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Machine learning workflow to 
enhance predictions of Adverse 
Drug Reactions (ADRs) through 
drug-gene interactions: application 
to drugs for cutaneous diseases
Kalpana Raja1, Matthew Patrick1, James T. Elder1 & Lam C. Tsoi  1,2,3

Adverse drug reactions (ADRs) pose critical public health issues, affecting over 6% of hospitalized 
patients. While knowledge of potential drug-drug interactions (DDI) is necessary to prevent ADR, 
the rapid pace of drug discovery makes it challenging to maintain a strong insight into DDIs. In this 
study, we present a novel literature-mining framework for enhancing the predictions of DDIs and ADR 
types by integrating drug-gene interactions (DGIs). The ADR types were adapted from a DDI corpus, 
including i) adverse effect; ii) effect at molecular level; iii) effect related to pharmacokinetics; and iv) 
DDIs without known ADRs. By using random forest classifier our approach achieves an F-score of 0.87 
across the ADRs classification using only the DDI features. We then enhanced the performance of the 
classifier by including DGIs (F-score = 0.90), and applied the classification model trained with the DDI 
corpus to identify the drugs that might interact with the drugs for cutaneous diseases. We successfully 
predict previously known ADRs for drugs prescribed to cutaneous diseases, and are also able to identify 
promising new ADRs.

Adverse drug reactions (ADRs) are harmful reactions, resulting from the intake of one or more drug(s) and pose 
significant public health issues. In the USA, ADRs affect >6% of hospitalized patients, with 0.3% being fatal inci-
dences1. ADRs may occur due to prolonged administration of a drug, or combined usage of two or more drugs2. 
ADRs occur significantly higher in hospitalized cases3, and ADRs have significant impact on different age groups: 
drug reactions and toxicity can be different for children than adults, and ADRs occur more frequently for elderly 
people than other age groups, due to a higher disease prevalence and incidence of multi-morbidities4. In addition 
to the clinical burden, ADRs also impose significant economic cost. In the United States, hospital admission due 
to ADRs costs >$100 billion and long-term care admissions cost >$30 billion5. While knowledge of potential 
drug-drug interactions (DDI) is necessary to prevent ADR, maintaining the information about DDIs is challeng-
ing with the rapid growth of drug discovery.

Biomedical literature is the main source of knowledge on DDIs and ADRs. The PubMed database contains 
close to 5,000 articles for DDIs and >7,000 articles for ADRs related to human as of Jan, 2017. DDIs and ADRs 
have received much interest from patient health care in recent years. This is evident from close to 70% of DDI 
articles and >50% of ADRs articles being published in the last ten years. Automated approaches have been devel-
oped for the recognition and extraction of DDIs or ADRs alone6–8, and there is an increasing interest in identify-
ing ADRs caused by DDIs using text-mining approaches9. Since DDIs may occur when two drugs interact with 
the same gene8 or when one drug inhibits or induces the metabolic pathway of the other drug10, it has also been 
suggested that incorporating drug-gene interactions (DGIs) can enhance the prediction of DDIs8. In addition to 
DDIs and ADRs identification, DGIs are also used as features by approaches based on combinatorial therapy to 
identify new drug combinations for complex disorders11.
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Recent approaches on ADR prediction utilize the fact that drugs with similar chemical structure or drugs 
interacting with the same protein targets may lead to ADRs12. In this study, we present a novel and robust 
literature-mining framework for enhancing the predictions of DDI-based ADRs by integrating DGIs. We 
employed machine learning models to learn syntactic and semantic information from the literature, and took 
advantage of DGIs to advance the identification of DDIs and the classification of ADR types. We used four ADR 
types described previously9: (i) adverse effect; (ii) effect at molecular level; (iii) effect related to pharmacokinet-
ics; and (iv) drug interactions without known ADR. Specifically, we combined DGIs and their associations (i.e. 
acetylation, methylation, phosphorylation, etc.) to enhance the performance of classification. We showed that 
our integrative method could improve DDI prediction and ADR classification by incorporating DGIs. Finally, we 
applied our approach to predict drugs that can potentially interact with drugs prescribed for different cutaneous 
diseases. We successfully predicted previously known ADRs, and also identified promising new ADRs for drugs 
prescribed to cutaneous diseases.

