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Bounds for coherence of quantum 
superpositions in high dimension
Qiu-Ling Yue1,2, Fei Gao1, Qiao-Yan Wen1 & Wei-Wei Zhang3

Quantum coherence plays a major role in the promotion for quantum information processing and 
designing quantum technology. Since coherence is rooted in superposition principle, it is vital to 
understand the coherence change with respect to superpositions. Here we study the bounds for 
coherence of quantum superpositions in high dimension. We consider three most frequently used 
measures of coherence, i.e. the relative entropy of coherence, l1 norm of coherence and robustness of 
coherence. For a quantum state (an arbitrary dimension) and its arbitrary decomposition, we give the 
upper and lower bounds for coherence of the superposition state in terms of the coherence of the states 
being superposed.

Quantum coherence is a fundamental feature of quantum mechanics. As one of the most crucial physical 
resources, it plays a primary role in quantum information processing1–3, computational task4, 5, quantum metrol-
ogy6, 7, thermodynamics8–10, and quantum biology11, 12. The theory of coherence as a resource was first set forth 
in ref. 13, where the authors introduced a rigorous framework for the quantification of coherence and identified 
the computable measures of coherence. From resource-driven viewpoint, there is a growing number of work 
studying coherence including different coherence measures14–18, the properties of coherence19, 20, the freezing 
phenomenon of coherence21, 22, the relation among coherence, entanglement and quantum correlation23–25, and 
so on refs 26, 27.

Despite coherence derives from the superposition of states, the coherence of a superposition state cannot be 
directly deduced from the coherence of the individual states being superposed. We illustrate it with the following 
examples: given a state

|Ω 〉 = | 〉 + | 〉
1
2

( 0 1 ),
(1)1

it is obvious that the coherence of |0〉, |1〉 is 0, while the coherence of |Ω1〉 reaches maximum value. Here, we con-
sider coherence in the computational basis. In the following, we show an opposite example. Given a state

|Ω 〉 = | + 〉 + | − 〉
1
2

( ),
(2)2

where | ± 〉 = | 〉 ± | 〉( 0 1 )/ 2 . Interestingly, under computational basis the coherence of |+〉, |−〉 reaches maxi-
mum value while the coherence of their superposition |Ω2〉 is 0.

Our concern here is that: given an arbitrary state |Ω〉 and its arbitrary decomposition

α β|Ω〉 = |Φ〉 + |Ψ〉, (3)

what is the relation between the coherence of |Ω〉 and the coherence of |Φ〉 and |Ψ〉? Because of the importance 
of coherence in quantum physics and superposition for coherence, the solutions for this problem will provide 
a theoretical foundation for potential applications of quantum resource and quantum information processing.

Similar problem has been studied in the field of entanglement. In 2006, Linden et al. firstly studied the relation 
between the entanglement of |Ω〉 and the entanglement of |Φ〉 and |Ψ〉28, in which they gave the upper bounds on 
the entanglement of the superposition state in terms of the entanglement of the states being superposed using von 
Neumann entropy of the reduced state as a measure of entanglement. Thereafter, there are some related works. 
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Ref. 29 gave a tighter upper bound on the same question and also gave a lower bound. Refs 30, 31 studied the 
same problem considering concurrence (another measure of entanglement) and gave the corresponding upper 
and lower bound. However, this problem is still open in the field of coherence where only two specific cases have 
been discussed32, 33.

In this work, we analyze the relation between the coherence of |Ω〉 and the coherence of its decomposition. We 
systematically study this problem considering three kinds of coherence measure, and give the corresponding tight 
upper and lower bounds. Our results can be used for estimating the coherence range of the superposition state. 
For example, given the coherence of two states, we do not even need to know what the state is, we can estimate the 
range of the coherence resource we can get from their superposition state. In addition, armed with these relation-
ships on coherence of superpositions, we can easily monitor the coherence change in the quantum information 
processing, such as coherence distillation. Coherence is likewise a measure of information carrying ability. The 
more coherence, the more information can be carried in the states.

In our work, we focus on orthogonal version of problem (i.e. |Φ〉 and |Ψ〉 are orthogonal states). We can get the 
non-orthogonal version of the problem easily by the following decomposition,

α β α β γ γ|Ω〉 = |Φ〉 + |Ψ〉 = |Φ〉 + |Φ〉 + − |Φ 〉⊥( 1 ), (4)

where |Φ〉 and |Φ⊥〉 are orthogonal states.

Results
Relative entropy of coherence.  A well-defined and frequently used coherence measure is the relative 
entropy of coherence, which is proposed and studied in ref. 13. With a particular entropic formula, the relative 
entropy of coherence has some clear physical meanings, such as it is equal to the optimal distillation rate for 
standard coherence distillation34, and can also be interpreted as the minimal amount of noise required for fully 
decohering the state27, 35. In this section, we study the relationship between the coherence of two orthogonal states 
and the coherence of its decomposition using the relative entropy of coherence.

Given a particular basis =i{ }i
n

1 , the definition of relative entropy of coherence13 is

ρ ρ ρ= −C S S( ) ( ) ( ), (5)re d

where ρ is density operator and ρd denotes the state obtained from ρ by deleting all off-diagonal elements under 
the particular basis, and S(ρ) is von Neumann entropy of ρ. In the case of a pure state |φ〉, its relative entropy of 
coherence can be expressed as

φ φ φ= | 〉 〈 | .C S( ) ( ) (6)re d

In the following, we will give the bounds with respect to relative entropy of coherence. The proof of this Theorem 
is in Methods.

