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Geometric quantum discords 
of interacting qubits in thermal 
reservoir
Zhao Li1, Xiao-Min Wang1, Wu Zhou1 & Ming-Liang Hu1,2

We examined decay dynamics of various geometric quantum discords (GQDs) for two interacting qubits 
described by the Heisenberg XY model and further coupled independently to their respective thermal 
reservoirs. Compared to the case of noninteracting qubits, our results showed that decay rates of the 
GQDs can be retarded apparently by properly choosing system parameters of the interaction term. In 
the long-time limit, the asymptotic values of the GQDs are enhanced evidently by tuning anisotropy 
of the model and strength of the transverse magnetic field. We further illuminated the relations 
between different GQDs on characterizing quantum correlations, and observed multiple sudden change 
behaviors of their dynamics.

Quantum correlations are long-standing concerns of the community of quantum mechanics, and they also play 
an important role in the emerging field of quantum information science1. Historically, quantum correlations in 
a system have been characterized and quantified from many different aspects, e.g., the widely-studied Bell-type 
nonlocality2 and quantum entanglement3. Apart from these progresses, a new framework for characterizing 
quantum correlations has been established by Henderson and Vedral4, as well as by Ollivier and Zurek5. They 
proposed the seminal notion of quantum discord (QD), and subsequently, a series of other discord-like quantum 
correlation measures were proposed6–19. These measures can be categorized roughly into two different families, 
i.e., the first of those based on the entropy theory7–10, and the second of those based on different distance measures 
of quantum states11–19. Other fundamental aspects of QDs such as their interpretation20–24 and their local creation 
property25–27 have also been examined in detail.

One of the main reason for researcher's interest in QDs is due to their potential role in quantum information 
processing tasks such as the deterministic computation with one qubit28, remote state preparation29, and the 
quantum advantage of coherent information extraction30. In situations like these, QDs were regarded as new 
physical resources whose roles are different from those of quantum entanglement. Also due to these potential 
applications and the unavoidable interaction of any quantum system with its surrounding, the control of QDs for 
various candidates of quantum computation systems have been researcher's concern of recent years31–43. The aim 
of study along this line is to make clear robustness of various QDs31–35, and further identify feasible methods for 
their long-time maintenance36–41.

The significance for studying quantum correlation dynamics of open system also lies in that they can help to 
examine properties of the system such as the critical points of quantum phase transitions44, and to understand 
structures of the corresponding reservoir such as its (non-)Markovianity45–47. For noninteracting qubits (e.g., the 
qubits that are separated far from each other), it was found that in the Markovian region the QDs decay exponen-
tially in time and vanish only asymptotically36, 48, while non-Markovianity of the reservoir induces oscillations of 
the QDs, and their decay can be delayed to some extent by the backflow of information from the reservoir to the 
system33, 49, 50.

When there exists direct interactions between qubits, solution of the evolution equation of the considered 
system may be more complicated. But just as every coin has two sides, we are also equipped with more adjustable 
system parameters that can be used to enhance their robustness against decoherence. In particular, the existence 
of interactions between qubits and their competition with decoherence effects of the reservoir are expected to 
eliminate to some extent the devastating effects of the reservoir.
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In this paper, we investigate such a dissipative model. The relevant system consists of two qubits which are 
coupled via the Heisenberg XY interaction, and every qubit further interacts independently with a thermal reser-
voir. Based on this setting, we calculated the geometric quantum discords (GQDs) by solving exactly the master 
equation describing evolution of these two qubits, and compared in detail their dynamical behaviors. The system 
parameter regions for which decay rates of the GQDs can be slowed down are identified, and singular behaviors 
of them such as the multiple sudden change (SC) phenomenon and the different orderings of quantum states 
imposed by different GQDs are observed.

