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Multilevel Evolutionary Algorithm 
that Optimizes the Structure 
of Scale-Free Networks for the 
Promotion of Cooperation in the 
Prisoner’s Dilemma game
Penghui Liu & Jing Liu

Understanding the emergence of cooperation has long been a challenge across disciplines. Even if 
network reciprocity reflected the importance of population structure in promoting cooperation, it 
remains an open question how population structures can be optimized, thereby enhancing cooperation. 
In this paper, we attempt to apply the evolutionary algorithm (EA) to solve this highly complex problem. 
However, as it is hard to evaluate the fitness (cooperation level) of population structures, simply 
employing the canonical evolutionary algorithm (EA) may fail in optimization. Thus, we propose a new 
EA variant named mlEA-CPD-SFN to promote the cooperation level of scale-free networks (SFNs) in the 
Prisoner’s Dilemma Game (PDG). Meanwhile, to verify the preceding conclusions may not be applied to 
this problem, we also provide the optimization results of the comparative experiment (EAcluster), which 
optimizes the clustering coefficient of structures. Even if preceding research concluded that highly 
clustered scale-free networks enhance cooperation, we find EAcluster does not perform desirably, while 
mlEA-CPD-SFN performs efficiently in different optimization environments. We hope that mlEA-CPD-SFN 
may help promote the structure of species in nature and that more general properties that enhance 
cooperation can be learned from the output structures.

The Prisoner’s Dilemma Game (PDG) is a popular abstract mathematical method and has been employed in 
biology to explain the emergence and persistence of cooperation behavior among selfish individuals1–8. After all, 
survival of the fittest is a widely accepted natural selection rule, and individuals employing the selfish strategy 
might be expected to be more likely to persist. After carefully studying PDG, researchers found that organisms 
may still form a cooperative community even if they all act entirely for their own interest. Even so, researchers still 
found it hard to explain large-scale cooperation in reality, as defection usually dominates in their simulations. To 
explain this puzzle, researchers have long been exploiting the deeper mechanisms.

In the past decades, network reciprocity, proposed by Nowak et al., has had wide influence in this avenue of 
research. Individuals are constrained by spatial structure to play only with their immediate neighbors8. Nowak  
et al. concluded that topology constraints influence the evolution of cooperation (confirmed years later). After 
that, many extended studies have contributed to network reciprocity. In the early stages, researchers focused 
on the single layer networks: They found that population structure plays a determinate role in the evolution of 
cooperation9 and cooperators in PDG are likely to form clusters to defend against defectors10. They revealed the 
potential positive relationship between cooperation and some network properties, such as heterogeneity7, 11 and 
clustering coefficients12. And they also focused on how error and attack on the poulation structures may influence 
the evolution of cooperation13. Recently, researchers have analyzed the evolutionary game in interdependent net-
works, as populations in reality are not isolated and interaction exists between different layers14–17. These studies 
have reflected that interdependence may induce some new mechanisms that enhance cooperation and fixed the 
cooperation behavior on the system. And György et al. in ref. 18 reviewed how the population structure can mod-
ify long-term behavioral patterns in evolutionary games.
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In addition to studying how network reciprocity may influence the evolution of cooperation, some researchers 
have focused on investigating the potential behavior whereby players may adjust their interaction with others 
based on the gaming results. This is a natural phenomenon since population structure in reality may dynamically 
change during the game process. A representative method in this subject area is the coevolutionary rule, which 
was designed and proposed by Zimmermann et al. in ref. 19. Even if a large number of studies have contributed 
to this subject, most works in this area can be divided into those that employ strategy independent rules for con-
nection adaptation20–22 and those that take strategies or their performance as factors to influence the population 
reorganization23, 24. Perc et al. have also provided a review of this research in ref. 25.