Theorem 1. Given two orthogonal states |Φ〉, |Ψ〉, and two complex number α, β satisfying α βΦ + Ψ = 1, the 
coherence of the superposition α βΩ = Φ + Ψ  satisfies

α β
Ω ≤






 + − − + −

C
f p

f p q n q
( ) min

( ),

( ) 2(1 ) log( 1) (1 ), (7)
re

q
1

for 0 < p < 1, where

α β
=

−
− +

= Φ + − Ψ +q p p
p p

f p pC p C h p(1 )
(1 )

, ( ) ( ) (1 ) ( ) ( ),re re2 2 2

≡ − − − −h x x x x x( ) log (1 ) log(1 )2 , and n is the dimension of Hilbert space.

Remark 1: The result in ref. 32 is the case with p = |α|2 in Theorem 1.
Remark 2: We give an example to show the upper bound in Theorem 1 is tight in some cases.
Example 1: Consider the following case:

α β

Φ =




+
−

+ + +




Ψ =




−
−

+ + +




= − =





n
n

n
n

1
2

1 1
1 ( 2 3 ) ,

1
2

1 1
1 ( 2 3 ) ,

1
2

,
(8)

where n is the dimension of Hilbert space.
In this case, we can see that the upper bound in Theorem 1 is tight. Considering p = |α|2, the first bound in Eq. 

(7) equals to α β α| | Φ + | | Ψ + | |C C h2[ ( ) ( ) ( )]re re
2 2

2
2 . The coherence of |Φ〉 and |Ψ〉 both equal to − +nlog( 1) 11

2
, 

and the coherence of their superposition state α βΩ = Φ + Ψ  is log (n − 1). The ratio of Cre(Ω) and 
α β α| | Φ + | | Ψ + | |C C h( ) ( ) ( )re re

2 2
2

2  converges to 2 when n is infinite as shown in Eq. (9).
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α β α
Ω

Φ + Ψ +
= .

→∞

C
C C h

lim ( )
2[ ( ) ( ) ( )]

1
(9)n

re

re re
2 2

2
2

We give numerical simulations for the upper bound in Theorem 1 and the exact coherence of |Ω〉 in different 
dimensions by choosing two random orthogonal states |Φ〉 and |Ψ〉 as shown in Fig. 1. The sub-figures (a–d) rep-
resent the comparison in different dimensions (2, 5, 7, 15 respectively). Let |Φ〉 and |Ψ〉 are chosen randomly as 
following: (a) Φ = . − .0 9863 0 0 1650 1 , and Ψ = . + .0 1650 0 0 9863 1 ; (b) Φ = . − .0 6252 0 0 4357 1  
− . − . + .0 1846 2 0 5545 3 0 2788 4 , and Ψ = . + .0 2079 0 0 1082 1  + . − . + .0 9322 2 0 0226 3 0 2750 4 ; 
( c )  Φ = − . + . + . + .0 2503 0 0 1711 1 0 2273 2 0 6442 3  +   . + . + .0 2732 4 0 5262 5 0 2998 6 , a n d 
|Ψ = . | + . | + . |⟩ ⟩ ⟩ ⟩0 9139 0 0 0736 1 0 2927 2  +  . − . + . − .0 0612 3 0 0641 4 0 2555 5 0 0224 6 ; (d) Φ = .0 3266 0  
+ . − . + .0 1666 1 0 1765 2 0 2515 3  +  . + . − . − . + .0 4549 4 0 1634 5 0 2075 6 0 2327 7 0 0535 8   −  .0 1524 9
− . + .0 4818 10 0 1975 11  +  . − . − .0 0855 12 0 2922 13 0 2244 14 , and Ψ = . + . + . +0 1829 0 0 4304 1 0 0664 2  

. + .0 0460 3 0 1304 4  +   . + . + . + . + .0 3446 5 0 0927 6 0 0213 7 0 1006 8 0 4598 9  +   . + .0 0060 10 0 0322 11  
+ . + . + .0 3234 12 0 2864 13 0 4698 14 .

The black dotted line is the exact coherence of superposition state |Ω〉, the red solid one is the upper bound 
in Theorem 1. Note that α and β we chose are both positive numbers. From this figure, we can see that given the 
state |Φ〉 and |Ψ〉, the upper bound in Theorem 1 depends on the parameter α. Parallelly, given the value of α, the 
coherence of states |Φ〉 and |Ψ〉 also affects upper bound in Theorem 1.

Now, we move to analyze the lower bounds. By constructing a special state and measuring it with an inco-
herent operation, we can get the lower bound for coherence of superpositions considering relative entropy of 
coherence as stated in following theorem. Its detailed proof is in Methods.

Theorem 2. Given two orthogonal states |Φ〉, |Ψ〉, and two complex number α, β satisfying α βΦ + Ψ = 1, the 
coherence of the superposition α βΩ = Φ + Ψ  satisfies

α
α

β
β

Ω ≥





Φ −
−

Ψ

− ∈






−

−

−

−














C tC p
p

C

p
h p t

p
p

p
p

( ) max ( ) 1 ( )

1 ( ),
(1 )
1

,
(1 )
1

,
(10)

re re re

2

2

2

2

2

for 0 < p < 1, and ≡ − − − −h x x x x x( ) log (1 ) log(1 )2 .

l1 norm coherence.  Another measure of coherence, l1 norm, is defined with the off-diagonal elements of 
the considered quantum state. This definition is intuitive for the measure of coherence and satisfies the necessary 
properties presented in ref. 13.

