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One-Step Fabrication of Pyranine 
Modified- Reduced Graphene 
Oxide with Ultrafast and Ultrahigh 
Humidity Response
Zhuo Chen1, Yao Wang1, Ying Shang1, Ahmad Umar2, Peng Xie1, Qi Qi3 & Guofu Zhou4

A facile one-step supramolecular assembly method is adopted to modify reduced graphene oxide (rGO) 
with functional organic molecule pyranine for achieving comprehensive humidity sensing performance. 
The fabricated humidity sensor based on pyranine modified-reduced graphene oxide (Pyr-rGO) exhibits 
excellent sensing performance with ultrafast (<2 s) and ultrahigh response of IL/IH = 6000 as relative 
humidity (RH) consecutively changes between 11% and 95%; small hysteresis of 8% RH; reliable 
repeatability and stability. In addition, a detailed mechanism analysis is performed to investigate 
the difference in water adsorption and ions transfer under various RH levels. Notably, the one-step 
supramolecular assembly method to prepare Pyr-rGO provides a new insight into developing novel 
functional humidity sensing materials with enhanced device performance.

Humidity sensors have increasingly aroused interests due to the wide application in various realms, such as the 
indoor humidity measurement, industrial and agricultural environmental monitoring1–3. So far, several effective 
methods are proposed to fabricate humidity sensors while it still remains a challenge to make the fabrication 
more facile. For the whole sensor fabricating process, the selection of sensing materials is the most critical stage. 
Great efforts have been made to investigate the different sensing characteristics of various materials, including 
ceramics4, 5, metal oxide6, composites and organic polymers7–9. Nevertheless, it is hard to simultaneously realize 
the comprehensive humidity sensing properties such as rapid & high response, small hysteresis and reliable sta-
bility10. For instance, the ceramics materials possess excellent physical and chemical stability but the practical 
application is restricted since the need of auxiliary heat cleaning process. Thus, it is of great importance to explore 
a superior humidity sensing material which can endeavor more comprehensive properties.

Graphene, a fascinating material with perfect 2D atom-thin structure, large specific surface areas and excellent 
electronic properties, has been considered as a promising candidate for extensive applications including humidity 
sensing11. Several methods have been explored to prepare graphene such as mechanical exfoliation12, chemical 
vapor deposition13, 14, and epitaxial growth15, but the most effective approach should be the chemical reduction 
mainly because the potential for the relatively low-cost and large-scale fabrication from the view of practical 
application16. Unfortunately, the pristine reduced graphene oxide (rGO) without proper modification is not satis-
fying when applied as sensors, exhibiting slow response and low sensitivity towards gas or humidity changes17, 18. 
Moreover, the rGO nanosheets tend to irreversibly aggregate during the chemical reduction process, limiting the 
further devices fabrication. Hence, it is necessary to modify rGO with appropriate method.

Covalent chemical modification of rGO is widely used and indeed the sensing properties can be enhanced 
prominently, but usually a complex reaction process is required and the instinct structure and electrical proper-
ties of rGO will be damaged to some degree. To realize the mild and effective modification of rGO, a facile supra-
molecular assembly modification based on non-covalent interactions such as hydrogen bonding19, electrostatic 
forces20, and π-π stacking21, is an alternative approach which will maximize the remain of inherent properties of 
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rGO22. In addition, supramolecular assembly modification allows more possibilities for functional “guests” such 
as inorganic ions, organic molecules or nanoparticles17, 18, which can be specific to enhance the dispersibility or 
humidity sensing performance of the as-prepared material.

In this work, we present a facile one-step supramolecular assembly method to modify rGO with functional 
organic molecule pyranine to form pyranine modified- reduced graphene oxide (Pyr-rGO) for achieving high 
performance humidity sensing materials. The as-prepared sensors exhibit excellent comprehensive humidity 
sensing properties including ultrafast (<2 s) and ultrahigh (IL/IH = 6000) response. In addition, the humidity 
sensing mechanism under different RH levels has also been investigated in detail. It is worthy to mention that the 
one-step supramolecular assembly method has the potential for facilely preparing the novel functional materials 
with enhanced humidity sensing performance.