Results
The features related to DDI and ADR types classification were selected from the drug-drug interaction (DDI) cor-
pus, and DGIs were extracted from the Comparative Toxicogenomics Database (CTD)13. The literature-mining 
framework was developed to identify chemical/drug using a context-specific lexicon, and to represent the sen-
tences from PubMed abstracts as feature vectors. The machine-learning workflow was developed to classify the 
feature vector using various classifiers namely Bayesian network, decision tree, random tree, random forest and 
k-nearest neighbors. The overall prediction workflow is shown in Fig. 1. In this section, we first report the per-
formance of the chemicals and drugs lexicon on identifying drugs present in DDI corpus. Next, we evaluate the 

Figure 1. System architecture.
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performance of various classifiers to predict DDIs and ADR types in DDI corpus using 10-fold cross validation 
technique. Finally, we apply the machine learning workflow on biomedical literature to predict DDIs and ADR 
types related to cutaneous diseases, and we discuss the findings and observations of our case study conducted on 
DDIs and ADR types related to psoriasis.

Performance of lexicon on drug extraction. Table 1 shows the performance of using the chemicals and 
drugs lexicon (implemented as a concept dictionary with MedTagger) on identifying the drugs present in DDI 
corpus. The chemicals and drugs lexicon achieved an overall F-score (F) of 0.87 on training data and 0.78 (F) on 
test data. We performed a second evaluation to determine whether the entities belonging to the false positive (FP) 
category are in fact chemicals that are not annotated in the DDI corpus. We recalculated FP (annotated as FP1 
in Table 1), precision (P1) and F-score (F1) by excluding the chemicals. Interestingly, the chemicals and drugs 
lexicon achieved an improved overall F-score (F1) of 0.94 on training data and 0.88 (F1) on test data. Manual 
checking of entities in false negative (FN) category revealed that the drugs are either brand names (e.g. Alfenta, 
Tysabri) or identified partially (e.g. warfarin instead of (R)-warfarin, magnesium hydroxide antacids instead of 
aluminum/magnesium hydroxide antacids), or the entities are drug classes (e.g. azole antifungals, quinolone 
antibiotics) that are not in the chemicals and drugs lexicon. Our lexicon includes chemicals in order to map 
Unified Medical Language System (UMLS) National Drug File – Reference Terminology (NDFRT)14 drugs that 
are actually chemicals (e.g. sulfur, salicylic acid, phenol).

Machine learning workflow on DDI/ADR types classification. We used DDI corpus training data to 
build the machine learning workflow on classifying DDIs and ADR types. First, we classified the sentences with 
potential DDI information, then we classified DDIs to four ADR types. The 10-fold cross validation on classify-
ing the sentences with potential DDI information showed good performance when using DDI features alone or 
when employing both DDI with DGI features. The random forest classifier achieved the best performance of 0.80 
F-score on DDI features alone and 0.81 F-score on DDI with DGI features (Table 2). Random forest also achieved 
the best performance among the five classifiers with macro (i.e. across the ADR types) average F-score of 0.87 for 
DDI features alone (Table 3), and improved to 0.90 when using both DDI and DGI features (Table 4). Though 
in a modest degree, the improvement is consistent across the different ADR type predictions: 0.89 vs. 0.91 for 
adverse effect; 0.87 vs. 0.91 for effect at molecular level; 0.81 vs. 0.84 for effect related to pharmacokinetics; and 
0.90 vs. 0.92 for drug interactions without known ADR (Table 3 vs. Table 4). Importantly, we demonstrated that 
this observation is consistent among the other four classifiers: macro average F-score of 0.69 vs. 0.73 by Bayesian 
network, 0.86 vs. 0.89 by decision tree, 0.86 vs. 0.88 by random tree and 0.86 vs. 0.88 by k-nearest neighbors. 
Also, F-scores of individual ADR type predictions improved with DDI and DGI features when compared to DDI 
features in all four classifiers (Table 3 vs. Table 4).

We compared the performance of our approach on predicting DDIs and ADR types with the top three systems 
namely FBK-irst system15, WBI system16 and Uturku system17 from DDI Extraction Shared Task 2013 on the DDI 
corpus test data9. Our approach achieved 0.831 F-score on predicting DDIs and 0.798 F-score on predicting ADR 
types using DDI and DGI features. We illustrated that our approach can obtain better performance than others 
competing methods (Supplementary Table S1).