Figure 1.  The upper bounds on coherence of the superpositions for dimension = 2, 5, 7, 15, with |Φ〉 and |Ψ〉 
as defined in the text. The black dotted line is the exact value of Cre(Ω); the red solid one is the upper bound in 
Theorem 1. Note that both α and β are chosen to be positive numbers here.
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Given a fixed basis | 〉 =i{ }i
n

1 , where n is the dimension of Hilbert space. The definition of l1 norm of coherence 
of a state ρ is ref. 13

∑ρ ρ≡ | |.
≠

C ( )
(11)

l
i j

ij1

Specially, for a pure state φ = ∑ a ii , the l1 norm of coherence is

∑φ ≡ | |.
≠

C a a( )
(12)

l
i j

i j1

It can also be expressed as

∑φ ≡










− .C a( ) 1
(13)

l
i

i

2

1

We consider l1 norm of coherence measure and obtain corresponding bounds for coherence of superpositions. 
See Methods for the proof of the following Theorem.

Theorem 3. Given two orthogonal states |Φ〉, |Ψ〉, and two complex number α, β satisfying α βΦ + Ψ = 1, the 
coherence of the superposition α βΩ = Φ + Ψ  satisfies

α β αβ

α β αβ
Ω ≤

| | Φ + | | Ψ + | | −

| | Φ + | | Ψ + | | Φ + Ψ +
C

C C n

C C C C
( ) min{

( ) ( ) 2 ( 1),

( ) ( ) 2 ( ( ) 1)( ( ) 1) , (14)
l

l l

l l l l

2 2

2 21

1 1

1 1 1 1

where n is the dimension of Hilbert space.

Remark 3: An interesting symmetric inequality can be deduced from the second line in Eq. (14) as follows:

α βΩ + ≤ Φ + + Ψ + .C C C( ) 1 ( ) 1 ( ) 1 (15)l l l1 1 1

This inequality may have applications in other analysis of coherence by considering superposition effects.

Remark 4: Here, we want to emphasize that in Theorem 3 the dimension n is an arbitrary positive integer and 
our result covers the two dimension case mentioned in ref. 33.

Now, we compare the values of two expressions in Theorem 3. The only difference between them locates at the 
last term. One is 2|αβ| (n − 1), and the other is αβ| | Φ + Ψ +C C2 ( ( ) 1)( ( ) 1)l l1 1

. Thus, we only need to compare 
the values of n − 1 and Φ + Ψ +C C( ( ) 1)( ( ) 1)l l1 1

. In Figure 2, we plot function Φ + Ψ +C C( ( ) 1)( ( ) 1)l l1 1
 by 

setting ΦC ( )l1
 and ΨC ( )l1

 as independent variables whose domains are[0, 10]. Since n − 1 is an integer, it is easy for 
us to compare the value of Φ + Ψ +C C( ( ) 1)( ( ) 1)l l1 1

 and coordinate axis scale which can be recognized as n − 1. 
If n  −  1 is smaller than the value of Φ + Ψ +C C( ( ) 1)( ( ) 1)l l1 1

,  then the upper bound will be 
α β αβΦ + Ψ + −C C n( ) ( ) 2 ( 1)l l

2 2
1 1

. If n − 1 is larger than the value of Φ + Ψ +C C( ( ) 1)( ( ) 1)l l1 1
, the 

α β αβ| | Φ + | | Ψ + | | Φ + Ψ +C C C C( ) ( ) 2 ( ( ) 1)( ( ) 1)l l l l
2 2

1 1 1 1
 is the tighter upper bound.

Next, we focus on discussing lower bound. Through using the absolute value inequality, we can obtain the 
lower bound for l1 norm of coherence of superpositions as illustrated in the following theorem. Its proof can be 
found in Methods.

Figure 2.  The comparison between Φ + Ψ +C C( ( ) 1)( ( ) 1)l l1 1
 and n − 1. Here the domains of ΦC ( )l1

 and 
ΨC ( )l1

 are set as[0, 10].
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Theorem 4. Given two orthogonal states |Φ〉, |Ψ〉, and two complex number α, β satisfying α βΦ + Ψ = 1, the 
coherence of the superposition α βΩ = Φ + Ψ  satisfies

α β αβ

α β αβΩ ≥










Φ + Ψ − −

Φ + Ψ − Φ + Ψ +C
C C n

C C C C( ) max
( ) ( ) 2 ( 1),

( ) ( ) 2 ( ( ) 1)( ( ) 1) ,

0, (16)

l

l l

l l l l

2 2

2 2
1

1 1

1 1 1 1

where n is the dimension of Hilbert space.

Remark 5: An interesting symmetric inequality can be deduced from the second line in Eq. (16) as follows:

α βΩ + ≥ Φ + − Ψ + .C C C( ) 1 ( ) 1 ( ) 1 (17)l l l1 1 1

Same as the Eq. (15), this inequality may have applications in other analysis of coherence by considering super-
position effects.

The only difference between the first line and second line in Eq. (16) is also in the last term, which are 
−2|αβ| (n − 1) and − αβ| | Φ + Ψ +C C2 ( ( ) 1)( ( ) 1)l l1 1

 respectively. This comparison is dimension dependent as 
shown in Fig. 2. Note that since a measure of coherence is nonnegative, we compare the expressions in Eq. (16) 
and choose the maximum value as the lower bound.

