of controlling and manipu-
lating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power and 
topological charge of the vortex Airy beam. In nonlocal nonlinear media, as shown in Fig. 5(b), we can obtain the 
stationary propagation and the self-healing of the vortex Airy beam with the help of nonlocality, which is always 
collapse in local media.

Dynamics of two-dimensional abruptly autofocusing Airy beam in nonlocal media. In this sec-
tion, we consider the propagation dynamics of radially symmetric waves, i.e., abruptly autofocusing waves52, 53, 
propagating in nonlocal media. This new families of Airy beams have some unique properties, such as they can 
autofocus by following a parabolic trajectory toward their focus, and suddenly increases by orders of magnitude 
right before its focal point52. It has been shown that the new class of Airy beams could be used in generation of 
optical bottle beams54 and trapping microparticles55. In nonlinear media, abruptly autofocusing spatiotemporal 
beams are able to reshape into nonlinear intense light-bullet wavepackets propagating over extended distances56.

We assume that the two-dimensional abruptly autofocusing Airy beam carrying an optical vortex character-
ized by the topological charge m is in the following form57

ψ = = ⋅
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− 
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− 








× +x y z A Ai r r
w

a r r
w

x iy( , , 0) exp ( ) ,
(2)

m0 0

where A is the amplitude of the abruptly autofocusing Airy beam, w = 0.5 is the beam width, r0 is a constant 
which determines the radial position of the main Airy ring57, ± represent the abruptly autofocusing Airy beam 
self-accelerate towards inward and outward, respectively, and a = 0.05 is the decay factor1.

In Fig. (6), we show the dynamics of two-dimensional inward accelerating abruptly autofocusing Airy beam 
propagating in local [Fig. 6(a–c)] and nonlocal [Fig. 6(d)] nonlinear media with the topological charge m = 0. 
When the amplitude of the beam is smaller, it is clear that the beam abruptly autofocuses after a certain distance 

Figure 3. The intensity distributions of a vortex Airy beam at different propagation distances in local self-
focusing nonlinear media (σ = 0). The initial parameters are x0 = y0 = 0, A = 2 (a), A = 0.2 (b), and A = 0.01 (c). 
The topological charges are m = 1 (a), m = 2 (b), and m = 3 (c), respectively.
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Figure 4. The intensity distributions of a vortex Airy beam at different propagation distances in local self-
focusing nonlinear media (σ = 0). The amplitude and the topological charge of the beam are A = 2 and m = 1. 
The location of the vortex are (a)x0 = 0, y0 = 2, (b)x0 = 2, y0 = 2, and (c)x0 = 2, y0 = 0, respectively.

Figure 5. The intensity distributions of a vortex Airy beam at different propagation distances in (a) local 
nonlinear (σ = 0) and (b) nonlocal nonlinear media, respectively. The initial parameters are m = 1, x0 = y0 = 0, 
and A = 8, respectively. The degree of nonlocality of Fig. 5(b) is σ = 1.
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of propagation, as shown in Fig. 6(b). Interestingly, the beam profile asymptotically takes the form of a Bessel 
beam55, i.e., a first order nondiffracting Bessel field [Fig. 6(b)]. Because of the beam accelerates inward, the 
profile of the Airy beam become smaller after autofocusing. When the amplitude of the beam is larger (strong 
self-focusing effect), symmetric breaking of the beam will happen due to the collapse effect, as shown in Fig. 6(c). 
We can also obtain stationary propagation and nonlinear autofocusing of such circularly symmetry Airy beam in 
nonlocal nonlinear media [Fig. 6(d)].