ADR predictions for cutaneous diseases. We applied the machine learning workflow on 13,435 
MedLine sentences that are annotated with two or more chemicals/drugs, with at least one drug for nine cuta-
neous diseases under study (see Methods). Among the 31,697 chemicals/drug pairs from the 13,435 sentences, 

Dataset
True 
positive

False 
positive

False 
negative FP1 Precision Recall F-score P1 F1

Training 
(Cross 
validation)

DrugBank 11,051 2,060 932 373 0.84 0.92 0.88 0.97 0.94

MedLine 1,372 484 335 6 0.74 0.80 0.77 1.00 0.89

Overall 12,423 2,544 1,267 379 0.83 0.91 0.87 0.97 0.94

Test

DrugBank 279 61 17 46 0.82 0.94 0.88 0.86 0.90

MedLine 288 191 58 34 0.60 0.83 0.70 0.89 0.86

Overall 567 252 75 80 0.69 0.88 0.78 0.88 0.88

Table 1. Performance of Chemicals and Drugs lexicon.

Classifier

DDI Features DDI and DGI Features DGI Features

Precision Recall F-score Precision Recall F-score Precision Recall F-score

Bayesian network 0.93 0.69 0.79 0.93 0.69 0.79 0.54 1.00 0.71

Decision tree 0.98 0.63 0.76 0.83 0.72 0.77 0.62 0.61 0.62

Random tree 0.76 0.77 0.76 0.79 0.77 0.78 0.69 0.71 0.70

Random forest 0.82 0.78 0.80 0.84 0.78 0.81 0.70 0.71 0.70

K-nearest neighbors 0.76 0.73 0.74 0.76 0.77 0.76 0.69 0.73 0.71

Table 2. DDI Prediction comparison on DDI corpus training data.
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only 2,646 chemicals/drug pairs associate with common genes and relationship information. We used the two 
training models (i.e. DDI features alone or DDI + DGI features) to predict DDIs and ADR types. We estimated 
the ADR predictions of each classifier as a sum of ratio of each ADR prediction to the total ADR predictions for 
DDI features alone or DDI + DGI features. Three out of five classifiers i.e. Bayesian network, decision tree and 
random forest showed improved performance with DDI + DGI features when compared to DDI features alone; 
with the other two classifiers perform similarly when using the two types of features (Fig. 2a). Nevertheless, the 
accuracy of each classifier on predicting each ADR types using DDI features alone and DDI + DGI features shows 
that the performance is almost equal (Supplementary Table S2). We also evaluated the accuracy of DDI and ADR 
predictions across the classifiers by counting the predictions achieved by at least three classifiers; interestingly the 
results illustrate consistently enhanced ADR predictions when using DDI + DGI features (68%) when comparing 
against using DDI features alone (63%) (Fig. 2b).

Case study: ADR predictions related to psoriasis. Among the nine cutaneous diseases, we chose pso-
riasis as a disease model to explore the underlying information that might be useful to prevent DDIs and ADRs. 
Psoriasis is among the fifteen diseases identified to pose significant socioeconomic and public health burden18. 
In the United States, the cost spent on psoriasis is estimated to be approximately $112 billion dollars annually19. 
We believe that information on DDI and ADR types for psoriasis could help in deciding more efficient treatment, 
thus reduce the burden. We used random forest classifier to perform the analysis, as it shows the best performance 
on classifying DDIs and ADRs on the DDI corpus. The classifier predicted a total of 3,109 DDIs and ADR types 
(i.e. 1,335 DDIs for adverse effect; 995 DDIs for effect at molecular level; 766 DDIs for effect related to pharma-
cokinetics; and 13 DDIs for DDIs without known ADRs). Manual inspection on 3,109 DDIs revealed interaction 
with chemicals (e.g. copper). Since such information might not be useful in clinical perspectives, we excluded 
the interactions involving chemicals. The approach yielded 177 DDIs and ADR types: 85 DDIs for adverse effect 
(15.3%); 57 DDIs for effect at molecular level (10.3%); and 35 DDIs for effect related to pharmacokinetics (6.3%) 
(Fig. 2c). Among these, eight drugs (out of 32 drugs) suggested for psoriasis treatment (i.e. methotrexate, etreti-
nate, thioguanine, cyclosporine, cholecalciferol, calcitriol, mycophenolic acid and sulfur) were predicted to have 
interaction with other drugs. Figure 3 shows the DDIs and ADR types predicted for psoriasis. In addition, we 
tested the robustness of the machine learning workflow by tracing random samples of the predicted DDIs back 
to PubMed sentences, and confirmed accurate predictions. Supplementary Data S1 lists PubMed sentences with 
DDI and ADR information that were successfully predicted by the machine learning workflow.