Robustness of coherence.  As a quantifier of the advantage enabled by a quantum state in phase discrimi-
nation task, the robustness of coherence is defined and proved to be a full measure for the framework proposed 
in ref. 13. Robustness of coherence is shown to be an observable related to the notion of coherence witness17, 18. 
Given a fixed basis =i{ }i

n
1 , where n is the dimension of Hilbert space. The definition of robustness of coherence of 

a state ρ is as following17:


ρ ρ τ δ=






≥
+
+

= ∈



τ∈

C s s
s

( ) min 0
1

: ,
(18)

R
D( )d



where D( )d  is the convex set of density operators acting on a n-dimensional Hilbert space, and   is the set of all 
incoherent states. Notice that the robustness of coherence of a pure state |φ〉 satisfies18,

φ φ= .C C( ) ( ) (19)R l1

From this equation, we can see the equivalence between robustness of coherence and l1 norm of coherence for 
pure states. The bounds are same as in Theorem 3 and Theorem 4.

Coherence of superpositions for two states from orthogonal subspaces.  Quantum states from 
orthogonal subspaces play an important role in quantum information and coding36. Here we consider the bounds 
for this special case. That is, the decomposition states (|Φ〉 and |Ψ〉) come from orthogonal subspaces.

Corollary 1. Let Φ = ∑ = a ii
n

i1 , Ψ = ∑ = b ii
n

i1  be two states satisfying aibi = 0, = …i n1, ,  (|Φ〉 and |Ψ〉 belong 
to two orthogonal subspaces), and α βΩ = Φ + Ψ , α β+ = 12 2 . Then the coherence of the superposition 
state |Ω〉 has the following bounds:

	(I)	 for relative entropy of coherence

α β αΩ = Φ + Ψ +C C C h( ) ( ) ( ) ( ), (20)re re re
2 2

2
2

where |α|2 + |β|2 = 1 and ≡ − − − −h x x x x x( ) log (1 ) log(1 )2 .

	(II)	 for l1norm of coherence

α β αβ

α β αβ
Ω ≤








Φ + Ψ +

Φ + Ψ + Φ + Ψ +
C

C C n

C C C C
( ) min

( ) ( ) ,

( ) ( ) 2 ( ( ) 1)( ( ) 1) , (21)
l

l l

l l l l

2 2

2 21

1 1

1 1 1 1

and

α β αβΩ ≥ Φ + Ψ + .C C C( ) ( ) ( ) 2 (22)l l l
2 2

1 1 1

For the superposition of two states from two orthogonal subspaces, the relative entropy coherence is the sum of 
three terms: the average of the coherence of two states being superposed, the binary entropy of probability |α|2. 
Instead of bounds, this is an accurate expression as shown in Eq. (20). The maximum increase for coherence is 
bounded as following:
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α βΩ − Φ − Ψ ≤ .C C C( ) ( ) ( ) 1 (23)re re re
2 2

The bounds for l1 norm coherence of superposition considering orthogonal subspaces in Corollary 1 is tighter 
compared with the general case in Theorem 3 and 4. Specifically, the expression given in the first line of Eq. (21) 
is lowered and the expression given in Eq. (22) is raised.

Discussion
Using the relative entropy of coherence, l1 norm of coherence and robustness of coherence, we give the upper and 
lower bounds for coherence of the superposition. Bounds for coherence of superpositions of multiple terms can 
be easily found by generalizing our methods.

Superposition is the root of both coherence and entanglement. Coherence is a property of an arbitrary quan-
tum state, while entanglement is a property of a bipartite or multipartite state. In this sense, it is straightforward 
to understand that coherence is a more general quantum property than entanglement20. Entanglement of the 
superposition is closely linked to the entanglement of these two superposed states28, 29, 31. In this work, we have 
shown that the coherence of the superposition is intimately related to the coherence of these two superposed 
states. However, it is still unclear that the difference between entanglement of superpositions and coherence of 
superpositions. As shown in Tables 1 and 2, there exist strong similarities between coherence and entanglement 
for the analogy problem.

From the expressions in Table 2, we can see that the upper bound and lower bound for coherence are symmet-
ric about the statistical average coherence of the two superposed orthogonal states, which is defined as 
α βΦ + ΨC C( ) ( )l l

2 2
1 1

, and the green line as shown in Fig. 2(a). While the bounds for entanglement are asym-
metric around the statistical average coherence of the two superposed orthogonal states defined as 
α βΦ + ΨE E( ) ( )C C

2 2 , and the green line as shown in Fig. 2(b). Here, we consider the case where our lower 
bound is valid, i.e. positive. In the following, we give an intuitive comparison between coherence and entangle-
ment for Table 2 by taking a simple example. We focus on fluctuating ranges of l1 norm coherence and concur-
rence for the superposition of two orthogonal states. Here in order to make the discussion meaningful we 
consider the superposition of two bipartite orthogonal states.

