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Geographic variation in 
pneumococcal vaccine efficacy 
estimated from dynamic modeling 
of epidemiological data post-PCV7
Erida Gjini  

Although mean efficacy of multivalent pneumococcus vaccines has been intensively studied, variance 
in vaccine efficacy (VE) has been overlooked. Different net individual protection across settings can 
be driven by environmental conditions, local serotype and clonal composition, as well as by socio-
demographic and genetic host factors. Understanding efficacy variation has implications for population-
level effectiveness and other eco-evolutionary feedbacks. Here I show that realized VE can vary across 
epidemiological settings, by applying a multi-site-one-model approach to data post-vaccination. I 
analyse serotype prevalence dynamics following PCV7, in asymptomatic carriage in children attending 
day care in Portugal, Norway, France, Greece, Hungary and Hong-Kong. Model fitting to each dataset 
provides site-specific estimates for vaccine efficacy against acquisition, and pneumococcal transmission 
parameters. According to this model, variable serotype replacement across sites can be explained 
through variable PCV7 efficacy, ranging from 40% in Norway to 10% in Hong-Kong. While the details of 
how this effect is achieved remain to be determined, here I report three factors negatively associated 
with the VE readout, including initial prevalence of serotype 19F, daily mean temperature, and the Gini 
index. The study warrants more attention on local modulators of vaccine performance and calls for 
predictive frameworks within and across populations.

Over the last 20 years, the global epidemiological dynamics of Streptococcus pneumoniae have been under intense 
investigation. Typically carried asymptomatically in the human nasopharynx, pneumococcal bacteria also cause 
disease, such as otitis, pneumonia and meningitis, and are recognized as one of the most important causes of 
morbidity and mortality worldwide1. Prevention of bacterial colonization critically reduces chances of spread and 
transmission, thus indirectly protecting from pneumococcal disease2. Under this premise, since 2001, control of 
this pathogen has focused on host immunization with pneumococcal conjugate vaccines, via which protection 
applies not only to vaccinated individuals, but also to the rest of the population, a phenomenon known as herd 
immunity.

The first licensed multivalent pneumococcal conjugate vaccine (PCV7), confers protection against 7 of >90 
pneumococcal capsular serotypes3, namely against 4, 6B, 9V, 14, 18C, 19F and 23F, by eliciting anti-capsular 
antibodies4, 5. This vaccine has now been followed by higher-valency vaccines, such as PCV10 and PCV136. From 
early studies on PCV77–10 the protective effect of pneumococcal vaccination became clear, in terms of reduc-
tion of colonization by vaccine serotypes (VT), as well as their associated disease. For example, results from 
an early vaccine trial11 in Gambia, West Africa, showed that vaccine serotype carriage following vaccination 
decreased in children who had received two doses of the vaccine (odds ratio OR 0.22 [95% CI: 0.08–0.61]), but 
was accompanied by an increase in non-vaccine type (NVT) carriage (OR 0.65 [95% CI: 0.29–1.42]). A later 
community-randomized controlled trial12 investigating the effect of PCV7 on nasopharyngeal colonization 
among American Indian infants showed that vaccinees were less likely to be colonized with VT (OR 0.40 [95% CI, 
0.23–0.67]), but again were more likely to be colonized with NVT pneumococci (OR 1.67 [95% CI: 1.02–2.78]).

After mass childhood vaccination was introduced in routine immunization programs around the world, 
epidemiological surveys have documented the response in immunized host populations to this vaccine, e.g. in 
the USA13–15 in Switzerland16, England17, 18, the Netherlands19, and many other countries. These reports have 
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described the post-vaccination changes in prevalence of pneumococcal bacteria across settings, microbial popu-
lation structure, serotype and clonal distribution and antibiotic resistance patterns, elucidating the great diversity 
and evolutionary potential of pneumococci. While vaccine serotypes declined, overall colonization rates were 
seen to remain generally stable, partly due to serotype replacement, the process by which non-vaccine serotypes 
rose in carriage as well as disease (reviewed in ref. 20). Although variation in vaccine effects and serotype replace-
ment across communities has been recognized20, 21, the reasons for this variation are unclear. As the net bene-
fit of vaccination critically depends on the balance between vaccine protection and serotype replacement, and 
the complex relationship between carriage and disease, an important challenge in pneumococcus epidemiology 
remains to understand and predict post-vaccination dynamics, going beyond descriptive approaches22, 23. This 
includes capturing variation between settings under the same mechanistic framework of pneumococcus trans-
mission. Monitoring disease outcomes, which are often the endpoint in clinical trials24, provides limited insight 
into the underlying mechanisms that determine herd immunity and serotype replacement25, 26. For this, carriage 
data are essential, needing new statistical approaches27, and dynamic modeling28. In this paper, I apply one such 
integrative approach to post-vaccination data from different settings, uncovering epidemiological parameters 
responsible for the differences in serotype replacement rates.