Classifier ADR Type Precision Recall F-score
Average 
Precision

Average 
Recall

Macro 
Average 
F-score

Bayesian network

Adverse effect 0.73 0.76 0.74 0.71 0.67 0.69

Effect at molecular level 0.79 0.52 0.62

Effect related to 
pharmacokinetics 0.61 0.47 0.53

Drug interaction without 
known ADR 0.72 0.70 0.71

Decision treeRandom 
tree

Adverse effect 0.82 0.95 0.88 0.87 0.86 0.86

Effect at molecular level 0.87 0.85 0.86

Effect related to 
pharmacokinetics 0.82 0.77 0.79

Drug interaction without 
known ADR 0.92 0.88 0.90

Adverse effect 0.83 0.94 0.88 0.87 0.85 0.86

Effect at molecular level 0.86 0.85 0.85

Effect related to 
pharmacokinetics 0.81 0.77 0.79

Drug interaction without 
known ADR 0.93 0.85 0.89

Random forest

Adverse effect 0.84 0.95 0.89 0.88 0.86 0.87

Effect at molecular level 0.88 0.86 0.87

Effect related to 
pharmacokinetics 0.84 0.78 0.81

Drug interaction without 
known ADR 0.94 0.86 0.90

K-nearest neighbors

Adverse effect 0.83 0.95 0.88 0.87 0.85 0.86

Effect at molecular level 0.86 0.84 0.85

Effect related to 
pharmacokinetics 0.81 0.76 0.79

Drug interaction without 
known ADR 0.93 0.85 0.89

Table 3. Performance of classification on ADR types using DDI features on DDI corpus training data.
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Genes in ADR prediction. Among the 177 ADRs predicted for psoriasis medications, 31 DDIs are associated 
with common genes (11 for adverse effect; 10 for effect at molecular level; and 10 for effect related to pharma-
cokinetics). Among these, three drugs methotrexate, cholecalciferol and mycophenolic acid are suggested for 
psoriasis. Therefore, by incorporating the DGI information, our approach can predict DDIs and ADRs if the drug 
pairs are not present in the same sentence from the literature. We believe that our predictions could be useful to 
decide the right treatment for patients with psoriasis or other cutaneous diseases (Fig. 4).

Diseases related to ADR prediction. Our population is aging, and it is getting more common to prescribe mul-
tiple drugs for complex mulimorbidity20. Knowledge on DDI and ADRs would be useful for medical assessment 
especially for diseases that co-occur in higher rate (i.e. comorbidity). We performed a study to identify the dis-
eases associated with DDI pairs from various sources such as NDFRT, DrugBank, UpToDate, CDC, and Mayo 
clinic’s Diseases and Conditions (Supplementary Table S3). For psoriasis we identified the following interesting 
disease comorbidity through DDIs: Crohn’s disease, rickets in children, osteomalacia in adults, breast cancer 
in females, lupus erythematosus, eczema, hypocalcemia, diabetes, atopic dermatitis, blood pressure, influenza, 
Raynaud’s disease, melanoma and bacterial conjuctivities.

Discussion
In this study we assessed the feasibility of predicting DDIs and ADR types using machine learning workflow, and 
evaluated the performance by incorporating DGI information and compared that with using DDI information 
alone. We applied the workflow to predict DDIs and classified DDIs to ADR types related to cutaneous diseases, 
and conducted an intense analysis on DDIs and ADR types related to psoriasis. We extended the finding to iden-
tify comorbid diseases related to cutaneous diseases.

Certain drugs used for treating the cutaneous diseases are chemicals. Therefore, our lexicon includes all UMLS 
TUIs belonging to Chemicals and Drugs. However, the annotations in DDI corpus include only drugs. We con-
ducted a second experiment to remove the chemical entities and identified the performance of the lexicon. To 
achieve this, we considered the entities belonging to three TUIs i.e. clinical drugs, antibiotics and pharmacologic 
substances as drugs. We incorporated the lexicon with MedTagger21 a widely used tool for concept extraction. 
The performance achieved by the lexicon on DDI corpus is impressive and we believe that the concept extraction 
related to cutaneous diseases is equally good. Our approach to predict DDIs and ADR types was carried out in 
two steps: to classify the sentences with potential DDIs and to classify DDIs to ADRs. We tested both the steps 