Similarly, we show in Fig. (7) the dynamics of two-dimensional outward accelerating abruptly autofocusing 
Airy beam propagating in local [Fig. 7(a–c)] and nonlocal [Fig. 7(d)] nonlinear media with the topological charge 
m = 0. When the amplitude of the beam is smaller, the beam will also abruptly autofocuses after a certain distance 
of propagation and takes the form of a Bessel beam55, as shown in Fig. 7(b). Whereas, because of the beam accel-
erates outward, the beam always expand during propagation, and the beam size of the Airy beam will be larger 
than its initial size after autofocusing. We can also obtain the collapse phenomena and the stationary propagation 
of the beam in local [Fig. 7(c)] and nonlocal [Fig. 7(d)] nonlinear media when the amplitude of the beam is larger 
enough, respectively. With the help of the attractive force induced by the nonlocality, from Fig. 7(b,d), we can see 
clearly the profile (radius) of the beam becomes smaller.

When m ≠ 0, Eq. (8) represents an abruptly autofocusing Airy beam carrying an optical vortex with the top-
ological charge m. In Figs (8 and 9), we show the intensity distributions of the inward and outward accelerating 
abruptly autofocusing vortex Airy beam with the topological charge m = 1 at some propagation distances in 
nonlinear media [(a–c) local and (d) nonlocal], respectively. From Figs 8(b) and 9(b), we can conclude that these 
Airy beams will also abruptly autofocuses after some propagation distance, which are similar with the case m = 0. 
The different results are that there always exist an optical vortex in the beam center after their autofocusing, on 
the contrary, no vortex exists when the topological charge is m = 0. When m ≠ 0, the abruptly autofocusing beam 
carrying angular momentum, which should be conservative during propagation27. Thus the beams take the form 
of the Laguerre Gaussian beam with zero intensity distributions in the center57. Their intensity peaks locate at the 
first ring of the beam.

With increasing the amplitude of the Airy beam, collapse of the self-accelerating beams in local nonlinear 
media will happen again, as shown in Figs 8(c) and 9(c). The Airy beams with higher order topological charge 

Figure 6. The intensity distributions of inward accelerating abruptly autofocusing Airy beam at different 
propagation distances in (a–c) local (σ = 0), and (d) nonlocal nonlinear media, respectively. The initial 
parameters are m = 0, r0 = 0.5, A = 1 (a,b), and A = 12 (c,d). The degree of nonlocality of Fig. 6(d) is σ = 5.
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are found to be more easier to collapse for that they have a worse stability than that with lower order topological 
charge. In nonlocal media, nonlocality provides a long-range attractive force on the autofocusing Airy beams 
carrying angular momentum, leading to the stationary propagation and autofocusing [Figs 8(d) and 9(d)] which 
always collapse in local media.

Discussions
The properties of Airy beams have drawn much attention during the past decade. Several works have concen-
trated on the propagation dynamics of the Airy beam, such as ballistic motion and self-healing49. As to the 
self-healing properties of an Airy beam carrying angular momentum, seldom people noticed the effect of the 
topological charge and the location of the vortex50, 51. In nonlinear media, the beams can propagate stably when 
the linear diffraction and nonlinear self-focusing balance each other. If the strength of self-focusing is stronger 
enough than the strength of linear diffraction, the Airy beams will suffer from catastrophic collapse24–27.

In local nonlinear media, two-dimensional fundamental Airy beams with higher powers always collapse 
into particles induced by strong self-focusing effect24, 25. When a vortex Airy beam propagating in a nonlinear 
media, the locations of collapse can be controlled by the initial power, vortex order, and modulation parameters26. 
However, no one knows how to prevent the collapse of the Airy beams. In this paper, we also show in Figs 2(c) 
and 5(a) the collapse of two-dimensional fundamental and vortex Airy beams in local nonlinear media. However, 
the collapse of Airy beams can be prevented in nonlocal media, as shown in Figs 2(d) and 5(b). The effect of 
nonlocality is also applicable to two-dimensional abruptly autofocusing Airy beams [Figs (6–9)] which has not 
been studied before.