While network reciprocity seems to have preliminarily explained large-scale cooperation in reality, some 
researchers have practically analyzed the real human game. Their experiment results revealed that humans do 
not base their strategy decisions on other’s payoffs while playing PDG. In addition, Gracialázaro et al. in their 
experiments have found the existence of a population structure does not seem to have an influence on the global 
outcome of cooperation26. Following these experiments, researchers have also found that cooperation obviously 
depends on the strategy updating rule. Cimini et al. in ref. 27 have analyzed cooperation frequency in a simula-
tion where different strategy updating rules are introduced. They found cooperation frequency assessed under 
the imitation-based strategy updating rule depends heavily on the population structure, but network reciproc-
ity seems to have little effect on the game dynamics when individuals do not take neighbors’ payoffs into con-
sideration (non-imitative rule). These experiments and extended works seem to have put an end to network 
reciprocity. However, it remains difficult to conclude that population structure has little effect on promoting 
cooperation, as different strategy updating rules place different levels of emphasis on different game processes in 
nature. Evolutionary dynamics based on payoff comparisons are appropriate to model biological evolution, while 
they may not apply to social or economic contexts26. Moreover, Carlos et al. has emphasized in their research that 
their conclusion applies only to human cooperation, and network reciprocity may still be relevant to cooperation 
in other contexts.

Therefore, even if the relevance between network reciprocity and cooperation in social or economic issues 
remains controversial, population structure is still essential to cooperation in biological evolution. Moreover, just 
as group selection indicates that cooperative groups may be more likely to survive in nature than uncooperative 
ones, cooperation is essential to the survival and evolution of species in nature. A high cooperation level can help 
species to maintain high competitiveness in nature, which may partially explain why helping family members 
finally helps the individual itself (Kin selection). Therefore, methods to help optimize the population structure 
should be important. Even if quite a lot of studies have contributed to the promotion of cooperation in the popu-
lation, it remains difficult problem28. One representative breakthrough that has been made on this subject is the 
introduction of coevolutionary rules, which has provided a way to help understand the self-reorganizing ability 
of the population. Even so, little has been done to investigate how a population structure can be constructed or 
adjusted through man-intervention. And cooperation promotion methods that do not rely on the self-adapt abil-
ity of a population may shed light on this problem.

In this paper, we design a variant of evolutionary algorithm to optimize the population structure and thereby 
enhancing cooperation. Even if much of the preceding research has found a correlation of cooperation and some 
network properties, naively applying these conclusions to our problems may be quite problematic since these 
conclusions are mostly obtained based on specific network models and lack generality. Therefore, we employ the 
cooperation level of population structures as the objective value of our algorithm.

To our knowledge, no appropriate simple approach has been proposed to exactly determine the cooperation 
level of different population structures. Moreover, the evaluated cooperation level of structures actually fluctuates 
within a range. Therefore, the evaluation of structures within EA is fuzzy and may interfere with the selection of 
EA over the elite solutions. In the field of evolutionary computation, researchers also refer to this interference that 
leads to potential failure in optimization as the “EA cheat”. Apparently, simply employing the canonical evolu-
tionary algorithm (EA) may fail in optimization, even if EA have been applied to many engineering problems29–36. 
Even so, there are two widely accepted methods to reduce the evaluation error of different structures’ cooperation 
level: (1) Prolong the simulation time of game evolution. (2) Average over independent evaluations. However, the 
corresponding computation cost cannot be ignored.

To successfully apply EA to the optimization of population structure, we propose a new EA variant named 
mlEA-CPD-SFN to promote cooperation in the Prisoner’s Dilemma Game (PDG). Within mlEA-CPD-SFN, a 
modified local search operator named multilevel evolutionary operator is designed for the purpose of revising 
the wrong-filtering solution in EA population and exploiting solutions with potential higher cooperation levels. 
Therefore, we designed a memory structure (restoration list) within the operator to record some reliable solutions 
for the revision and some rules for the operator to control the search bias.

To test the performance of mlEA-CPD-SFN, different types of scale-free structures have been employed, and 
optimization has been constrained not to change the initial degree distribution. Meanwhile, to verify that the 
preceding conclusions may not be applied to this problem, we also provide the optimization results of the com-
parative experiment (EAcluster), which optimizes the clustering coefficient of structures. Even if the preceding 
research concluded that highly clustered scale-free networks enhance cooperation, we still find EAcluster cannot 
perform as satisfactorily as mlEA-CPD-SFN does. Moreover, we also find that the mlEA-CPD-SFN can perform 
well and simultaneously maintain a low computation cost (details in III). Finally, to verify the adaptability of 
mlEA-CPD-SFN subject to different optimization environments, different strategy update rules are employed in 
our experiments. The simulation results verify the adaptability of mlEA-CPD-SFN.
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Results
Prisoner’s Dilemma Game and Evaluation of Population Structure. Understanding the emergence 
of cooperation in the context of Darwinian evolution has been a challenge in recent decades. Even if relevant works 
in this field are almost entirely theoretical, it is quite likely to have broad-reaching implications for the future.