Results
Measures of GQD.  There are many different discord measures being proposed in the literature4–17. We adopt 
in this work those of the geometric ones. They are generally defined by the minimal distance between ρ and the 
set  of zero-discord states, i.e., ρ ρ χ= χ∈D d( ) min ( , )15, 38, or by the minimal square distance between ρ and the 
set , i.e., ρ ρ χ= χ∈D d( ) min ( , )2


11, 13, 17, where d is the distance measure of states. See ref. 12. for a comparison 

of these different definitions.
To be explicit, the first measure we will adopt is the trace distance discord (TDD) defined as

ρ ρ χ=
χ∈

D d( ) min ( , ),
(1)T T



where ρ χ= −dT 1 denotes the trace norm15, and DT(ρ) characterizes the minimal trace distance from the 
given state ρ to the set  of zero-discord states.

The second one is the Hellinger distance discord (HDD) which takes the form16

ρ ρ ρ= Π
Π

D d( ) 2min ( , ( )), (2)H H
A2 1/2

A

with ρ ρ= − ΠdH
A1/2 1/2

2, ⋅ 2 is the Hilbert-Schmidt norm, and Π = Π{ }A
k
A  is the set of local projective meas-

urements on A. Here, DH(ρ) equals to twice of the minimal square Hellinger distance from ρ to the set   of 
zero-discord states, and the constant 2 is introduced for normalizing DH(ρ) of the two-qubit maximally discord-
ant states. As proved in ref. 16, this definition of HDD can avoid the problem encountered for the GQD measure 
initially proposed by Dakić et al.11. Moreover, for any (2 × n)-dimensional system, DH (ρ) is also equivalent to the 
local quantum uncertainty  ρ( ), i.e., ρ ρ=D ( ) ( )H  .

Finally, we will consider the Bures distance discord (BDD) as well. We take the definition of ref. 38. which is 
given by

ρ ρ χ= +
χ∈

D d( ) (2 2 )/2 min ( , ),
(3)B B



where ρ χ= −d F[2(1 ( , ))]B
1/2 1/2

, and ρ χ ρ χρ=F( , ) [tr( ) ]1/2 1/2 1/2 2 is the Uhlmann fidelity. The constant before 
min is introduced for the purpose of normalizing DB(ρ) for the maximally discordant two-qubit states. One can 
check directly that the square of DB(ρ) given in Eq. (3) equals to the normalized ρ∼D ( )B  given in Eq. (49) of ref. 17. 
In fact, the two definitions of BDD in refs 17, 38. give qualitatively the same characterization of quantum correla-
tion of a state.

Solution of the dissipative model.  We consider in this paper an exactly solvable model of open quantum 
system described by the following master equation51

∑ρ ρ ρ= − +
=

ˆd
dt

i H[ , ] ,
(4)k

k
1,2

where the first (second) term on the right-hand side of Eq. (4) is the unitary (dissipative) part, and the 
Hamiltonian

= + + +Ĥ J S S J S S B S S( ), (5)x
x x

y
y y z z

1 2 1 2 1 2

with σ α= =α αS x y z/2( , , )k k , σα
k  is the Pauli operator at site k, B is the transversal magnetic field, and Jα is the 

exchange interaction of the two spins. For later use, we denote J = (Jx + Jy)/2 and Δ = (Jx − Jy)/2. Moreover, the 
dissipative part described by the Lindblad operator is given by

 ∑ρ
γ

ρ ρ ρ= − −
=

† † †c c c c c c
2

(2 ),
(6)

k
i

k
i k i k i k i k i k i k

1,2
, , , , , ,

where σ= + −c n( 1)k k1,
1/2 , σ= +c nk k2,

1/2 , and σ−
k  σ+

( )k  is the lowering (raising) operator. c1,k and c2,k describe 
respectively, decay and excitation processes of the kth qubit due to its interaction with the reservoir, with n being 
the average thermal photons in the reservoir, and γk the damping rates which will taken to be equal in the follow-
ing, i.e., γ1 = γ2 = γ. Similar models in the study of state transfer52 and quantum teleportation53 have already been 
exploited.