Example 2: Let |Ψ〉 and |Φ〉 be two orthogonal states, defined by

Ψ =
+

Φ =
+ + −

.
00 11

2
and

00 2 01 10 11
5 (24)

Their coherence and entanglement are depicted in Fig. 3. Evidently, the fluctuation of coherence is smoother 
than entanglement. The trend of change for coherence and entanglement with respect to the parameter |α|2 is not 
positive correlated with each other. Furthermore, there are two inflections points in the change of exact value of 
coherence while only one for entanglement considering the change of |α|2 in the case of example 2. Also in this 

upper bound for partial entropy of entanglement29 upper bound for relative entropy of coherence

Φ + − Ψ +pE p E h p[ ( ) (1 ) ( ) ( )]q
1

2 α β






 + − − + −

f p

f p q n q
min

( ),

( ) 2(1 ) log( 1) (1 )
q
1

lower bound for partial entropy of entanglement29 lower bound for relative entropy of coherence










Φ − Ψ −

Φ − Ψ −

α

α

β

β

−

−

−

−

−

−

E E h p

E E h p
max

( ) ( ) ( )

( ) ( ) ( )

p

p

p
p p

p

p

p
p p

(1 ) 2

1 2
1 1

2

(1 ) 2

1 2
1 1

2











Φ − Ψ −

Φ − Ψ −

α

α

β

β

−

−

−

−

−

−

C C h p

C C h p
max

( ) ( ) ( )

( ) ( ) ( )

p

p re
p

p re p

p

p re
p

p re p

(1 ) 2

1 2
1 1

2

(1 ) 2

1 2
1 1

2

Table 1.  Comparison between bounds on partial entropy of entanglement and relative entropy coherence for 
the superposition of two orthogonal states (Here φ φ φ=E S Tr( ) ( )AB

A  is an entanglement measure of pure 
state φAB 28).

upper bound for concurrence31 upper bound for l1 norm of coherence

α β αβΦ + Ψ +E E( ) ( ) 2C C
2 2

α β αβ

α β αβ








Φ + Ψ + −

Φ + Ψ + Φ + Ψ +

C C n

C C C C
min

( ) ( ) 2( 1)

( ) ( ) 2 ( ( ) 1)( ( ) 1)
l l

l l l l

2
1

2
1

2
1

2
1 1 1

lower bound for concurrence31 lower bound for l1 norm of coherence

α β αβΦ − Ψ −E E( ) ( ) 2C C
2 2  or 

β α αβΨ − Φ −E E( ) ( ) 2C C
2 2

α β αβ

α β αβ








Φ + Ψ − −

Φ + Ψ − Φ + Ψ +

C C n

C C C C
max

( ) ( ) 2( 1)

( ) ( ) 2 ( ( ) 1)( ( ) 1)
l l

l l l l

2
1

2
1

2
1

2
1 1 1

Table 2.  Comparison between bounds on concurrence and l1 norm coherence for the superposition of two 
orthogonal states (Here EC is concurrence which is a measure of entanglement31, 38).
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example we can see that when entanglement of the superposition state disappears, the coherence still exists. From 
these observations, we can see that coherence is a kind of resource easier accessed compared with entanglement.

In some information processing tasks, such as coherence distillation, we are more concerned with the coher-
ence of the state, rather than the state itself. When we only know the coherence value of |Φ〉 and |Ψ〉, and do not 
know what the specific state is, we can use our results to estimate the upper and lower bound of the superposition, 
then we can know that the least amount and the most amount of coherence we can distill from the superposition 
state.

Another interesting and challenging problem related to our work is the effects of superposition on the coher-
ence of superposition of mixed states, which can be used to analyze the effects of de-coherence resulted from the 
interactions with environment.

Methods
Proof of the Theorem 1.  We construct the state χ = Φ + − Ψp p0 1 1SA S A S A, where we used an 
ancillary system A. The coherence of χ  can be expressed as Φ + − Ψ +pC p C h p( ) (1 ) ( ) ( )re re 2 . Through measur-
ing ancillary system A with Kraus operators θ θ θ θ| 〉 〈 | + 〈 | | 〉 − 〈 | + 〈 |ω ω ω ω− −e e e e{ 0 (cos 0 sin 1 ), 1 ( sin 0 cos 1 )}i i i i1 2 2 1 , 
w i t h  p r o b a b i l i t y  θ θ= |Φ〉 + − |Ψ〉ω ωq p e p ecos 1 sin )i i 2

1 2 ,  t h e  s t a t e  b e c o m e s 
θ θΩ =



 Φ + Ψ





ω ω−e e0 cos sin 0p
q

i p
q

i11 2  and with probabi l ity  1  −  q ,  the  state  becomes 

θ θΓ =


− Φ + Ψ





ω ω
−

− −
−

−e e1 sin cos 1p
q

i p
q

i
1

1
1

2 1 . This measurement is an incoherent operation and Cre 

is a coherence monotone13, we can get the following inequality

Ω + − Γ ≤ Φ + − Ψ + .qC q C pC p C h p( ) (1 ) ( ) ( ) (1 ) ( ) ( ) (25)re re re re 2

Since Γ ≥C ( ) 0re , we can get the following inequality

Ω ≤ Φ + − Ψ + = .C
q

pC p C h p
q

f p( ) 1 [ ( ) (1 ) ( ) ( )] 1 ( )
(26)re re re 2

	(1)	 Now, we proof the  first line in Eq. (7) using the similar method in ref. 29 first. Here we set

α
α β

θ β
α β

θ
Φ + Ψ

=
Φ + Ψ

=
−

.ω ωp
q

e and p
q

ecos 1 sin
(27)

i i1 2

It is straightforward to get

α θ α β β θ α β= Φ + Ψ =
−

Φ + Ψ .
p
q

and p
q

cos 1 sin
(28)