PDG is one of the most commonly used tools to help explain how cooperation endures in nature. In PDG, 
the defectors receive the highest reward T (temptation to defect) when defecting to a cooperator who receives the 
lowest payoff S (sucker value). If both of the players choose the same strategy, they receive a payoff R as a reward 
for cooperation or P as punishment for defection. Moreover, T, P, S, R follow the rule T > R > P > S. As a result, 
in a single round of PDG, defection is the best strategy no matter what the opponents’ strategies are, even though 
all players would be better off if they all cooperate.

Population structures provide the basic organization of the game. In ref. 10, players interact only within a 
limited local neighborhood. When a site x is updated, the current occupant and all neighbors around compete to 
recolonize this site with their offspring. Those offspring keep the same strategy as their parents. The probability of 
neighbor y succeeding in reproduction is:
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where d> = max{dx, dy}, D = T-S, di marks the degree of node i and Pi marks the payoff of i. Therefore, the proba-
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an offspring of one neighbor takes over site x. The relative probability for the success of neighbor y is 
Wsx←sy/∑lWsx←sy, where l marks neighbors of x. In this paper, the synchronous update method is employed.

Generally, individuals in a population are initially designated as cooperators or defectors with equal probabil-
ity. And a corresponding cooperation level is obtained through averaging over generations after the equilibrium 
of a population is reached. Thus, the evaluated cooperation level of structures may naturally fluctuate among 
independent evaluations.

To illustrate this phenomenon, the distribution of evaluated cooperation level is given in Fig. 1. Each 
sub-graph in Fig. 1 contains 5000 independent evaluated results of a BA network. Meanwhile, two different eval-
uation modes have been designed to obtain these simulation results on the same group of population structures: 

Figure 1. Evaluation distribution of tested population structure (BA network). In this experiment, population 
structures with different sizes have been tested. It is obvious that the distribution of cooperation frequency 
obtained under two different evaluation modes is similar (horizontal contrast) and the distribution of 
cooperation frequency gets broader when size of population gets smaller (vertical contrast).
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Mode-A and Mode-B. In Mode-A, each equilibrium cooperation level is obtained by averaging 0.1 N generations 
after a transient period of N generations. In Mode-B, each equilibrium cooperation level is obtained by averaging 
N generations after a transient period of 10 N generations.

Apparently, the independent evaluation results vary within a certain range, which may get wider with the 
decrease of the tested structure scale. Moreover, dramatically prolonging the simulation time cannot decrease the 
fluctuation range of evaluation in an obvious way. Meanwhile, the distributions of evaluated cooperation levels 
obtained under Mode-A and Mode-B are similar, which indicates that Mode-A and Mode-B both provide a nec-
essary transient period for the equilibrium of population.

Therefore, the fluctuation of evaluation may interfere with the selection of EA over the elite solutions. As 
overlapping may exist between the evaluation distribution of different structures, there naturally exists a certain 
probability that a worse structure is mistaken by EA as the superior. This phenomenon is termed the “EA cheat” 
and is a knock down to the algorithm.

To avoid unnecessary computation cost, we employ Mode-A to evaluate the cooperation level of structures in 
our paper. Moreover, we introduce the multi-sampling method to average over independent evaluations, thereby 
approaching the ideal mean value of the evaluation distribution. To analyze the effect of this approach, the new 
evaluation distributions obtained under the multi-sampling method are provided in Fig. 2. On the whole, the 
multi-sampling method can help reduce the evaluation error of structures. However, different sampling numbers 
may be necessary toward different evaluation distributions of structures, which explains why the fluctuation 
range in Fig. 2(c) is wider than that in Fig. 2(b). Therefore, it is difficult to determine an appropriate sampling 
number, not to mention the fact that this method only decreases the fluctuation range without effectively dealing 
with the EA cheat (e.g., if the ideal mean value of two evaluation distributions is close enough).