Results
The Supramolecular Assembly in Humidity Sensing Materials Preparation. It is well known that 
rGO sheets tend to aggregate due to the strong π-π interaction and hydrophobic surface, which is not desirable as 
humidity sensing materials. Thus, it is necessary to modify graphene by a mild approach to achieve well-dispers-
ibility without damaging the instinct structure and electrical properties. Herein, a supramolecular assembly was 
introduced to non-covalently modify the graphene with aromatic molecules which enhanced the dispersibility 
of rGO in aqueous solution and adsorption of water molecules in the following humidity sensing applications. 
For this, a well-known organic aromatic molecule was selected, i.e. pyranine with a pyrene ring decorated with 
hydrophilic sulfonic groups.

Figure 1a shows the physical images of rGO and Pyr-rGO dispersion with the same concentration of 1 mg/mL 
after static placement for a week. It is clearly shown that the rGO dispersion has aggregated while Pyr-rGO pos-
sesses stable aqueous dispersion with homogeneous dark color. The enhancement in dispersibility and stability 
of Pyr-rGO dispersion can be attributed to the pyranine molecules by supramolecular assembly. The large planar 
aromatic structure of pyranine can anchor themselves onto hydrophobic surface of rGO sheets via strong π-π 
interaction, and the hydrophilic sulfonic groups contribute a lot to the well-dispersibility (Fig. 1a). Moreover, the 
pyranine molecules act as superior stabilizer due to the electronegative sulfonic groups which maintain interlami-
nar static-repulsion forces and thus efficiently prevent the negative charged Pyr-rGO sheets from aggregation23, 24.  
The TEM images show the morphological features of Pyr-rGO sheets (Fig. 1b and c). At low magnification, a 
typical large-area and well-spread film is observed while the edge is difficult to distinguish even at high magnifica-
tion, indicating that the film is ultrathin. In contrast, the TEM image shows rGO sheets have stacked together and 
form thick clusters (Supplementary Figure S1). It is worth mentioning that there is no covalent bonding between 

Figure 1. (a) The schematic of the aggregation by stacked rGO sheets and the supramolecular assembly of Pyr-
rGO sheets with corresponding physical images in dispersion. (b) Low- and (c) high-magnification TEM image 
of the ultrathin Pyr-rGO film.
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pyranine and graphene in the supramolecular assembly because the π-π interaction is a physical phenomenon 
driven by the electrostatic force rather than chemical reaction25, i.e. the modification would not disrupt the struc-
ture and electronic conjugation of graphene26.

The Characterization. Figure 2a shows the Fourier transform infrared (FTIR) spectroscopy analysis 
of GO, rGO and Pyr-rGO. Two obvious peaks at 3410 cm−1 and 1722 cm−1 assigned to hydroxyl and carboxyl 
groups respectively were observed in GO spectra. The peak at 3410 cm−1 had an attenuation in rGO spec-
tra, and the attenuation also occurred at 1722 cm−1 in both rGO and Pyr-rGO spectra, suggesting that lots of 
oxygen-containing functional groups have been reduced by hydrazine hydrate. Notably, the peak at 3410 cm−1 
reappeared in the spectra of Pyr-rGO, which should be attributed to the hydroxyl groups of pyranine mole-
cule, and also the characteristic S=O peak around 1041 cm−1 and aromatic ring absorption peak at 1595 cm−1 
appeared in Pyr-rGO spectra, which kept accordance with the spectra of pure pyranine powders as shown in 
Supplementary Figure S2, proving the successful assembly of pyranine molecules with rGO. XPS analysis was also 
conducted to investigate the surface properties and shown in Fig. 2b. Compared with rGO, Pyr-rGO spectrum 
appeared a prominent peak at 168.58 eV corresponds to S2p, suggesting the successful assembly of pyranine 
molecules on rGO, which was in accordance with the above FTIR analysis. The XPS peak table of Pyr-rGO was 
shown in Supplementary Table S1.