Classifier ADR Type Precision Recall F-score
Average 
Precision

Average 
Recall

Macro 
Average 
F-score

Bayesian network

Adverse effect 0.76 0.83 0.79 0.75 0.71 0.73

Effect at molecular level 0.83 0.59 0.69

Effect related to 
pharmacokinetics 0.67 0.47 0.56

Drug interaction without 
known ADR 0.74 0.72 0.73

Decision tree

Adverse effect 0.85 0.96 0.90 0.89 0.88 0.89

Effect at molecular level 0.94 0.87 0.90

Effect related to 
pharmacokinetics 0.85 0.81 0.83

Drug interaction without 
known ADR 0.91 0.92 0.91

Random tree

Adverse effect 0.86 0.94 0.90 0.88 0.88 0.88

Effect at molecular level 0.91 0.88 0.90

Effect related to 
pharmacokinetics 0.83 0.79 0.81

Drug interaction without 
known ADR 0.91 0.90 0.91

Random forest

Adverse effect 0.87 0.95 0.91 0.90 0.89 0.90

Effect at molecular level 0.93 0.89 0.91

Effect related to 
pharmacokinetics 0.86 0.82 0.84

Drug interaction without 
known ADR 0.92 0.91 0.92

K-nearest neighbors

Adverse effect 0.86 0.94 0.90 0.89 0.88 0.88

Effect at molecular level 0.91 0.89 0.90

Effect related to 
pharmacokinetics 0.83 0.79 0.81

Drug interaction without 
known ADR 0.91 0.90 0.91

Table 4. Performance of classification on ADR types using DDI and DGI features on DDI corpus training data.
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with different classifiers: Bayesian network, logistic regression, support vector machines, decision tree, random 
tree, random forest, k-nearest neighbors and multilayer perceptron.

Among 31,268 annotated drug pairs from 3,788 sentences in the DDI corpus, only 5,773 drug pairs from 
1,441 sentences contain DGI information. Our attempt to compare DDI classification only on 5,773 drugs 
pairs achieved an increase of 3–6% F-score with DDI + DGI features when compared to DDI features alone 
(Supplementary Table S4). In addition, we analyzed the predictions by random forest classifier on 10-fold cross 
validation using DDI features alone and DDI + DGI features. We observed that the average false positive rate 
between DDI features alone and DDI + DGI features decreased by ~23% (i.e. 0.448 to 0.220) on predicting true 
DDIs and ~3% (i.e. 0.249 to 0.220) on classifying drug pairs without interaction. We believe that this decrease in 
average false positive rate is significantly important in the clinical perspectives of applying our approach to pre-
dict DDIs and ADR types. We also compared DDI features alone and DDI + DGI features on four statistical error 
measures namely mean absolute error, root mean squared error, relative absolute error and root relative squared 
error. A decrease in error between DDI features alone and DDI + DGI features by all statistical error measures 
further confirms the enhanced performance of DDI_DGI features than DDI features alone (Supplementary 
Table S5).

Among the selected DDI and DGI features, the mean impurity decrease were used to evaluate the importance 
of each feature (Supplementary Table S6). We also observed that the features are unique to a specific ADR type 
and thus can facilitate its prediction. For example, the most significant features such as “patients” and “absorption” 
are highly specific to “adverse effects” ADR type; the features such as “increase” and “effect” are highly specific to 
“effect at molecular levels” ADR types; and the feature “metabolism” is highly specific to “effects related to phar-
macokinetics”. The negated features (e.g. ‘no effect’) are important to identify drug pairs without interaction, and 
our regression model is capable of identifying the negated features as significant ones.

We evaluated the performance of DGI features alone on predicting DDIs and ADR types. The approach 
showed a decrease of 3–14% F-score when compared to DDI features alone and 5–15% F-score when compared 
to DDI + DGI features by different classifiers (Table 2). The performance of DGI features alone on ADR classi-
fication showed a decrease of 14–26% precision when compared to DDI features alone and 18–28% precision 
when compared to DDI + DGI features by different classifiers. The recall achieved by all the classifiers is very low 
(i.e. 0.25 to 0.26) because, the gene association information is available only for 5,773 drug pairs (out of 31,268 
annotated drug pairs) in the DDI Corpus (Supplementary Table S7).