Multilevel Evolutionary Operator and mlEA-CPD-SFN. Previous simulation results have revealed 
that the evaluation of structures may fluctuate and interfere with the selection of EA over the elite solutions. 
Multi-sampling may help reduce evaluation error. But determining an appropriate sampling number will be dif-
ficult. Moreover, the corresponding increase in computation cost is unbearable.

Therefore, the reserved (potential) structures should be repeatedly sampled more to ensure reliability of their 
evaluation results. However, the abandoned (mediocre) structures should be repeat sampled less to decrease 
computational cost. With this in mind, we propose a local search operator variant named multilevel evolutionary 
operator (see Methods) to achieve this. And for a timely revision of the wrong-filtering solution caused by the EA 
cheat, some reliable structures are saved as substitutes and a memory structure (see Methods) is designed. Given 
these, we further propose a new EA variant named mlEA-CPD-SFN (see Methods) to optimize the structure of 
scale-free networks for the promotion of cooperation in Prisoner’s Dilemma game.

Optimizing Clustering Coefficient through EA. Assenza et al. have revealed the enhancement of coop-
eration in highly clustered scale-free networks12. Therefore, optimizing the clustering coefficient may help pro-
mote the cooperation level of scale-free structures. The objective value in EAcluster is the clustering coefficient 
of structures, which can be obtained as follows: Suppose neighbors of nodes i construct a graph represented 

Figure 2. The evaluation distribution obtained under the multi-sampling method. Different sampling numbers 
have been tested. (a) 5 samplings, (b) 10 samplings, and (c) 20 samplings. On the whole, the multi-sampling 
method can help reduce the evaluation error of structures. However, different sampling numbers may be 
necessary toward different evaluation distributions of different structures, which explains why the fluctuation 
range in Fig. 2(c) is wider than in Fig. 2(b).
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by Γi and its edge number is |E(Γi)|. Then, the clustering coefficient of node i would be Clusteri = |E(Γi)|/
(di × (di − 1)/2). Therefore, the clustering coefficient of a structure should be Cluster = (ΣiClusteri)/N.

Two types of scale-free networks are employed to test the performance of EAcluster: Barabási Albert networks 
(BANs)37 and Holme and Kim networks (HKNs: p = 1). BANs is a type of commonly used scale-free network, 
while the HKNs is one of its variants and may have higher clustering coefficients in pairs with a higher p (p ∈ [0,1]) 
for construction12. For fair comparison with mlEA-CPD-SFN, canonical local search operator is designed within 
EAcluster, and the maximum generation of EAcluster is set to 120 where evolution of EAcluster has almost converged. 
The simulation results are given in Fig. 3.

Apparently, optimizing the clustering coefficient of scale-free structures can help promote cooperation 
in PDG. However, the efficiency of EAcluster is quite limited. Moreover, as EAcluster fails in the optimization of 
500-node BANs, we can conclude that naively applying preceding research conclusions to the practical optimiza-
tion of structures may not perform desirably and sometimes maybe problematic.

Efficiency of mlEA-CPD-SFN in Optimizing Population Structure. In this part, the same structures 
are employed to test the performance of mlEA-CPD-SFN (see Methods). Two types of mlEA-CPD-SFN and a 
hybrid mlEA-CPD-SFN are considered:

•	 Only one level in each pyramid: mlEA-CPD-SFN1 (shortened to lv1).
•	 Five levels in each pyramid: mlEA-CPD-SFN5 (shortened to lv5).
•	 Only one level in each pyramid but multi-sampling is employed for initial evaluation: mlEA-CPD-SFN1-M 

(shortened to lv1-M).

To protect the best record in the restoration list, α in mlEA-CPD-SFN1 is set to 0, while α = 0.5 in 
mlEA-CPD-SFN5. Within mlEA-CPD-SFN1-M, initial evaluation of structures is obtained by averaging over 5 inde-
pendent evaluations. The optimization results of these algorithms are given in Fig. 4.