By fitting the same dynamic model to several studies reporting post-vaccine dynamics in day care centres, I 
address the question of what is the realized vaccine efficacy, consistent with the serotype replacement reports in 
different countries, and what may be the underlying local underlying factors. Although pre-licensure trials offer 
basic estimates of vaccine efficacy7, 29, they typically focus on disease outcomes in one particular population, 
which cannot be directly extrapolated to new untested contexts. After mass immunization takes place in another 
transmission setting, it is possible that a different net protection at the individual level may result. Such variation 
could be driven by environmental variability, local serotype and clonal composition, as well as by demographic, 
social or immuno/genetic factors in the host population. Accurate estimates of vaccine efficacy against serotype 
acquisition are crucial to subsequently predict or interpret impact on pneumococcal disease22.

Given a multitude of pneumococcus transmission models30–33, the choice of the appropriate one for retrospec-
tive vaccine assessment is not straightforward. The type and detail of the data inevitably constrain the complexity 
of possible model structures. A solution is to start with simple models which afford questions at a general level, 
and then gradually build in complexity for finer questions when feasible. The advantage of coarser-grain descrip-
tions is that parameter readouts are likely to be more robust and comparable across settings. In this spirit, the 
present study uses a simple epidemiological framework34, based on a neutral model for pneumococcus dynam-
ics, to integrate temporal observations pre- and post- PCV7. The model accounts for time of survey, transmis-
sion intensity and variation in coverage rates, recognized as strong sources of heterogeneity in meta-analyses35. 
Moreover, this framework provides a tool to comparatively assess vaccine performance in field settings, incor-
porating the basic epidemiological feedbacks, including herd immunity and serotype replacement, typically 
neglected in vaccine trials and in purely statistical post-licensure approaches12, 23, 27, 36.

The data consist of cross-sectional prevalences of pneumococcal carriage in day care centres (DCCs) in 
Portugal, Norway, France, Greece, Hungary and Hong-Kong, from studies conducted before and after imple-
mentation of PCV7. DCCs are an important setting of transmission of pneumococcus in developed countries. 
Pre-school children display highest nasopharyngeal carriage rates, and act as the main reservoir for pneumococ-
cal spread in the community37, 38, consequently becoming critical vectors of herd immunity effects. It has been 
shown that pneumococcal transmission may take place as micro-epidemics driven by the day care centres39. 
Often the serotypes identified as dominant in some DCCs, i.e., those found to cause micro-epidemics, are not 
necessarily the most transmissible ones. It is thus probable that most serotypes transmit in a similar fashion in the 
child population, and micro-epidemic patterns and neutral micro-epidemic bacterial evolution40 result primarily 
from heterogeneous transmission between interconnected host clusters.

The analysis of pneumococcus dynamics has persistently lingered between a serotype-specific approach and 
neutral models based on equivalent trait approximations. The empirical evidence appears mixed: some studies 
support slight variation in serotype acquisition, competition and clearance rates41–44, others conclude that sero-
type differences are not significant45, 46, others find differences only in clearance rates and not in acquisition47. 
Furthermore, when trying to match serotype trait hierarchies across epidemiological settings42, 43, inconsistent 
estimates emerge, questioning universally fixed serotype traits. Given the inconclusive picture, and the diversity 
of pneumococci beyond the serotype level, multiple models have adopted neutral formulations, assuming equal 
transmission and clearance rate across serotypes31, 38, 48–50. Some of these describe pre-vaccination dynamics50, 
others predict vaccination impact across host age classes49, or interpret epidemiological dynamics after vaccina-
tion31, 34. Other models neglecting serotype differences focus on transmission fluxes between child care centers 
and the community51, pneumococcus interactions with influenza52, and seasonality53.