Figure 2. (a) Performance of classifiers to predict DDIs and ADR types; (b) Prediction of DDI and ADR types 
at least by three classifiers; (c) Performance of random forest classifier to predict DDIs and ADR types between 
NDFRT drugs suggested for cutaneous diseases and drugs using DDI features alone and DDI with DGI features.
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Conclusion
A comprehensive knowledge regarding potential ADRs is essential to provide better treatment. It is thus immi-
nent to have efficient approach to predict adverse drug-drug interactions as a screening procedure for subsequent 
validations. Aiming to provide an automated approach to predict in advance medication-related to DDIs and 
ADR types prediction, we present here a workflow that integrates machine learning approach with biomedical lit-
erature data to data-mine potential drug-drug interactions for cutaneous diseases. We evaluated our approach on 
DDI corpus using DDI features alone, and DDI + DGI features. We also showed that the performance of machine 
learning workflow improved when DGI is incorporated with DDI. We then applied this approach to predict 
chemicals/drugs that interact with prescribed drugs for cutaneous diseases. In the current study we advance the 
earlier approach on inferring DDI through DGI by classifying the extracted DDIs to their specific ADR types.

Methods
Overview. Our approach for predicting DDI-based ADR types (Fig. 1) consists of the following steps: 
(1) building a lexicon for chemicals and drugs (L); (2) mapping L to the DDI corpus (for training) and 
MedLine abstracts (for application); (3) extracting drug/chemical to gene interactions from the Comparative 
Toxicogenomics Database (CTD)13; (4) using machine learning approaches to classify literature sentences for 
DDIs and then categorize different ADR types.

Chemicals and drugs lexicon. The chemicals and drugs lexicon was compiled from three resources: 
UMLS Metathesaurus22, DrugBank23 and PharmGKB24. The 2015AB version of UMLS Metathesaurus was down-
loaded and customized to Rich Release Format (RRF) using MetamorphoSys, an UMLS installation wizard and 
Metathesaurus customization tool. UMLS Metathesaurus contains more than 3.2 million health related concepts 
and 12.8 million unique concepts from over 190 source vocabularies (e.g. SNOMED, ICD 9/10). We selected 
only concepts belonging to semantic groups “Chemicals and Drugs” in subsequent analysis. UMLS concepts 
are assigned with one or more semantic types (TUI) to define the category (e.g. Clinical Drugs, Antibiotics). 
We conducted a screening approach to remove the concepts appearing in multiple semantic groups, common 
English terms as brand names, and abbreviations to minimize mapping errors. Since UMLS Metathesaurus 
does not cover all possible synonyms for a concept25, we expanded the lexicon to the synonyms used in the 

Figure 3. ADR network for cutaneous diseases showing interaction between NDFRT drugs suggested for 
cutaneous diseases and drugs. Thickness of the edges correlate with the number of instances to support the 
ADR predictions.
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common drug databases: DrugBank23 and PharmGKB24. DrugBank contains 8,203 drugs and 1,201 drug salts; 
and PharmGKB contains information for 3,175 drugs. Since certain drugs and synonyms contain Greek alphabets 
(e.g. α-methylthiofentanyl) and other Unicode characters (e.g. R-N[2-[1-(aminoiminomethyl)-3-piperidinyl]-
1-oxoethyl]-4-(phenylethynyl)-l-phenylalanine methylester), we used UTF-8 encoding to extract the drug names.

DDI corpus. The “drug-drug interaction (DDI) corpus” is a major contribution of DDI Extraction Shared 
Task 20139, in which two domain experts and two miners manually annotated 6,793 DrugBank documents and 
1,701 MedLine documents (Supplementary Table S8). Each document includes up to 300 binary DDI annotations 
(i.e. “True”/“False” between any two drugs), and the “True” annotations include four DDI-derived ADR types: i) 
adverse effect; ii) effect at molecular level; iii) effect related to pharmacokinetics; iv) and drug interactions without 
known ADR.

MedLine abstracts. For applying our approach to infer DDIs and ADRs for drugs of cutaneous diseases, we 
retrieved the most recent version of MedLine citations. The 2015 MedLine baseline XML files were downloaded 
from the ftp server maintained by the National Library of Medicine (NLM) (https://www.nlm.nih.gov/). We 
restricted our study to the 482,380 filtered citations with abstracts and annotated with human genes based on the 
gene2pubmed file from NCBI. In addition, we only utilized 469,995 (i.e. >97%) citations that map to at most five 
human genes to maintain precision in gene-mapping for the subsequent analysis (Supplementary Table S9). We 
used a recently developed rule-based approach26 to conduct abbreviation expansion and sentence segmentation. 
Briefly, we obtained a range of words preceding the abbreviation that could contain the original term; we then 
extracted the original term by using two constraints: (i) the order of character matching must not change; and (ii) 
the first character of the original term and the abbreviation must match. The segmented sentences were assigned 
with PMIDs. The process yielded a set of 4,712,812 sentences from 469,995 MedLine abstracts.