For the initial X-type states, Eq. (4) can be solved analytically. For the purpose of presenting the results con-
cisely, we define ϱij = ρij(t = 0), ϱij±kl = ϱij ± ϱkl, and
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then elements of the evolved ρ(t) are as follows:
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and ρ ρ= ⁎t t( ) ( )41 14 , ρ ρ= ⁎t t( ) ( )32 23 , ρ33(t) = 1 − ρ11(t) − ρ22(t) − ρ44(t), and the other elements of ρ(t) remain zero 
during the evolution. The parameters c1 = ϱ11−44 − b1, c2,3 = ϱ14±41 − b2,3, while
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where ξ = Δc1 − Bc2 and ζ = Δc2 + Bc1.

Dynamics of the GQDs.  By using Eq. (8), we discuss decay dynamics of the GQDs, and show that they 
exhibit distinct singular behaviors. In particular, we will show that the system parameters of the interaction term 
can serve as efficient parameters for tuning quantum correlations between the two qubits.

To be explicit ,  we consider the init ial  two-qubit  Bel l  states ψ = ±± ( 01 10 )/ 2  and 
φ = ±± ( 00 11 )/ 2 . In fact, as both ψ+  and ψ−  show completely the same behaviors in all cases we con-
sidered, and the same for φ+  and φ− , we give in the following only plots for ψ+  and φ+ , respectively.

We first investigate the limiting case of zero temperature reservoir, i.e., =n 0. In Fig. 1, we showed the γt 
dependence of DT(ρ), DB(ρ), and DH(ρ) for the initial state ψ+  with B = 0 and different anisotropic parameters 
Δ. When Δ = 0, the TDD can be obtained analytically as DT(ρ) = e−γt. Clearly, it decays smoothly and monoto-
nously with the increasing γt. The BDD and HDD show SCs at the critical times γ .t 0 693c  and 1.099, respec-
tively. Mathematically, these SCs are caused by the optimization processes in their respective definitions. That is, 
the closest states change suddenly when γt crosses these critical points, and hence decay rates of the GQDs also 
changed suddenly. Sometimes, the SC points may also correspond to a transition from the region in which the 
GQDs are decreased (decreased) to another region in which they turn to be increased (decreased) in time, see, 
e.g., the inset of Fig. 1(a). Moreover, the BDD also shows a slight increase before the SC point. If one properly 
enlarges the anisotropy, e.g., Δ = 0.3 denoted by the red curves, all the three GQDs will display SC behaviors, 
which still occur at different instants (γ .t 1 406c , 0.929, and 1.222, respectively). This fact shows that the three 
GQD measures give different characterizations of the quantum correlation feature of a system, both qualitatively 
and quantitatively. In another word, the three GQDs can impose different orderings of quantum states. If one 
continues enlarging strength of the anisotropic parameter (e.g., Δ = 0.7 and 1), the SC behaviors disappear and 
the three GQDs turn out to be continuous functions of the scaled time γt, and they may be increased slightly after 
the first period of decrease.

For the case of the initial state φ+  with =n 0 and B = 0, the TDD can be obtained analytically as

ρ = |
∆ + ∆ ∆ − ∆

∆ +
+ |.