In this paper, I also adopt the neutral perspective to model pneumococcus colonization dynamics in young 
children attending day care. Serotypes are partitioned in two functionally relevant groups: aggregated vaccine and 
non-vaccine serotypes, and equal traits across serotypes are assumed as a first order approximation, averaging 
out underlying clonal diversity. In this context, serotype replacement is exclusively driven by vaccination. With a 
multi-site-one-model approach, my aim here is threefold: (i) to use minimal assumptions to tie multiple strands of 
evidence together, making the most of sparse data, (ii) to gain a deeper retrospective insight into vaccine efficacy 
of PCV7, by estimating setting-specific parameters underlying dynamic serotype replacement, (iii) to assess vari-
ability in realized vaccine protection across settings, and generate hypotheses for this variation.

Results
Pneumococcus colonization data from different settings. Data were extracted from 6 different 
cross-sectional studies on pneumococcus prevalence before and after vaccination with PCV7: the studies are 
summarized in Tables 1 and 2. Because not all the data published in these papers are used in the model fitting, 
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in the interest of clarity and reproducibility of my analyses, here I summarize the key information that is useful 
in the context of this study. The criteria for selection of studies were: (i) focus on day care transmission set-
ting; (ii) report on multiple time points; (iii) relatively large sample size; and (iv) no interference with more 
recent vaccines. Each study analyzed pneumococcus colonization in day care centres in a different country: in 
Oeiras, Portugal54, 55, in Oslo, Norway56, 57, in Alpes Maritimes, France58, in Larissa, central Greece59, in Szeged, 
Hungary60, 61, and in Hong Kong62. Out of these, only three studies reported co-colonization, respectively the 
Norwegian and Portuguese study, which have also been partly modelled previously34, 50, and the Greek study.

All studies used sensitive serotyping techniques on nasopharyngeal swabs collected from healthy children 
attending day-care. The settings varied in serotype and clonal composition, vaccination coverage and time of 
follow-up (Table 1). The study sample sizes varied between a minimum total of 240 children a maximum of 2094 
children in Portugal and Hong-Kong respectively. Among other findings, all studies reported decreasing trends 
in the proportion of colonized hosts with serotypes included in PCV7 after implementation of vaccination. All 
studies reported no temporal trend with regards to overall colonization prevalence, except the Hong Kong and 
the French study, which showed slightly declining carriage over time.

The number of circulating serotypes across time periods was between 26 and 33 in all studies. The four most 
prevalent serotypes before vaccination in each country varied slightly in their ranking: 19F, 23F, 11A/D, 6B 
(Portugal), 6B, 19F, 15B/C, 23F, (Norway); 6B, 19F, 23F, 14 (France); 6A, 11A, 10A, 35F (Greece); 14, 19F, 23F, 
6A/B (Hungary); 6B, 19F, 23F, 14 (Hong-Kong) (see Table S1 for details). The Portuguese and Norwegian study 
reported in addition specific colonization prevalences with PCV7 and non-PCV7 serotypes both in single and 
multiple carriage after vaccination. The number of time points per study is 2 (Portugal), 2 (Norway), 5 (France), 
4 (Greece), 2 (Hong Kong) and 3 (Hungary). The exact number of day care centres (DCCs) varied slightly: from 
11–12 DCCs in Portugal, to 27–29 in Norway, 25 in France and 21 in Greece. For model fitting, aggregated colo-
nization data across DCCs are used, assuming homogeneous mixing between all the children. To facilitate com-
parison across settings, host age structure is neglected, approximating children attending day care, aged between 
1–5 years as a compact age group with similar characteristics, spending on average about 2 years in the DCC 
environment (see S2.2 for details).

Fitted transmission model. The dynamics of pneumococcal colonization and co-colonization 
among young children attending day care are modelled with a previously published neutral model34. The 
susceptible-infected-susceptible (SIS) formulation tracks six epidemiological compartments, including suscepti-
ble hosts, S, hosts colonized by any one vaccine serotype (here PCV7) IV, hosts colonized by one non-vaccine sero-
type, IN, and co-colonized hosts IVV, INN, and IVN with two vaccine serotypes, two non-vaccine serotypes or one 
of either group, respectively (Fig. 1). With vaccination, the model equations double, to account for vaccination 

Country
Survey 
period Mean sample size

Mean age (range) 
in months

Time in 
DCC

Vaccine coverage % (ρ) 
(mean over all ages) Co-col. (%) Ref.