In summary, we have investigated numerically dynamics and collapse of two-dimensional Airy beam in non-
local nonlinear media. The stability and self-healing properties of the beams depended crucially on the loca-
tion and topological charge of the vortex when the beam carry angular momentum. We also demonstrated the 
propagation of abruptly autofocusing Airy beam in detail. In the regime of strong self-focusing, we obtained the 
stationary propagation of two-dimensional Airy beams with the help of nonlocality as long as it is symmetric and 
has a positive definite Fourier spectrum, which always collapse in local nonlinear media.

Figure 7. The intensity distributions of outward accelerating abruptly autofocusing Airy beam at different 
propagation distances in (a–c) local (σ = 0), and (d) nonlocal nonlinear media, respectively. The initial 
parameters are m = 0, r0 = 5, A = 1 (a,b), and A = 12 (c,d). The degree of nonlocality of Fig. 7(d) is σ = 5.
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It should be emphasized that our results obtained here are not only applicable to two-dimensional conven-
tional and abruptly autofocusing Airy beams, but also applicable to other two-dimensional self-accelerating 
beams. In the future work, we would like to study the dynamics of three dimensional Airy beams1, 27, 56, 58, 59 with 
large power in nonlocal media. We will show whether nonlocality could suppress their catastrophic collapse, and 
this will be interesting of course.

Methods
Basic equations. In this paper, we consider a two-dimensional Airy beam propagating in a nonlocal non-
linear media. The slowly varying beam envelope of the Airy beam ψ (x, y, z) can be described by the normalized 
nonlocal nonlinear Schrödinger equation42,

ψ ψ ψ δ ψ∂
∂

+
∂
∂

+
∂
∂

+ =i
z x y

n I( ) 0,
(3)

2

2

2

2

where the variables x, y and z are the normalized transverse and longitudinal coordinates, respectively, scaled by 
the characteristic transverse width w and the corresponding Rayleigh range d = kw2/222. δn(I) is the nonlinear 
refractive index change of the nonlocal nonlinear media, which can be represented by the following convolutional 
form:

∫δ ψ= → − →′ →′ →′n I R r r r z d r( ) ( ) ( , ) , (4)
2

here →r x y( , ) is the vector spatial coordinate, →R r( ) is the normalized nonlocal response functions of the media 
which satisfies the normalized condition ∫ → → =R r d r( ) 144.

The system of Eq. (1) conserves the total power

Figure 8. The intensity distributions of inward accelerating abruptly autofocusing Airy beam at different 
propagation distances in (a–c) local (σ = 0), and (d) nonlocal nonlinear media, respectively. The initial 
parameters are m = 1, r0 = 0.5, A = 0.5 (a,b), and A = 3 (c,d). The degree of nonlocality of Fig. 8(d) is σ = 5.
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∫ ∫ ψ=P x y dxdy( , ) , (5)
2

and the Hamiltonian

∫ ψ ψ δ=


 ∇ −





→H n I d r1
2

( ) ,
(6)

2 2

respectively.

Nonlocal response function and Fourier transform. Without loss of generality, in this paper, we con-
sider the case of the so-called Gaussian nonlocal response functions42, 60

πσ σ
→ − →′ =





−

→ − →′ 



R r r r r( ) 1 exp ( ) ,

(7)2

2

2

with a characteristic width σ which represents the degree of the nonlocality, as displayed in Fig. 1(a). We also 
show in Fig. 1(b) the Fourier transform 

→
R k( ) of →R r( ) by the following calculation36

∫
σ→

= → →
⋅ → → =





−







R k R r i k r d r k( ) ( )exp( ) exp
4

,
(8)

2 2

with 
→

= → + →k k x k yx y  is the wave vector in frequency domain.

Figure 9. The intensity distributions of outward accelerating abruptly autofocusing Airy beam at different 
propagation distances in (a–c) local (σ = 0), and (d) nonlocal nonlinear media, respectively. The initial 
parameters are m = 1, r0 = 5, A = 0.5 (a,b), and A = 2 (c,d). The degree of nonlocality of Fig. 9(d) is σ = 5.
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