Raman spectroscopy was used to analyze the structural changes during the supramolecular assembly and 
reduction process. As indicated in Fig. 2c, the GO, rGO and Pyr-rGO spectrums all displayed two prominent 
Raman-active peaks at 1330 cm−1 and 1590 cm−1 assigned to the D- and G-band respectively. The rGO spectra 
exhibited the increased intensity ratio of the D-band to G-band (ID/IG = 1.34) compared to GO (ID/IG = 1.15), 
suggesting that the reduction process enhanced the defect content or edge area27, 28. Interestingly, Pyr-rGO 
showed the same ID/IG value as rGO, proving that the supramolecular assembly modification is a mild approach 
without causing further disruption of rGO structure.

Humidity Sensing Performance of Pyr-rGO. It is generally known that the response of humidity sensors 
is dependent on the testing frequency which should be determined first before investigating the humidity sensing 
properties29. Hence, the impedance of Pyr-rGO sensors at different RH levels was tested with frequency ranged 
from 50 Hz to 100000 Hz. As can be seen from Fig. 3a, at almost all the frequencies, the impedance decreased 
along with the increase of RH level from 11% to 95%. Besides, to any RH level, the impedance decreased as the 
frequency rose from 50 Hz to 100000 Hz, indicating that the frequency influenced the impedance significantly in 
humidity sensing. However, the impedance curves were nearly linear at high frequencies of 1000 Hz, 10000 Hz 
and 100000 Hz, which were not desirable as the ideal testing frequency since the poor precision with extremely 
small response to humidity variation. For the remaining two frequencies, the curve of 100 Hz showed apparently 
wider span and more regular decrease on impedance towards humidity variation which revealed the higher sen-
sitivity and accuracy than 50 Hz. Therefore, the optimum testing frequency for the following humidity sensing 
was set as 100 Hz.

For humidity sensors, the response, response-recovery time and repeatability are the key parameters to directly 
determine the accuracy and efficiency in practical test. Figure 3b and c showed the five-cycle response-recovery 
curve of Pyr-rGO and rGO measured at 100 Hz as RH level alternately changed between 11% and 95%. Herein, 
the response was calculated by the ratio of impedance captured at 11% RH (IL) and 95% RH (IH), respectively. 
By calculation (Fig. 3b), the Pyr-rGO sensors showed excellent humidity sensing performance with an ultrahigh 
response (IL/IH = 6000) and an ultrafast response time (<2 s). In addition, the recovery time could be controlled 
within 6 s for such a high-expansion response of Pyr-rGO sensors. It was noteworthy that the Pyr-rGO sensors 
also exhibited remarkable repeatability, and the response remained highly stable (IL/IH = 6000) with no attenua-
tion in the impedance (IL and IH) even after 100 cycle continuous response-recovery test (Fig. 3e). The Pyr-rGO 
based humidity sensor exhibited outstanding sensing performance compared to the reported ones summarized 
in Table 1. In contrast, the rGO sensors showed a low response (IL/IH = 1.3) with a long response time for more 
than 50 s. Moreover, the repeatability of rGO sensors was unqualified that the response and impedance (IL and IH) 
attenuated significantly after the five-cycle test as shown in Fig. 3c. To sum up, the Pyr-rGO based humidity sen-
sors exhibit ultrafast and ultrahigh response (30 times faster and 4600 times higher than rGO sensors) with stable 

Figure 2. Typical (a) FTIR spectra of GO, rGO and Pyr-rGO. (b) XPS spectra of the Pyr-rGO and rGO, and (c) 
Raman spectra of the GO, rGO and Pyr-rGO.
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repeatability, indicating that the humidity sensing performance of Pyr-rGO has been prominently improved after 
the supramolecular assembly with pyranine.