The initial evaluation of structures in mlEA-CPD-SFN1 and mlEA-CPD-SFN5 contains only one sampling. 
Therefore, compared with mlEA-CPD-SFN1-M, these two mlEA-CPD-SFNs in theory are more likely to overesti-
mate or underestimate the cooperation level of structures. As the performance of mlEA-CPD-SFN1-M surpasses 
mlEA-CPD-SFN1, we can conclude that accurate evaluation of structures obviously influences the optimization 
results. This conclusion also explains why the performance of mlEA-CPD-SFN1 worsens when optimizing smaller 
structures. Even if the complexity of a problem synchronously descends with the structure scale, the corresponding 
evaluation error gets more obvious (refer to Fig. 1). Even so, in our experiments, mlEA-CPD-SFN5 performs better 
than mlEA-CPD-SFN1-M in general. This phenomenon reveals that the level of mlEA-CPD-SFN is positive to its per-
formance. The restoration list provides records to maintain the evolving of the EA population subject to the attack 
of “EA cheat”. With the increase in level, more history records are available, and these records can be saved longer.

The evaluated cooperation level of structures provided in our paper is obtained by averaging over 5000 inde-
pendent evaluations. Therefore, these simulation results should be reliable. However, further investigation regard-
ing whether prolonging simulation time will influence our results should be undertaken, as those results are 
obtained under Mode-A with the purpose of saving computation cost. Thus, we prolong the simulation time and 
track the trend in cooperation during the game process (Fig. 5). Each data point within the simulation results is 
obtained through averaging over 500 independent runs (50 runs/structure). It is apparent that prolonging simu-
lation time has little influence upon the evaluation results as cooperation frequency has almost converged around 
1.1 N generation (Mode-A).Therefore, the simulation results we obtain should be credible. In addition, we can 

Figure 3. Simulation results of EAcluster in optimizing population structure for the promotion of cooperation in 
PDG. Each group contains 10 independent structures whose evaluated cooperation level lies within a gray bar 
(black points mark the mean value). On the whole, naively optimizing the clustering coefficient of a population 
structure may promote cooperation in PDG, but it is not efficient enough. Moreover, sometimes this method may 
fail and produce a worse structure, as shown in the optimization of 500-node BANs (the mean value gets smaller).
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Figure 4. Simulation results of lv1, lv5 and lv1-M in optimizing population structure for the promotion of 
cooperation in PDG. Each group contains 10 independent structures whose evaluated cooperation level lies 
within a gray bar (black points mark the mean value). On the whole, these algorithms all efficiently promote 
cooperation in PDG, and the performance of mlEA-CPD-SFN5 surpasses those of the others.

Figure 5. Mean cooperation frequency of structures during the game process. (a) 1000-node BANs. (b) 500-
node BANs. (c) 1000-node HKNs. (d) 500-node HKNs. Apparently, prolonging simulation time has little 
influence upon the evaluation results, as cooperation frequency has already converged around 1.1 N generation 
(Mode-A). Moreover, mlEA-CPD-SFN5 performs best in optimizing population structure and mlEA-CPD-
SFN1-M follows. The optimization effect of these three algorithms is obvious.
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conclude that mlEA-CPD-SFN performs effectively in optimizing population structure and promoting coopera-
tion in PDG (mlEA-CPD-SFN5 performs best, and mlEA-CPD-SFN1-M follows).

We further analyze the optimization characteristic of mlEA-CPD-SFN and explore its advantages in optimi-
zation. Therefore, we provide the running time and evaluation number of the above three algorithms in Table 1.

Apparently, the computation cost of mlEA-CPD-SFN1-M surpasses those of the others (almost triple). Thus, 
the multi-sampling method is paired with a dramatic increase in computation cost. However, mlEA-CPD-SFNn 
performs well and simultaneously maintains a low computation cost. This is due to the basic principle of 
mlEA-CPD-SFN: The reserved (potential) structures should be repeatedly sampled more to ensure reliability of 
their evaluation results. However, the abandoned (mediocre) structures should be repeat sampled less to decrease 
computational cost. In addition, the structure of the restoration list is irrelevant to the evaluation of structures.