2 2 2 2 2 2

Due to |α|2 + |β|2 = 1, and we can obtain

Figure 3.  Bounds for l1 coherence (a) and concurrence (b) of the two states in Eq. (24). In sub-figure (a), the 
black dotted line is the actual values of l1 coherence, the blue dashed line is upper bound on l1 coherence, the red 
solid line is lower bound on l1 coherence, and the green line represents the statistical average coherence of the 
superposed states, α βΦ + ΨC C( ) ( )l l

2 2
1 1

. In sub-figure (b), the black dotted line is the actual values of 
concurrence, the blue dashed line is upper bound on concurrence, the red solid line is lower bound on 
concurrence, and the green line represents the statistical average entanglement of the superposed states, 
α βΦ + ΨE E( ) ( )C C

2 2 . Note that coherence and entanglement are both non-negative.
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θ
α

α β
=

−

− +

p
p p

cos
(1 )

(1 ) (29)
2

2

2 2

Through substituting Eq. (29) into Eq. (28), and we can obtain

α β
α β=

−
− +

Φ + Ψ .q p p
p p

(1 )
(1 ) (30)2 2

2

Finally, substitute Eq. (30) into Eq. (26), and the result can be proved

α β
α β

Ω ≤
− +

− Φ + Ψ
Φ + − Ψ +

=

C
p p

p p
pC p C h p

q
f p

( )
(1 )

(1 )
[ ( ) (1 ) ( ) ( )]

1 ( ),
(31)

re re re

2 2

2 2

with 0 < p < 1.	 □
	(2)	 The other bound in Eq. (7) is obtained through getting a tighter lower bound of ΓC ( )re . Firstly, we introduce 

two lemmas on which the proof is based.

Lemma 1. (Fannes-Audenaert inequality37) Suppose ρ and σ are density matrices such that the trace distance is 
given by T,

ρ σ− ≤ − +S S T d h T( ) ( ) log( 1) ( ), (32)2

where d is the dimension of the Hilbert space, and = − − − −h x x x x x( ) log (1 ) log(1 )2 .

Lemma 2. Given two orthogonal states |Φ〉, |Ψ〉, and two complex number α, β satisfying α βΦ + Ψ = 1. Let 
α βΩ = Φ + Ψ , α βΓ = Φ − Ψ , and Ω Ωd , Γ Γd  are the diagonal matrices of Ω Ω , Γ Γ  respec-

tively. The trace distance between Ω Ωd  and Γ Γd  satisfies

αβ|Ω〉 〈Ω| |Γ〉 〈Γ| ≤ | |.T( , ) 2 (33)d d

Proof: Given Φ = ∑ =
− a ii

n
i0

1 , and Ψ = ∑ =
− b ii

n
i0

1 ,

∑

∑

α β α β

α β α β

Ω = Φ + Ψ = +

Γ = Φ − Ψ = − .

=

−

=

−

a b i

a b i

( ) ,

( )
(34)

i

n

i i

i

n

i i

0

1

0

1

Then we can get the diagonal matrices of |Ω〉〈Ω| and Γ Γ  by deleting all off-diagonal elements as follow

∑ α β α βΩ Ω = + +⁎ ⁎ ⁎ ⁎a b a b i i( )( ) , (35)d i i i i

∑ α β α βΓ Γ = − − .⁎ ⁎ ⁎ ⁎a b a b i i( )( ) (36)d i i i i

The trace distance between Ω Ωd  and Γ Γd  is

|Ω〉 〈Ω| |Γ〉 〈Γ| = | |.T tr R( , ) 1
2 (37)d d

Here, we denote = Ω Ω − Γ ΓR d d  for short.

∑
∑
∑

α β αβ

α β

α β

=

= +

=

= .

+

⁎ ⁎ ⁎ ⁎

R R R

a b a b i i

a b i i

a b i i

4( )

16

4 (38)

i i i i

i i

i i

2

2 2 2 2

The upper bound of trace distance between Ω Ωd  and Γ Γd  can be get as follows:
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∑

∑

α β

α β

α β

Ω Ω Γ Γ =

=

≤





+ 




=

T tr R

a b

a b

( , ) 1
2
2

2
2

2 , (39)

d d

i i

i i
2 2

where the first inequality is due to fundamental inequality, and the last equality is due to the 
∑ = ∑ =a b 1i i i i

2 2 .	 □
We can get the following inequality from lemma 1 and 2

α β
| Ω − Γ | ≤ |Ω Ω| |Γ Γ| − + |Ω Ω| |Γ Γ|

≤ | || | − + .
⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨C C T n h T

n
( ) ( ) ( , ) log( 1) ( ( , ))

2 log( 1) 1 (40)
re re d d d d2

Furthermore, we can get

α β− Ω − − Γ ≤ − − + −q C q C q n q(1 ) ( ) (1 ) ( ) 2(1 ) log( 1) (1 ), (41)re re

and through shifting one term in LHS we can get

α β− Γ ≥ − Ω − − − − − .q C q C q n q(1 ) ( ) (1 ) ( ) 2(1 ) log( 1) (1 ) (42)re re

Substitute Eq. (42) into Eq. (25), then we can get

α βΩ + − Ω − − − − −

≤ Ω + − Γ ≤ .

qC q C q n q
qC q C f p

( ) (1 ) ( ) 2(1 ) log( 1) (1 )
( ) (1 ) ( ) ( ) (43)

re re

re re

After simplification, we can get the result. Note that this upper bound is dimension dependent.	 □