Portugal 2001–2007 359 48 (12–71) 24 17, 32, 56, 65, 63, 75 10% 54, 55

Norway 2006–2008 599 41 (12–60) 32 10, 40 14% 56, 57

France 1999–2008 321 23 (3–39) 17 0 (99–01), 37, 37, 68.4, 
68.4, 90.1 — 58

Greece 2005–2009 662 47 (13–76) 27 12.9, 32.6, 70.1, 95.5 3.8% 59

Hungary 2001–2009 413 54 (36–72) 18 0, 10 (02–05), 21.5, 38.5, 
38.5 — 60, 61

Hong Kong 2000–2010 2094 49 (24–72) 24 0 (00–05), 20.4, 26.7, 
35.7, 43, 43 — 62

Table 1. Characteristics of the studies in daycare settings from different countries before and after PCV7 
vaccination. Mean age of children in each study and expected duration of DCC attendance (see S2.2 for details) 
are given in months. Vaccination proportions per year were extracted from the children that that received at 
least one dose of PCV7 across the studies. When information on vaccination coverage for intermediate years 
was missing, the same value as in the preceding year was assumed.

Country
Sampling 
months: (t)

Number of carriers: 
nV(t) + nN(t)

Carriers of PCV7 
serotypes: nV(t) Sample sizes: n(t)

Portugal 0, 72 173, 319 102, 50 270, 449

Norway 0, 24 470, 474 212, 97 606, 592

France 0, 36, 60, 
84, 108 161, 172, 182, 168, 155 123, 128, 89, 35, 6 298, 294, 334, 335, 343

Greece 0, 12, 24, 48 370, 206, 286, 334 132, 88, 33, 33 769, 494, 566, 820

Hungary 0, 78, 112 34, 38, 357 19, 17, 46 95, 121, 1022

Hong Kong 0, 120 383, 347 253, 190 1978, 2211

Table 2. Pneumococcus prevalence data from daycare settings in different countries. For Portugal and Norway 
more data were available and were used than shown here (see Methods 4).
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status of each epidemiological class. A fraction ρ of all new susceptible hosts, recruited at rate μ, is vaccinated, a 
quantity that can vary across geographical settings and also from year to year (Table 1). Vaccinated hosts display 
partially reduced susceptibility to VT, relative to non-vaccinated ones, given by the scaling parameter 1 − VE, 
where vaccine efficacy against VT, denoted as VE (0 ≤ VE ≤ 1), describes the net per-capita protection aggregated 
over all serotypes included in the vaccine. Other studies in the literature31, 33, also represent aggregated vaccine 
efficacy with a single parameter, assuming similar and long-lasting protection on average across all PCV7 sero-
types. Further details on model structure, features and assumptions are given in Methods 1–3 and Supplementary 
Material S1.

In line with previous neutrality assumptions31, 38, 48, 50, also here, phenotypic equivalence across serotypes, with 
respect to basic colonization capacity (transmission rate β), clearance rate (γ) and direct competition coefficient in 
co-colonization (k) is assumed. The pneumococcus force of infection for each serotype group (λv and λn) depends 
explicitly on their prevalence in the population, including contribution by single and double carriers. This feature 
is critically reflected in the model initial conditions, when calibrated to each dataset under the assumption of 
pre-vaccine endemic equilibrium (see Methods 2). In all settings, initial conditions are adjusted according to local 
serotype prevalences, linking the ensuing dynamics to reported VT/NVT distribution before vaccination. Once 
initialized, the vaccination model trajectories are fitted to the remaining cross-sectional observations, specific 
to each study (see Methods 4 and data in Table 2). Stochasticity due to sampling effects is accounted for using a 
multinomial distribution with a different sample size, for the likelihood of the data at each time point. Parameter 
estimation is performed in a Bayesian framework in MATLAB, using adaptive Metropolis-Hastings MCMC63.