Adaptability of mlEA-CPD-SFN to Different Update Rules. Previous research has concluded that 
update rules influence the cooperation level of structures27. Therefore, investigation of mlEA-CPD-SFN’s adapt-
ability to different strategy update rules is necessary. Two common strategy update rules are additionally 
employed in our experiments:

•	 Fermi rule: A neighbor (Supposed as y) of x is chosen randomly. The imitation probability for y to learn from 
x is = + −←W P P k1/(1 exp(( )/ ))s s y xx y

, where Pi is the payoff of individual i and k denotes the amplitude of 
noise and is set to 0.1.

•	 Unconditional imitation rule: Each individual x imitates the neighbor y with the largest payoff, provided Py > Px.

The configuration of algorithms remains unchanged. As cooperation almost dominates upon HKNs(p = 1) 
under the Fermi rule when the cost to benefit ratio r = 0.95, we partially employ HKNs(p = 0.5) to test the per-
formance of algorithms. Moreover, performance of mlEA-CPD-SFN10 (10 levels in each pyramid: lv10) is also 
provided in Fig. 6. Notably, the simulation time to evaluate the initial and optimized structures in this part is set 
to 22000 generations, and the equilibrium cooperation level of structures is obtained by averaging the last 2000 
generations (like the results in Fig. 5). Therefore, we do not further provide the corresponding mean cooperation 
frequency of structures during the game process.

Overall, these algorithms all successfully promote cooperation in PDG (Fig. 6). Therefore, we can conclude 
that mlEA-CPD-SFN is adaptable to different strategy updating rules. Moreover, the level of mlEA-CPD-SFN 
apparently influence its efficiency in performance. Finally, we can see mlEA-CPD-SFN1 apparently fails in some 
optimization, while mlEA-CPD-SFN1-M performs well. This phenomenon verifies that the evaluation error may 
cheat EA and thereby cause the failure of optimization.

Note that unlike other strategy updating rules, the unconditional imitation rule leads to a deterministic dynamic. 
Therefore, the initialized distribution of strategy plays an important role in the final cooperation frequency, and 
thereby, the evaluation of structures should be more unstable. This may explain why mlEA-CPD-SFN1-M performs 
best under the unconditional imitation rule even if these algorithms all perform effectively.

Discussion
Cooperation is essential in many aspects of life. In biology, the prisoner’s dilemma game (PDG) has long been 
used to help explain how cooperation endures in nature. As cooperation is highly relevant to the competitiveness 
of groups in nature, understanding cooperation in PDG and proposing methods of promotion should have signif-
icant implications. To our knowledge, although many well-known mechanisms have provided ways to understand 
the self-reorganizing ability of a population toward an optimal situation for cooperation, little has been done 
to investigate how to construct or adjust the population structure with man-intervention, even if the preced-
ing research recognizes its importance. Therefore, cooperation optimization methods that do not rely on the 
self-regulation mechanism of a population may shed light on this problem.

The contributions of this paper are summarized as follows: (1) We propose a new EA variant named 
mlEA-CPD-SFN to optimizes the structure of scale-free networks for the promotion of cooperation in the 
Prisoner’s Dilemma game without changing the initial structures’ degree distribution. (2) We reveal that evalu-
ation error of population structures may cause the “EA cheat” and canonical evolutionary algorithm (EA) may 
fail in optimization. (3) Different types of scale-free structures and updating rules have been applied to verify the 
performance of mlEA-CPD-SFN. (4) We provide the optimization results of the comparative experiment (EAcluster) 
and reveal that naively applying preceding research conclusions to the practical optimization of structures may 
not perform desirably and sometimes maybe problematic. (5) The experimental results show that mlEA-CPD-SFN 
can perform well in various situations and simultaneously maintain a low computation cost.

We hope mlEA-CPD-SFN may help promote the structure of species in nature and that more general properties 
that enhance cooperation can be learned from the output structures.

parameter mlEA-CPD-SFN1 mlEA-CPD-SFN1-M mlEA-CPD-SFN5

Running time 18893 s 58429 s 20724 s

Evaluation number 143270 454800 135236

Table 1. The evaluation number and running time of these three algorithms.
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Methods
Restoration List. Even if the “EA cheat” may lead to some wrong-filtering solution in the EA population, 
timely revision still may save EA from failure in optimization. Therefore, a hierarchical memory structure (given 
in Fig. 7) is designed to backup some reliable solutions in case of need. There are 2Ω pyramid-like sub-lists in the 
restoration list, and each contains some vacant spaces for records. Notably, records in the upper pyramid are prior 
to those in the bottom.