P r o o f  o f  t h e  T h e o r e m  2 .   L e t  α βΩ = Φ + Ψ .  T h r o u g h  m e a s u r i n g  t h e  s t a t e 
χ′ = Ω + − Ψp p0 1 1SA S A S A, where we used an ancillary system A. The coherence of χ′  can be 
expressed as Ω + − Ψ +pC p C h p( ) (1 ) ( ) ( )re re 2 . We measure ancillary system A with Kraus operators 

θ θ| + 〈 |ω ωe e{ 0 (cos 0 sin 1 )i i1 2 , θ θ| 〉 − 〈 | + 〈 |ω ω− −e e1 ( sin 0 cos 1 )}i i2 1 , where β β= ω ω−ei( )2 1 . With probability 
θ θ= Ω + − Ψω ωt p e p ecos 1 sini i 2

1 2  t h e  s t a t e  b e c o m e s 
θ θΓ = Ω + Ψω ω−( )e e0 cos sin 0p

t
i p

t
i

1
11 2  and with probabi l ity  1  −  t  the  state  becomes 

θ θΓ = − Ω + Ψω ω
−

− −
−

−( )e e1 sin cos 1p
t

i p
t

i
2 1

1
1

2 1 . This measurement is an incoherent operation and 
Cre is a coherence monotone13, we can get

Γ + − Γ ≤ Ω + − Ψ + .tC t C pC p C h p( ) (1 ) ( ) ( ) (1 ) ( ) ( ) (44)re re re re1 2 2

Since Γ ≥C ( ) 0re 2 , we can obtain

Ω ≥ Γ − − Ψ − .C
p

tC p C h p( ) 1 [ ( ) (1 ) ( ) ( )]
(45)re re re1 2

Through the following setting like in ref. 29, we can obtain Γ = Φ1

α θ =ωp
t

ecos 1,
(46)

i 1

β θ θ+
−

= .ω ωp
t

e p
t

ecos 1 sin 0
(47)

i i1 2

The parameters α and β satisfying Eqs (46) and (47) are as follows

α
θ

β
θ
θ

= = −
−

.
ω ω

ω

−t
p

e and p
p

e
ecos

, 1 sin
cos (48)

i i

i

1 2

1

and

α
θ

β
θ

θ
α θ

= =
−

=
−

.
t

p
and p

p
p

tcos
(1 )sin

cos
(1 )sin

(49)
2

2
2

2

2

2 2

We can obtain
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α
α

=
−

−
.t

p p
p

(1 )
1 (50)

2

2

Substitute Eq. (50) into Eq. (45), then the results in Theorem 2 can be proved

α
α

Ω ≥
−

−
Φ −

−
Ψ −C

p
p

C p
p

C
p

h p( )
(1 )
1

( ) 1 ( ) 1 ( ),
(51)

re re re

2

2 2

with 0 < p < 1. As such, the another lower bound can be obtained by exchanging |Φ〉 and |Ψ〉.	 □

Proof of the Theorem 3.  Given two n dimensional states Φ = ∑ a ii
n

i  and Ψ = ∑ b ii
n

i , where ai, bi are 
complex numbers and satisfied ∑ = ∑ =a b 1i i

2 2 . Let α βΩ = Φ + Ψ , and Ω = 1.

	(1)	 Firstly, we prove the first upper bound in Eq. (14). From the definition of l1 norm of coherence Eq. (12). We 
have

∑

∑

Φ = | |

Ψ = | |.
≠

≠

C a a

C b b

( ) ,

( )
(52)

l
i j

i j

l
i j

i j

1

1

and

∑

∑

∑ ∑ ∑

∑

α β α β

α β αβ

α β αβ

α β αβ

Ω = | + + |

≤ | | | | + | | | | + | || |

= | | | | + | | | | + | | | |

= | | Φ + | | Ψ + | | | |

≠

≠

≠ ≠ ≠

≠

C a b a b

a a b b a b

a a b b a b

C C a b

( ) ( )( )

( 2 )

2

( ) ( ) 2 ,
(53)

l
i j

i i j j

i j
i j i j i j

i j
i j

i j
i j

i j
i j

l l
i j

i j

2 2

2 2

2 2

1

1 1

where the first inequality is due to absolute value inequality. Successive application of the mean inequality, 
we will get

∑ ∑ ∑| | ≤ −





+






≤ −

≠
a b n a b n2 ( 1) 2( 1),

(54)i j
i j

i
i

j
j

2 2

which is the first line in Eq. (14).
	(2)	 Now, we prove the other upper bound in Eq. (14). From the definition of l1 norm of coherence Eq. (13), we 

have

∑

∑

Φ =










−

Ψ =










− .

C a

C b

( ) 1,

( ) 1
(55)

l
i

i

l
i

i

2

2

1

1

Hence, we can obtain

∑

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

α β

α β

α β αβ

α β αβ

Ω =





+





−

≤





+





−

=










+










+




















−

= Φ + Ψ +




















.

C a b

a b

a b a b

C C a b

( ) 1

1

2 1

( ) ( ) 2
(56)

l
i

i i

i
i

i
i

i
i

i
i

i
i

i
i

l l
i

i
i

i

2

2

2
2

2
2

2 2

1

1 1

where the first inequality is due to absolute value inequality. Further, we have
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∑ ∑ ∑ ∑




















=




















= Φ + Ψ + .a b a b C C( ( ) 1)( ( ) 1)
(57)i

i
i

i
i

i
i

i l l

2 2

1 1

The upper bound can be gained by substituting Eq. (57) into Eq. (56).	 □

Proof of the Theorem 4.  Given two n dimensional states Φ = ∑ = a ii
n

i1 , and Ψ = ∑ = b ii
n

i1 , where ai, 
bi, are complex numbers and satisfy ∑ = ∑ =a b 1i i

2 2 . Let α βΩ = Φ + Ψ , and Ω = 1.