Estimated basic reproduction number R0 and serotype competition parameter k. An endemic 
persistence equilibrium requires β > γ + μ, corresponding to the classical threshold for the basic reproduction 
number64: = >β

γ μ+
R 10 . Provided that R0 > 1, the pneumococcus endemic colonization state is asymptotically 

stable. Because it is a measure of transmission intensity, the higher R0 is, the higher the endemic prevalence of the 
pathogen, and the higher also the co-colonization. In particular, susceptibles, single colonization and 
co-colonization prevalences are given by:

= = + =
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Serotype distribution at endemic equilibrium under neutrality is thus flexible regarding single and multiple 
carriage combinations, but globally satisfies + = −⁎ ⁎P P R1 1/ ,V N 0  relative to VT and NVT prevalences, a con-
served relationship even after vaccination. At a global level, in a symmetric multi-type system, if transmission rate 
β (or analogously R0) stays constant over time, targeted vaccination is not expected to alter the overall magnitude 
of single and co-colonization; only shift the serotype composition towards non-vaccine types, a picture supported 
by serotype replacement patterns post-PCV7 across countries13, 16, 17, and the majority of our data. The basic 
reproduction number in each setting was assumed constant over time, and estimated within the integrated fitting 
procedure for the entire time-series.

The values for R0 estimated for these studies, range between 1.2 and 4.7 (Table 3), indicating variable transmis-
sion intensity within day-care attendees across geographical sites, lowest in Hong Kong and highest in Norway, 
respectively (see Fig. 2). Each child carrying pneumococcus within the DCC causes thus on average 2.5 new colo-
nizations over his entire carriage period. The model estimates also a high competition between serotypes acting at 

Figure 1. Model flow diagram in the absence of vaccination. S, susceptible, IV, single carriers of any vaccine 
serotype, IN, single carriers of any non-vaccine serotyoe, IVV double carriers of any two vaccine serotypes, 
INN, double carriers of any two non-vaccine serotypes, IVN, double carriers of a vaccine and non-vaccine 
serotype. With vaccination, the structure of the model is doubled to account for vaccination status of each 
epidemiological class. The parameters are defined in the text. See Methods 1–3 for details, and Supplementary 
Material S1 for full ODE equation formulation.
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acquisition, in the range of 90–95% inhibition of co-colonization, independently from the datasets that reported 
co-colonization, namely the Norwegian, Portuguese and Greek settings.

Links with other studies. The R0 values resemble R0 estimates for other respiratory pathogens such as 
influenza65. The highest R0 was estimated for Norway, displaying highest carriage prevalence. This may be 
related to the low rate of antibiotic use and high rate of DCC attendance in Norway compared to other settings56. 
Understanding R0 variation is important when forecasting population-level impact of a particular vaccination 
programme66. For example, when contemplating vaccines based on serotype-transcending antigens, depending 
on the value of R0 in each setting, a different vaccination coverage with such universal vaccine would be needed to 
achieve the same impact. In addition, transmission intensity critically shapes the pathogen evolutionary poten-
tial, by affecting nonlinearly prevalence of carriage (Fig. 2) and multiple-carriage, the latter being key in bacterial 
recombination67, 68.

Competition coefficient estimates are consistent with earlier studies from Denmark and England31, 69. In fact, 
the pre-PCV7 Norwegian data from 2006 has also been analyzed previously50, with a stochastic SIS Markov 
model for transmission within DCCs. Strikingly, with the simplified deterministic model in this paper, applied to 
both pre-and post-vaccination data, and neglecting infection hazard from the community, very similar estimates 
emerge for both transmission rate β (3.59, 95% CI: 2.8, 4.6) within DCC and competition between serotypes at 
acquisition k (0.1, 95% CI: 0.06, 0.14), suggesting a minor influence of stochastic effects on SIS model parameter 
estimation70, at least at this particular sample size (n ≈ 600). For the other studies not reporting co-colonization, 
k could not be estimated from the data. Instead, a fixed value for k(=0.05) was used to simulate their trajectories, 
in line also with earlier estimates for this parameter31, 50, 69.

Country
Basic reproduction 
number R0

Competition 
parameter k Vaccine efficacy VE

Transmission rate β 
(month−1)

Portugal 3.18 (2.87, 3.53) 0.08 (0.06, 0.11) 0.11 (0.09, 0.14) 2.36 (2.13, 2.62)

Norway 4.77 (4.28, 5.30) 0.04 (0.03, 0.05) 0.43 (0.35, 0.50) 3.49 (3.13, 3.88)

France 2.22 (2.14, 2.31) — 0.19 (0.16, 0.21) 1.68 (1.62, 1.74)

Greece 1.85 (1.79, 1.91) 0.045 (0.04, 0.05) 0.21 (0.17, 0.25) 1.36 (1.32, 1.41)

Hungary 1.55 (1.49, 1.62) — 0.27 (0.20, 0.31) 1.17 (1.12, 1.22)