γ
γ

−
−D i t t e i e( ) (sin2 2 cos2 ) 2

4 1 (10)T

t
t

2

When Δ = 0, it reduces to DT(ρ) = e−γt, which is completely the same as that for the initial state ψ+ . This is 
understandable as Δ = 0 corresponds to the Heisenberg XX model, i.e., Jx = Jy, and the Hamiltonian Ĥ  for this 
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special case is invariant by a π/2 rotation along the z axis. When Δ ≠ 0, due to the existence of sine and cosine 
terms in Eq. (10), DT(ρ) does not behave as a monotonic function of γt. But this is not the case for the HDD and 
BDD. As can be seen from Fig. 2, apart from the case Δ = 1 (in unit of J) which corresponds to the Ising model, 
they undergo SCs during different times of the evolution process. In the long-time limit t → ∞, DT(ρ) → 2Δ/
(4Δ2 + 1), which takes the maximum value 0.5 for Δc = 0.5. That is, this is the maximum extent of TDD that can 
be maintained for φ+ . Similar phenomenon also happens for the HDD, for which its asymptotic value in the 
long-time limit is 0.25 (also with Δc = 0.5). For the BDD, however, its asymptotic value of about 0.4186 occurs at 
a different critical value of Δ, and the numerical simulation shows that it is ∆ . 0 61c .

By comparing the curves in Figs 1 and 2, one can also note that for the initial state ψ+ , decay rates of the three 
GQDs are increased by increasing anisotropy of the system in the short-time region, while for the initial state φ+ , 
they are nearly the same during the time region γt ≲ 0.5. In the long-time limit, the asymptotic values of the GQDs 
for both the initial states ψ+  and φ+  are the same.

To further see effects of the external magnetic field on control of the GQDs for the considered system, we 
displayed in Figs 3 and 4 the γt dependence of them with fixed Δ = 1 and different values of B. From these plots 
one can see that in the short-time region (γt ≲ 0.5 for ψ+ , and γt ≲ 0.25 for φ+ ), the applied magnetic field does 
not affect so much the GQDs. But for relatively large γt, their decay rates may be slowed down by increasing the 
strength of B for the initial state ψ+ , while the opposite cases occur for the initial state φ+ . We have also calcu-
lated numerically the B dependence of the asymptotic values of the three GQDs in the long-time limit with differ-
ent Δ. The results show that when Δ ≥ Δc, one can always obtain the same asymptotic values of them as those 
with Δ = Δc and B = 0. The difference is that when Δ increases from Δ = Δc, the critical value of Bc also increases 
linearly. When Δ = 1, we have =B 3 /2c  for the TDD and HDD, and .B 0 64c  for the BDD.

Moreover, from the inset of Fig. 3 one can note that the TDD shows multiple SCs during the time evolution 
process. This is a distinct feature of the TDD dynamics, and the double SCs of the TDD, HDD, and BDD have 
already been observed in the literature54, 55. We have also checked carefully these multiple SCs, and found that 
they correspond to reciprocating changes of the closest zero-discord states. Note also that the multiple SC phe-
nomenon is different from the decayed oscillations of the GQDs observed in Fig. 4, as the latter are caused by the 
sine and cosine terms in ρ(t), and they do not correspond to SCs of the closest zero-discord states. In fact, the first 
derivatives of the GQDs with respect to γt at the SC points are discontinuous, but the GQDs are continuous func-
tions of γt at the neighborhood of the extreme points showed in Fig. 4. This constitutes one of the main difference 
between the SC points and the extreme points of the GQDs.

We discussed in the above evolution of the three GQDs in the limiting case =n 0, and observed distinct sin-
gular behaviors of them. We now give a short discussion of the finite temperature case. For concise of the paper, 
we exemplified only plots for the initial state φ+  (the case for ψ+  is similar), see Fig. 5. By comparing the curves 

Figure 1.  γt dependence of TDD, HDD, and BDD (in units of J) for the initial state ψ+ , with =n 0, B = 0, and 
Δ = 0 (black), 0.3 (red), 0.7 (blue), and 1 (green). Moreover, the black line overlaps with that for noninteracting 
qubits.
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Figure 2.  γt dependence of TDD, HDD, and BDD (in units of J) for the initial state φ+ , with =n 0, B = 0, and 
Δ = 0 (black), 0.3 (red), 0.7 (blue), and 1 (green). Moreover, the black line overlaps with that for noninteracting 
qubits.