Ln,m marks the mth record of the nth pyramid, and Ln marks the nth pyramid. Ln is responsible for nth solution 
in the EA population. The reason to separate the memory structure into numbers of parts is: (1) Maintain the 
diversity of the EA population and to avoid premature convergence of algorithm. (2) Maintain the parallelism of 
the EA. (3) Enable communication among pyramids with the help of computing characteristic of EAs.

Figure 6. Simulation results of lv1, lv1-M, lv5 and lv10 in optimizing population structure for the promotion 
of cooperation in PDG. Each group contains 10 independent structures whose evaluated cooperation level lies 
within a gray bar (black points mark the mean value). The results in the upper (bottom) row are obtained under 
the Fermi rule (unconditional imitation rule). Overall, these algorithms all effectively promote cooperation in 
PDG. mlEA-CPD-SFN10 performs best under the Fermi rule, while mlEA-CPD-SFN1-M performs best under the 
unconditional imitation rule.

Figure 7. Restoration list.



www.nature.com/scientificreports/

9Scientific RepoRts | 7: 4320  | DOI:10.1038/s41598-017-04010-2

Basic Strategies for Multilevel Evolutionary Operator. The basic rules for multilevel evolutionary 
operator are: (1) Some supplementary rules for the restoration list. (2) Rules to compare structures with different 
sampling numbers. Note that sum marks the sum of evaluation results and num marks the number of evaluations 
(sampling number); e.g.: if a structure has been evaluated twice, num = 2 and sum is the total of the evaluation 
results. Therefore Ii = {Gi, sumGi, numGi} marks the ith solution in the EA population. G = (V, E) is used to repre-
sent a population structure (graph), where V = {v1, v2, …, vN} is the set of nodes and E = {eij | i, j ∈ V and i ≠ j} is 
the set of edges in the structure.

(1) Four rules are designed for the restoration list: insertion rule, mutation rule, sorting rule, and information 
update rule.

•	 The insertion rule: Suppose we attempt to backup the ith solution to the restoration list. If there are vacant 
spaces in Li, this solution is inserted directly at the bottom of Li. Otherwise, this solution should clear out 
some old records with smaller avg = sum/num and num first. If no vacant space is ready, this solution will not 
be backed up.

•	 The mutation rule: Suppose ith solution has a larger avg than Li,m. Even if the insertion rule is unsatisfied, it 
may still take the place of Li,m with probability αmax-m (max is the number of the vacant space in Li).

•	 The sort rule: Solutions in pyramids are prioritized in terms of their avg, and sort_list(i) marks the sorting 
operation on the ith pyramid.

•	 The information update rule: The backup should be updated synchronously if the sum or num of its ontology 
is updated and record_synchronize(Li,m, sum, num) is used to denote the update operation of Li,m.

(2) Two comparison strategies are designed to compare structures with different sampling numbers. Strategy 
1 is used to compare solutions in the EA population and strategy 2 is used to compare the solutions in the EA 
population and restoration list.

Strategy 1 (Ii and Ij): if avgGi > avgGj, Ii is better than Ij.
Strategy 2 (Ii and Ij (record)): We suppose Gi’ is a variant from Gi. (i) Only when avgGi < avgGi’ < avgGj, Ij is con-

sidered more optimal than Ii. (ii) Only when avgGi’ > avgGi > avgGj, Ii is considered more optimal than Ij. Details of 
how Gi’ is produced are given below.

Multilevel Evolution Operator: A Variant from the Local Search Operator. Local search operator 
is a widely employed method to improve the exploitation of EA through continuous fine-tuning of solutions. In 
our paper, we employed an edge switching process (in Fig. 8) to complete the fine-tune of the current solution 
Gi and obtain Gi’: (a) A node u (du ≥ 2) with its two neighbors i and j (di, dj ≥ 2) are selected. (b) Edges ejk and eim 
(u ≠ i ≠ j ≠ k ≠ m) are selected. (c) Remove ejk, eim and add eji, ekm (eji, ekm ∉ Gi). edge_switch(Gi, vu, vj, vi, vk, vm) 
marks this edge switching operation (step c), and node_select(vu, vj) marks the node selecting process (step a-b).