Extraction of Drugs/Chemicals. Identification of ADRs derived from DDIs requires name recognition of 
drugs/chemicals as well as extraction of the potential interactions between the drugs. Chemicals and drugs can 
contain more than one words (e.g. ACE inhibitors). We used MedTagger21 to map Drugs/Chemicals from the 
DDI corpus and MedLine sentences. MedTagger is an extraction pipeline that consists of tokenization, lexical 
normalization, dictionary look-up, and screening. We used the constructed lexicon as the concept dictionary for 
MedTagger to extract chemicals/drugs from the DDI Corpus and MedLine sentences.

Figure 4. Gene - DDI network for cutaneous diseases showing interaction between NDFRT drugs suggested 
for cutaneous diseases/drugs with genes.

http://S8
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Extraction of Chemical/Drug-Gene interaction. DDIs may occur when two or more drugs interact 
with the same gene8. We hypothesized that information regarding DGIs can enhance the prediction of DDIs as 
well as ADR types classification by using machine-learning approaches. While databases such as Comparative 
Toxicogenomics Database (CTD)13 or Drug-Gene Interaction Database (DGIdb)27 provide valuable resources 
regarding DGIs and their association types (e.g. acetylation, methylation, phosphorylation), to our knowledge 
these resources have not been used to predict potential DDIs and associated ADR types in common practice. We 
retrieved >500,000 DGIs from CTD, pertaining to 21,986 human genes and 8,176 chemicals/drugs from 24,311 
MedLine articles. As the identifiers in CTD might not be identical to those in our compiled lexicon, we used the 
synonyms from our lexicon to map DGIs in CTD. For each drug pair, we searched for gene(s) from the CTD data-
base that interacts with both the drugs and retrieved the DGI associations. The process obtained 193,294 DGIs for 
5,773 drug pairs (out of 31,268 annotated drug pairs) in DDI Corpus, and 49,188 DGIs for 935 drug pairs (i.e. at 
least one drug in each pair is prescribed as a medication for cutaneous diseases) in MedLine sentences.

Classification. DDI-based feature selection. We selected 2,893 documents from DDI corpus with at least 
one DDI annotation. Feature selection process was employed to identify the DDI-based features and DGI-based 
features. The approach for selecting DDI-based features consists of three steps: (1) collecting list of non-frequent 
vocabularies; (2) generating frequency matrices by mapping vocabularies to each document; and (3) selecting fea-
tures using stepwise logistic regression model. First, we preprocessed the documents to remove the stop-words, 
chemical/drug mentions and numbers (e.g. “40.8”, “ >80”, “75.3%”). The process retrieved 2,101 non-frequent 
vocabularies. We computed two measures for each vocabulary: the term frequency-inverse document frequency 
(TF-IDF) and negation vocabulary phrase (NVP) metrics. For each document, we generated a parse tree struc-
ture using the Stanford lexical parser and applied the Tregex syntactic pattern matcher to identify the negation 
meanings (e.g. no pharmacokinetic activity) in each vocabulary within the document. Any vocabulary appearing 
within the same noun/verb phrases of the negation keywords (i.e. no, not, without, neither, nor, cannot) is con-
sidered as NVP, and we assigned binary (1/0) values for each vocabulary; we assigned zero TF-IDF score for any 
vocabulary within NVP. The TF-IDF and NVP measures were used to indicate the importance of a vocabulary 
in the corpus collection, as well as to indicate the presence of negation meaning. For all the vocabularies in the 
TF-IDF matrix, we used a stepwise heuristic algorithm to identify the top nominal significant (p < 0.05) features 
using logistic regression framework. We identified and employed the top 24 significant DDI-based features in 
subsequent analysis. In addition, we also included in the classification the following features: for each sentence, 
the total number of words, drugs, and features; and the minimum number of features present before, between, 
after each drug pair. The generated feature vector consists of the features and the class label (True/False).