Hong Kong 1.23 (1.22, 1.24) — 0.08 (0.05, 0.10) 0.91 (0.90, 0.92)

Table 3. Parameter estimates for pneumococcus transmission and PCV7 vaccine efficacy (VE) in day care 
settings. The means and the 95% credible intervals for each parameter are obtained from the posterior 
distributions. The competition coefficient k is estimated from co-colonization data in some cases, and set to a 
fixed value in others (—), equal to 0.05, a criterion used to calibrate model initial conditions (see Methods 2). 
The basic reproduction number is derived as: = β

γ μ+
R i( ) i

i0
( )

( )
. Setting-specific birth/death rate μ for the SIS 

model was assumed as the inverse of mean duration of DCC attendance for children in each study (see Table S2 
for results based on 1/mean age instead).

Figure 2. Transmission intensity vs. overall pathogen prevalence in a SIS framework. The mean R0’s estimated 
from our datasets are matched with the expected overall prevalence of pneumococcal carriage in the pre-
vaccine era. The bars reflect the 95% confidence interval for binomial proportions over 300 simulations with 
same R0, taking into account the mean sample size in each setting (Table 1). The line depicts the theoretical 
nonlinear relationship expected by the model (Eq. (1)). The shaded regions represent the 95% quantile of 
simulations under different sample sizes: n = 100 (light blue), n = 250 (darker blue) and n = 500 (darkest shade).
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The resulting monthly child-child transmission rate β for France in this study, around 1.68 (95% CI: 1.62, 
1.74), was similar, although somewhat higher, to previous estimates obtained from a longitudinal French mod-
eling study45 with schoolchildren 3–6 years in 2000 (1.45, 95% CI: 1.30, 1.59). The difference could partly be 
explained by the fact that the children in the Alpes-Maritimes study58, modelled here, represent a younger 
age group, more prone to colonization, and by the fact that the present epidemiological model neglects trans-
mission from the non-DCC community, thus attributing all the force of infection to the DCC environment. 
Interestingly, the β estimated for Greece 1.36 (95% CI: 1.32, 1.41) compares better with the range of the French 
study45, probably because the children age ranges match more closely. The lowest transmission rate estimated for 
the Hong-Kong day care setting, seems closer to the transmission rates within families in Bangladesh, between 
0.64 and 0.84 per month estimated previously46, while transmission rates for Hungary are consistent with another 
French study reporting within DCC transmission rates between 1.04 and 1.1842.

Vaccine efficacy against acquisition of PCV7 serotypes. The other parameter estimated with this 
model is vaccine efficacy against acquisition of PCV7 serotypes, aggregated over all VT (Fig. 3). This parameter 
reflects the reduced susceptibility in the acquisition of VT, either as primary or secondary colonizing serotypes, in 
vaccinated relative to non-vaccinated individuals. The 6 independent estimates for each dataset, obtained by fit-
ting the dynamic model to post-vaccine observations, accounted for differences in vaccination coverage (Fig. S1), 
time of survey, and transmission intensity between settings. As summarized in Table 3, the reported values of VE 
suggest differential relative vaccine protection, experienced on average by each vaccinated child in the age-groups 
considered, across settings. According to this model, the four datasets from Portugal, France, Greece and Hong 
Kong are consistent with lower values for vaccine efficacy, around 10–20%, while the Norwegian and Hungarian 
data are consistent with a higher value of vaccine efficacy around 30–40% (see Fig. 3), with the 95% credible inter-
val for Norway VE in the range 30–50%. Notice that the model can distinguish between differences in efficacies 
that are invariant to serotype distribution prior to vaccination, because the initial conditions for each study are 
calibrated to reported local serotype frequencies aggregated as VT and NVT prevalences, at the first time point 
(see Methods 2). The predicted trajectories for the epidemiological dynamics with the estimated parameters, 
drawn from the posteriors (Table 3), are shown in Fig. 4, matching well the pneumococcus prevalence observa-
tions in each country.

Sensitivity to model assumptions. The estimated VE values remain robust to eventual changes in clear-
ance rate γ across settings (affecting only R0), and to the value of serotype competition parameter k, affecting 
mainly the ratio between dual and single serotype carriage. However, they are slightly more sensitive to the 
assumed μ (susceptible host recruitment rate), which besides modulating R0, multiplies directly the vaccination 
coverage ρ. When μ increases, turnover rate in the modeled population increases, and vaccine efficacy estimates 
decrease slightly for the same coverage (Fig. S2). In the case of using 1/mean age for μ (Table 1), as an alterna-
tive to 1/mean duration of DCC attendance, the estimated vaccine efficacies varied slightly, with Norway and 
Hungary still displaying highest values around 45%, and R0 values kept unchanged (see Table S2 for results).