Canonical local search operator only compares and selects between the initial and adjusted solutions in terms 
of their evaluation results. However, the records in the restoration list are also considered by the multilevel evo-
lutionary operator (Suppose Ii, Ii’ mark the initial solution and adjusted solution, while Li,0 is the top level record 
in the ith pyramid):

Figure 8. Structure adjusted before and after edge switching. (a) Initial structure Gi. (b) Structure adjusted (Gi’). 
Remove ejk and eim from structure Gi in (a); then, eji and ekm are added, thereby gaining a new structure Gi’ in (b).
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•	 If avgGi > avgGi’: (a) Ii’ is abandoned, and Ii is reserved. (b) Evaluate the structure of Ii once more, and update 
sum and num. (c) Synchronize information if its backup exists.

•	 If avgGi’ > avgGi > avgLi: (a) Backup Ii. (b) Ii is replaced by Ii’. (c) Sort records in Li.
•	 If avgLi > avgGi’ > avgGi: Replace Ii with Li,0 and restoration(i) denotes this operation.
•	 For other situations, the multilevel evolution operator replaces Ii with Ii’.

Algorithm 1 Provide details of the multi-level evolutionary operator and β marks the probability scale.

Figure 9. Structures before and after being adjusted by simple edge swapping. (a) Initial structure. (b) Structure 
adjusted. The solid lines mark the current existing edges, while the dotted lines mark the targeted edges to be 
constructed.

Algorithm 1: Multilevel Evolutionary Operator

Input: Ik: kth solution in EA population, avgGk: Evaluation of Gk; β: probability scale.

Output: Ĩk’: modified solution from Ik. avgĨk’: Evaluation of Ĩk’;

Step 1: Initialization, see algorithm 2 for more information.

Step 2: Local search based on the hill-climbing, iterates over every edge of nodes.

(a)  Edge switching (see algorithm 3 for more information).

(b)  If the adjusted solution is unreasonable, conduct algorithm 4.

(c)  If the adjusted solution is accepted, operates according to the specific situations. See algorithm 5 for more information.

 (d) If the loop is over go to step 3, else go to the next round.

Step 3: Output current Ik and avgGK as Ĩk’ and avgĨk’;

Algorithm 4: Operation when edge switching adjustment is rejected

1: if(Gk‘ is not connected or avgGk‘ < avgGk) then

2:   numGk←numGk + 1;

3:   sumGk←sumGk + C(Gk);

4:   avgGk←sumGk/numGk;

5:   if(FlagList) then

6:     record_synchronize (i, sum, num)

7:   end if;

8: end if;

Algorithm 2: Initialization

1: FlagList←false;//FlagList marks whether the current structure has already been backed up;

2: sumGk← avgGk,

3: numGk←1;

Algorithm 3: Edge switching adjustment

1: if(U(0,1) < β×di/∑idi) then

2:   [Is_Nodes_Found, vi, va, vb, vc, vd]←node_select(vi, va);

3:   if(Is_Nodes_Found = false) then

4:     continue;

5:    else

6: Gk‘ ← edge_switch(Gk, vi, va, vb, vc, vd);

7: else

8:   continue;

9: end if;

10: avgGk‘ ← C(Gk‘);//C(Gk‘) evaluate cooperation level of Gk‘ once;
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Implementation of mlEA-CPD-SFN. Given a targeted population structure for optimization, we first gen-
erate an EA population {G1, G2, …, GΩ} through a simple edge swapping operation (Fig. 9). Crossover operators 
of mlEA-CPD-SFN is similar to the crossover operation in33 Algorithm 6 provides the details of mlEA-CPD-SFN.

Some parameters in experiments are fixed as: P = 0, T = 1 + r, S = 0, R = 1, β = 20, r = 0.95 (details of cost 
to benefit ratio r in ref. 10), GS = 6 and gen_max = 30. Notably, the cooperation level of structures provided in 
Results is obtained by averaging over 5000 independent evaluations.
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