DGI-based feature selection. We generated two types of models, one having DDI features alone and the other 
having DDI and DGI features. The approach for selecting DGI-based features consists of mapping drug names, 
genes, and drug-gene associations from CTD. For each drug pair, we identified a set of interacting genes common 
to both of the drugs, as well as their drug-gene associations from CTD. We applied the stepwise heuristic algo-
rithm described above to identify the top significant features. The process yielded 20 top significant DGI-based 
features.

Classifying DDIs and ADR types. We used machine learning approaches implemented in Weka (3.6.0)28 to clas-
sify DDIs and ADR types by utilizing five different types of classifiers: Bayesian Network, Decision tree, Random 
tree, Random forest, and K-nearest neighbors. Ten-fold cross validation was used for evaluation. We examined 
and compared the performance when using the DDIs or the DDIs + DGIs features identified above for each 
classification task. The four types of ADR classes declared for the classification are: i) adverse effect; ii) effects at 
molecular level; iii) effects related to pharmacokinetics; and iv) drug interactions without known ADRs. We also 
allowed the classifier to classify DDIs that do not fall under the four categories. The training data includes 3,767 
true ADR (i.e. all four types) annotations and 22,216 false ADR annotations. The distribution of true ADR vs. 
false ADR is imbalanced, and this may result in performance degradation of classifiers because the predictions 
more tend to fall under the majority class. Therefore, we applied Synthetic Minority Oversampling Technique 
(SMOTE) for class balance29. SMOTE is one of the most well-known data preprocessing techniques that achieves 
class balance by over-sampling the minority class (i.e. all four types of true ADRs) and under-sampling the major-
ity class (i.e. false ADRs).

We performed ADR types classification for each drug pair from the document that was classified as “true” in 
the DDI classification. We used the features identified by the above procedure to classify ADR types. In addition, 
we included the count of drugs between the drug pairs for the ADR type classification as feature.

Application on cutaneous diseases. ADRs are frequent events that affect up to 3% of hospitalized 
patients30, and skin reactions can be potentially induced by most pharmacologic agents31–34, thus suggesting 
how skin as ground tissue can elicit the adverse effect related to pharmacokinetics (i.e. Absorption, Distribution, 
Metabolism and Elimination) manifested30. Therefore, we applied our approach to identify medications for 
cutaneous diseases that might induce adverse reactions when taken together with other drugs. Medications for 
cutaneous diseases include topical or oral treatments, and they target a variety of purposes, including immu-
nosuppresants, fungal/bacterial infection, and enzyme inhibitors. The relationship between disease and drug is 
available at NDFRT14. In this study, we extracted a list of 197 unique drugs from NDFRT for the following nine 
cutaneous diseases: psoriasis, atopic dermatitis, rosacea, acne vulgaris, alopecia, melanoma, eczema, keratosis, 
and pruritus (Supplementary Table S10). We mapped these drugs to 4,712,812 MedLine sentences (Fig. 1). The 
process extracted 13,435 MedLine sentences mapped with 171 drugs (Supplementary Table S11), and we used 
13,435 sentences to identify sentences with potential DDIs and their associated ADR types. Similar to drug pairs 
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in DDI corpus, we mapped the DGI information for 197 drugs. Only 70 out of 197 drugs contain DGI informa-
tion. We used both the training models i.e. DDI features only, and combined DDI and DGI features for classifying 
sentences with potential DDIs and ADRs.

Evaluation. We adapted the standard evaluation metrics of precision, recall, and F-score to measure the sys-
tem performance on i) identifying chemical and drug names; ii) classifying sentences with potential DDI; and 
iii) classifying DDI into four ADR types. We used the annotations from DDI corpus as a gold standard. For 
measuring the performance on identifying chemicals and drugs, we defined TP (true positive) as the number 
of chemicals and drugs identified correctly, FP as the number of chemicals and drugs identified incorrectly, and 
FN as the number of chemicals and drugs not identified by the system. The partially identified chemical or drug 
names (i.e. only part of the names were identified) are rated as FN. For measuring the performance on classifying 
DDI, we define TP as the number of DDIs correctly classified as true or false, FP as the number of DDIs classified 
incorrectly, and FN as the number of DDIs not classified by the system. The performance measure for classifying 
the ADR types is adapted from the evaluation metrics used in the DDI Extraction Shared Task 20139. There are 
five output types i.e. four ADR types and a false type for drug pairs that do not fall into any ADR types. We also 
calculated the macro-averaged F-score from micro average precision and recall of all ADR types.
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