In practical humidity sensing applications, the humidity hysteresis phenomenon is also an important param-
eter to evaluate the practicability of sensors, which is unavoidable but expected to be minimized. The reason for 
the existence of humidity hysteresis is that different energy is required during the humidification and dehumidi-
fication process. Larger desorption energy is always needed than adsorption energy, signifying the corresponding 
impedance cannot return to the adsorption impedance at the same time, and thus forms the humidity hystere-
sis. Figure 3d exhibits the humidity hysteresis curve of Pyr-rGO based humidity sensors. The hysteresis loops 
exhibited the impedance changes at 100 Hz during the stepwise successive humidification and dehumidification 
cyclical process measured from 11% RH to 95% RH. Notably, the loops were nearly overlapped at low or high RH 
levels and the dehumidification curve was slightly lower than the one in humidification. Moreover, the relative 
maximum hysteresis appeared at 54% RH was calculated with a small value of around 8% RH, indicating that the 
Pyr-rGO sensors are highly reversible with reliable practicability.

Figure 3. (a) The impedance curves of Pyr-rGO based humidity sensors measured at different frequencies 
under different RH levels. (b) The five-cycle response-recovery curve of Pyr-rGO and (c) rGO based humidity 
sensors measured at 100 Hz as RH level alternately changes between 11% and 95%. (d) Humidity hysteresis 
curve of Pyr-rGO based humidity sensors as RH level circularly ranges from 11% to 95% at 100 Hz. (e) The 100 
cycle continuous response-recovery test for Pyr-rGO based humidity sensors measured at 100 Hz as RH level 
alternately changes between 11% and 95%.
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Discussion
Complex impedance spectra (CIS) can be adopted to investigate the sensing mechanism of humidity sensors30, 31.  
Figure 4a showed the CIS of Pyr-rGO based humidity sensors as the RH value ranged from 11% to 95% under 
the operation frequency increased from 10 Hz to 100000 Hz at room-temperature. The real part and imaginary 
part of the CIS at high RHs were magnified on the same plane to compare the others more conveniently. Notably, 
the curve shape was quite different for diverse RH levels in CIS, suggesting that different humidity sensing mech-
anisms for water adsorption and ions transfer were adopted based on the RH values. Further, equivalent circuit 
(EC) models were built to clearly analyze the humidity sensing mechanism under different RH levels as shown 
in Fig. 4b. Here, Rct represents the resistance of charge transfer, the constant phase element (CPE) stands for the 
sensing film capacitance (CPE1) and electrode/sensing film interface capacitance (CPE2).

At low RH range (11% and 33%), the CIS ran in almost straight lines and thus the EC model in this case could 
be described as a CPE (Fig. 4b1). As well-known, the impedance of a CPE is generally defined as Equation (1):9, 32

π
=

−
Z f

A
(2 )

(1)CPE

n

π
= − +Z n f

A
log log log 1

(2 ) (2)CPE n

Sensing Materials Methods
RH 
Range

Response 
Time

Sensor 
Typea Response

GO/SnOx/CF38 Electrospinning 30–55% 8 s Resistance 3.35

rGO/PDAA39 LBL Self-assembly 11–97% 108 s Resistance 1.6b

Graphene Oxide40 Drop-casting 15–95% 10.5 s Capacitance 378

MoS2/SnO2
41 Hydrothermal Method 0–97% 5 s Capacitance >105

Na-Mesoporous Silica42 Hydrothermal Method 11–95% 47 s Impedance >105

CuO/rGO29 Microwave-assisted 
Hydrothermal Method 11–98% 2 s Impedance 22700c

WO2.72 Crystals43 Thermal Evaporation 11–95% 6 s Impedance 3.77b

Pyr-rGO (This work) Supramolecular Assembly 11–95% <2 s Impedance 6000

Table 1. Comparison in sensing performance towards various humidity sensors. aThree widely adopted 
humidity sensor types are listed in this table, which records the change of resistance, capacitance and the 
impedance respectively in humidity testing. bFor the convenience of comparison, the evaluation of response is 
converted as the ratio of the resistance or impedance in high and low RH level. cThe testing frequency is 10 Hz 
while the other humidity sensors of impedance type are tested in 100 Hz.