	(1)	 From the definition of l1 norm of coherence Eq. (12), we have

∑

∑

Φ = | |

Ψ = | |.
≠

≠

C a a

C b b

( ) ,

( )
(58)

l
i j

i j

l
i j

i j

1

1

Thus, it has

∑

∑

∑

∑

α β α β

α β α β

α β αβ

α β αβ

Ω = | + || + |

≥ | | − | | | | − | |

= | | | | + | | | | − | || |

= | | Φ + | | Ψ − | | | |

≠

≠

≠

≠

C a b a b

a b a b

a a b b a b

C C a b

( )

( )( )

( 2 )

( ) ( ) 2 ,
(59)

l
i j

i i j j

i j
i i j j

i j
i j i j i j

l l
i j

i j

2 2

2 2

1

1 1

where the first inequality is due to absolute value inequality. Further, we find

∑ ∑ ∑− ≥ − −





+






≥ − − .

≠
a b n a b n2 ( 1) 2( 1)

(60)i j
i j

i
i

j
j

2 2

Therefore, the first lower bound in Theorem 4 can be obtained
	(2)	 From the definition of l1 norm of coherence Eq. (13), we have

∑

∑

Φ =










−

Ψ =










− .

C a

C b

( ) 1,

( ) 1
(61)

l
i

i

l
i

i

2

2

1

1

Hence, we can obtain

∑

∑ ∑

∑ ∑ ∑ ∑

∑ ∑

α β

α β

α β αβ

α β αβ

Ω =





+





−

≥





−





−

=










+










−




















−

= Φ + Ψ −



















.

C a b

a b

a b a b

C C a b

( ) 1

1

2 1

( ) ( ) 2
(62)

l
i

i i

i
i

i
i

i
i

i
i

i
i

i
i

l l
i

i
i

i

2

2

2
2

2
2

2 2

1

1 1

The second lower bound in Eq. (14) can be obtained by substituting the following Eq. into Eq. (62)

∑ ∑ ∑ ∑




















=




















= Φ + Ψ + .a b a b C C( ( ) 1)( ( ) 1)
(63)i

i
i

i
i

i
i

i l l

2 2

1 1

Proof of the Corollary 1.  Given Φ = ∑ = a ii
n

i1 , Ψ = ∑ = b ii
n

i1  be two states satisfying aibi = 0, and 
α βΩ = Φ + Ψ , and α β+ = 12 2 .	 □
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	(1)	 According to the conditions of Corollary 1, we can easily get

α β αΦ Φ + | | |Ψ〉 〈Ψ| + | | = |Ω〉 〈Ω| .S S h S( ) ( ) ( ) ( ) (64)d d d
2 2 2

Thus, we can get Eq. (20) in terms of Eq. (6).
	(2)	 Let m1 and m2 are the number of nonzero probability amplitude of |Φ〉 and |Ψ〉 respectively, and 

m1 + m2 ≤ n. From the definition of l1 norm of coherence Eq. (12), we have

∑

∑

∑ ∑ ∑

∑

α β α β

α β αβ

α β αβ

α β αβ

Ω = | + + |

≤ | | | | + | | | | + | || |

= | | | | + | | | | + | | | |

= | | Φ + | | Ψ + | | | |

≠

≠

≠ ≠ ≠

≠

C a b a b

a a b b a b

a a b b a b

C C a b

( ) ( )( )

( 2 )

2

( ) ( ) 2 ,
(65)

l
i j

i i j j

i j
i j i j i j

i j
i j

i j
i j

i j
i j

l l
i j

i j

2 2

2 2

2 2

1

1 1

where the first inequality is due to absolute value inequality. Successive application of the mean inequality, we 
will get

∑ ∑ ∑≤



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We will get the first  upper bound by substituting Eq. (66) into Eq. (65).
Since the second upper bound Eq. (14) presented in Theorem 3 also works for this case, we can get the upper 

bound for the coherence of superposition of two states from two orthogonal subspaces as shown in Eq. (21).
In the following we give the lower bound for the coherence of superposition of two states from two orthogonal 

subspaces

∑

∑

∑

∑

α β α β

α β α β

α β αβ

α β αβ

Ω = | + || + |

≥ | | − | | | | − | |
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≠
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≠

C a b a b
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where the first inequality is due to absolute value inequality. Substitute Eq. (66) into Eq. (67), then we can get

α β αβΩ ≥ Φ + Ψ − .C C C n( ) ( ) ( ) (68)l l l
2 2

1 1 1

Another way to get the lower bound for the coherence of the superposition of two states from two orthogonal 
subspaces are as follows:

∑

∑

∑ ∑

α β α β

α β αβ

α β αβ

α β αβ

Ω = | + + − |

= | | | | + | | | | + | || | −

= | | Φ + | | Ψ + | | | |

≥ | | Φ + | | Ψ + | |.
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Since the lower bound Eq. (16) presented in Theorem 4 also works for this case, we can get the lower bound for 
the coherence of superposition of two states from two orthogonal subspaces as follows:	 □

α β αβ

α β αβ

α β αβ

α β αβ

Ω ≥

| | Φ + | | Ψ − | |
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