Figure 3.  γt dependence of TDD, HDD, and BDD (in units of J) for the initial state ψ+ , with =n 0, Δ = 1, and 
B = 0 (black solid), 0.8 (red solid), 1.6 (blue solid), and 2.4 (green solid). Moreover, the dashed curve shows the 
case of noninteracting qubits.
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Figure 4.  γt dependence of TDD, HDD, and BDD (in units of J) for the initial state φ+ , with =n 0, Δ = 1, and 
B = 0 (black solid), 0.8 (red solid), 1.6 (blue solid), and 2.4 (green solid). Moreover, the dashed curve shows the 
case of noninteracting qubits.

Figure 5.  γt dependence of TDD, HDD, and BDD (in units of J) for the initial state φ+ , with B = 2.4, Δ = 1, 
and =n 0, 0.1, 0.3, and 0.5 (solid curves from top to bottom). Moreover, the dashed lines show the 
corresponding plots for noninteracting qubits.
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with different n, one can note that the decay of the GQDs are accelerated with the increase of the reservoir tem-
perature in nearly the whole time region. This implies that the devastating effects of the thermal reservoir on 
correlations of the two-qubit system becomes severe and severe with the increase of the reservoir temperature. 
For the infinite temperature case, decay and excitation occur at the same rate, and the non-diagonal elements of 
ρ(t) for any initial state disappear in the long-time limit, thus there are no correlations.

Finally, we present a comparison of the above results with those of the noninteracting two-qubit case (i.e., 
J = Δ = 0). For this case, the reduced density matrix is greatly simplified. For the considered initial Bell states, 
they are of the Bell-diagonal form, thus analytical solutions of the TDD, HDD, and BDD can be obtained analyt-
ically using the results in refs 15, 16, 38. We do not list their explicit expressions here. Alternatively, we showed the 
corresponding results by dashed lines in Figs 1 to 5 (the dashed lines in Figs 1 and 2 overlap with the black lines). 
In the short-time region, the combined effects of the dissipative reservoirs and the interaction Hamiltonian 
induces complex behaviors of the GQDs. As one can see, for the initial state ψ+ , the three GQDs for the interact-
ing qubits decay faster than those of the noninteracting ones, while the opposite case occurs for the initial state 
φ+  and weak magnetic field case. In the long-time region, influence of the dissipative term becomes small, while 
the interaction term of the Hamiltonian turns to dominates, thus decay of the GQDs for the interacting qubits are 
slower than those for the noninteracting ones for all the considered cases. In particular, in the infinite-time limit, 
while all the GQDs approach zero for the noninteracting qubits, they maintain finite values for the interacting 
qubits considered here. This shows potential of the interacting Hamiltonian on enhancing quantum correlations 
of open system.

Discussion
We have investigated dynamics of the quantum correlations for an exactly solvable dissipative model, aimed at 
revealing the interaction Hamiltonian on controlling quantum correlations. The measures of quantum correla-
tions we adopted are the recently introduced TDD, HDD, and BDD, and the central system we considered con-
sists of two qubits which are coupled independently to their respective thermal reservoirs. We compared in detail 
dynamical behaviors of the three GQDs with different initial states, as well as with different system parameters 
such as anisotropy of the system, strength of the transverse magnetic field, and the average thermal photons in the 
reservoir. The results showed that the explicit influence of the reservoir on GQDs are initial-state dependent, and 
the GQDs can be preserved well compared with those of the noninteracting qubits. When =n 0, the asymptotic 
values of TDD, HDD, and BDD in the long-time limit are 0.5, 0.25, and of about 0.4186, respectively. These 
asymptotic values are obtained only in the region of Δ ≥ Δc and when the magnetic field takes certain critical 
value Bc which increases with the increase of Δ. With the increased temperature, the GQDs will be decreased. 
Our results also demonstrated the relativity of different GQDs on characterizing quantum correlations. That is to 
say, they are both quantitatively and qualitatively different. Finally, we observed multiple SCs of the TDD during 
its evolution process. This complements and extends the observation of the double SCs for its evolution behaviors 
in open quantum system.
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