Figure 4. (a) The complex impedance spectra of Pyr-rGO based humidity sensors at different RH levels. ImZ: 
imaginary part; ReZ: real part. (b) The equivalent circuit at (b1) low (b2) middle and (b3) high RH range.
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Based on Equation (2), if we drew a plot of Z vs flog logCPE , it was obvious that the plot should be a straight 
line with slope coefficient of −n. Actually the experimental plots of Z vs flog logCPE  at 11% and 33% RH were 
indeed straight lines with negative slope coefficient of −1.0022 as shown in Fig. 5, which was highly in accordance 
with the theoretical analysis. At the low RH range, the chemical adsorption is the main adsorption method in 
humidity sensing, but only a few water molecules can be adsorbed onto the surface of Pyr-rGO film in this case. 
After the chemical adsorption, a proton maybe transferred to a water molecule to form H3O+, however, the pro-
ton can only migrate by hopping from site to site across the Pyr-rGO film surface33. Therefore, the impedance is 
relatively high at low RH range since the weak ion transport on account of the uncontinuous and low water 
coverage.

At middle RH (54%), the curve of CIS was part of semicircle, which was mainly generated from the intrinsic 
impedance of the sensing film. It could be described by a simplified EC model comprising a resister and a capacitor 
connected in parallel34, 35, as displayed in Fig. 4b2. The appearance of a semicircle in CIS suggested the existence of 
H+ hopping conduction33. According to the ion transfer mechanism of Grotthuss, H2O + H3O+ = H3O+ + H2O36, 
the initial and final state are the same and the energies are also balanced, thus the ion transfer is quite easy. 
Moreover, at this RH level, more water molecules can be adsorbed onto Pyr-rGO film due to the hydrophilic 
sulfonic groups of pyranine, as reported in our previous work18. The absorbed water molecules can form one or 
several serial water layers which accelerate the transfer of H+ or H3O+, resulting in a swift decrease in the imped-
ance at this stage.

At high RH range (75%, 85% and 95%), the CIS exhibited a semicircle shape with a short straight line at low 
frequency region. As the RH increased, the straight line grew longer while part of the semicircle disappeared. 
Actually, the short straight line represented Warburg impedance, caused by the ions diffusion at sensing mate-
rial/electrode interface37. Therefore, the EC model shown in Fig. 4b3 was suitable for the sensing mechanism 
of Pyr-rGO at this stage. At high RH range, apart from the chemical adsorption, the physical adsorption has 
upgraded as the main adsorption method. Thus, more serial water layers are formed to further accelerate the 
ions transfer, and the water molecules can permeate into the Pyr-rGO film to induce the electrolytic conduction. 
Therefore, the impedance continuously decreases sharply at high RH range.

In summary, the Pyr-rGO based humidity sensing materials were prepared through a facile one-step supra-
molecular assembly method. The modification of rGO by organic molecule, i.e. pyranine, realized the syner-
getic functionalization to enhance the dispersibility and humidity sensing properties. The fabricated Pyr-rGO 
humidity sensors exhibited comprehensive sensing performance such as ultrafast response (<2 s) and ultrahigh 
response (IL/IH = 6000) as RH alternately changed between 11% and 95%; small hysteresis of 8% RH; reliable 
repeatability and stability. Further, the complex impedance spectra under different RH was discussed and the 
corresponding equivalent circuits were built to investigate the humidity sensing mechanism in detail, verifying 
that different water molecules adsorption and ion transfer were adopted in different RH levels. Notably, we believe 
that the Pyr-rGO represents a new platform for developing novel functional materials in ultra-sensitive humidity 
sensors and shows the potential for facile one-step humidity sensing materials preparation.

Methods
Materials. GO flakes were obtained from XianFeng NANO Co., Ltd. Pyranine (i.e. Trisodium 8-hydroxypyr-
ene-1,3,6-trisulphonate, >85%) and hydrazine hydrate (>98%) were purchased from Alfa Aesar. Ammonium 
hydroxide (28% NH3 in H2O), lithium chloride (≥99%), magnesium chloride (99.99%), magnesium nitrate 
(≥99%), sodium chloride (≥99%), potassium nitrate (≥99%), and potassium chloride (≥99%) were all purchased 
from Sigma-Aldrich. All the chemicals were analytical grade and used as received without further purifications.

Preparation of rGO Dispersion. GO flakes were dispersed into deionized (DI) water under vigorous 
ultra-sonication for an hour to prepare a brown GO dispersion of 1 mg/mL. 5 mL GO dispersion (1 mg/mL) 

Figure 5. Linear fit plot of log Z vs. log f for Pyr-rGO at 11% and 33% RH.
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was transferred into a 50 mL round-bottom flask and diluted by 15 ml DI water. Subsequently, 80 μL ammonium 
hydroxide (30%) and 10 mL hydrazine hydrate (0.1%) were added respectively and heated at 95 °C for 1 h in oil 
bath. After cooling to ambient temperature, the mixture was filtrated to dry and then re-dispersed into 20 mL DI 
water under mild sonication for 5 min to prepare 0.25 mg/mL rGO dispersion.

One-Step Preparation of Pyr-rGO Dispersion. 5 mL GO dispersion (1 mg/mL) was transferred into a 
50 mL round-bottom flask and diluted by 15 ml DI water. Pyranine (100 mg), ammonium hydroxide(80 μL, 30%) 
and hydrazine hydrate (10 mL, 0.1%) were added into the dispersion respectively under mild stir for 30 mins and 
then the mixture was further stirred at 95 °C for 1 h in oil bath. After cooling to ambient temperature, the disper-
sion was transferred to a 50 mL centrifuge tube and washed by DI water under 10 mins centrifugation at 12000  
r/min for three times. The residuum was then re-dispersed into 20 mL DI water to prepare 0.25 mg/mL Pyr-rGO 
dispersion.

Fabrication of Humidity Sensors. In the fabrication of humidity sensors, a facile Drop & Dry method 
was applied by dropping approximately 5 μL Pyr-rGO dispersion on Ag-Pd Interdigital electrodes (IEs) and then 
dried on heating plate in air at 50 °C for 10 min. Finally, a thin sensing film was formed on the surface of IEs and 
thus the humidity sensors were prepared for testing as shown in Fig. 6a. For the convenience to connect humidity 
sensing system, two iron wires were anchored at the bottom of IEs by tin soldering. The sensors were made of 
ceramic substrates (6 mm × 3 mm × 0.5 mm) with five pairs of Ag-Pd IEs (0.15 mm in wire width) fixed on them 
as shown in Fig. 6b.

Humidity Sensing Tests. All the humidity sensing tests were performed by a humidity sensing system 
(CHS-1 Humidity Sensing Analysis System, Beijing Elite Tech. Co.) at an operating temperature of 25 °C. The 
voltage in humidity test was 1 V AC, and the testing frequency varied from 50 Hz to 100000 Hz. The humidity 
gradient was controlled by several erlenmeyer flasks filled with different saturated salt solutions which were LiCl, 
MgCl2, Mg(NO3)2, NaCl, KCl, and KNO3 with corresponding relative humidity (RH) of 11%, 33%, 54%, 75%, 
85%, and 95% respectively. To ensure the accuracy of RH, 10 h stabilization of the flasks was necessary to get fully 
liquid-gas equilibrium before humidity sensing test and the ambient RH was maintained at 25% by an automatic 
drier. The ideal flow chart of the humidity sensing test was indicated in Supplementary Figure S3.

Characterization. The humidity sensing materials were characterized by several techniques. The morphol-
ogy was characterized by transmission electron microscope (TEM) (Sirion-200, Japan). The surface properties 
were examined by FT-IR (Thermo Scientific Nicolet iN10, USA), Raman-scattering spectroscopy (HORIBA Jobin 
Yvon Raman microscope (LabRAM HR800) and X-ray photoelectron spectra (XPS; ESCALAB 250 photoelectron 
spectrometer (ThermoFisher Scientific, USA).
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