When using a continuous vaccination assumption instead of a step-wise increasing coverage, i.e. holding 
fixed the vaccination coverage, throughout the years of each survey, the sensitivity analysis for the estimated 
VE indices yielded somewhat lower values in absolute terms to the above ones reported here, yet preserving the 
rank-ordering between multiple sites, and showing little dependence on the assumed μ (Figs S3 and S4). When 
vaccination coverage is held constant, e.g. around the median of values in Table 1, the resulting VE estimates 
display an overall downward bias, because in this case, the model over-estimates the magnitude and sequen-
tial effects of the positive feedbacks that arise in the early stages of vaccination, due to a higher-than-realistic 
assumed coverage in year 1. As vaccine coverage ρ and vaccine efficacy VE can be traded-off against one another, 

Figure 3. Posterior distributions for heptavalent vaccine efficacy against PCV7 serotypes, estimated in a 
setting-specific manner. Parameter inference is based on dynamic model fitting to cross-sectional data in 
day care settings from different countries, accounting for different transmission intensities, initial serotype 
distribution, and vaccine coverage. Red lines indicate normal distribution fits. Numerical results are detailed in 
Table 3.
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potentially yielding indistinguishable model trajectories, it is important to realize that VE estimates given a cer-
tain dataset remain coupled to the originally assumed coverage rates.

While here the model-based vaccine efficacy estimates assume stable endemic transmission, in reality there 
may be cases where prevalence has declined. In particular the French dataset indicated a slight temporal trend 
for reduction in overall prevalence of pneumococcus, which suggests a time-varying R0 for this country, probably 
driven by other interventions than vaccination (e.g. change in antibiotic use). Although, these changes were not 
addressed in the model-fitting, in Fig. S5, model-predicted serotype replacement dynamics for different values 
of vaccine efficacy and lower transmission are illustrated, and the difference appears minimal. Under a neutral 
model, such as the one applied here, changes in R0 should not impact significantly on the relative rate of decline of 
targeted serotypes post-vaccination. By contrast, under a non-neutral model, for example where direct competi-
tion at co-colonization may be asymmetric, the magnitude of transmission intensity, R0, is expected to influence 
the hierarchical dynamics between types both in the absence71, and presence of vaccination72.

Possible factors of vaccine efficacy variability across settings. In spite of all simplifying assump-
tions, model estimates of vaccine efficacy for PCV7 emerging from this study are close to existing estimates in 
the literature31, 73. For example, Choi et al.31, using a similar framework, estimated vaccine efficacy in England 
VEc = 50%, close to the value for Norway estimated here. More recently, a meta-regression study73, pooling data 
from different settings together, also reports that the aggregate VEc for all PCV7 serotypes 6 months after com-
pletion of the vaccination schedule around 57% (95% CI: 50, 65%), tending to an aggregate VEc of 42% (95% CI: 
19, 54%) at 5 years. Compared to these earlier approaches, a novel effect emerging from the present study, calling 
attention, is the heterogeneity in vaccine efficacy against PCV7 serotypes across geographical settings, which 
requires a deeper look at the data and our model formulation. Among many possible factors, here I explore only 
three in a statistical sense, inviting further examination of the local modulators of vaccine performance in the 
field.

Figure 4. Observed and fitted prevalence of asymptomatic carriage of pneumococcus in day care centres by 
country. The model-predicted 95% credible envelopes for temporal trajectories of VT prevalence (left panels) 
and overall prevalence (right panels) after vaccination are superimposed on observed data in different day care 
settings at specific time-points. (a,b) Portugal. (c,d) Norway. (e,f) France. (g,h) Greece. (i,j) Hungary. (k,l) Hong 
Kong. The credible envelopes were computed using 500 simulations with different parameter combinations 
sampled from the joint posterior, and here account only for the uncertainty around parameter values and initial 
conditions. For the credible envelopes accounting for sampling uncertainty throughout time (with mean sample 
size as in Table 1) see Fig. S6.
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Serotype-specific efficacies and aggregation effects. The first is related to a main assumption of the 
aggregated (VT/NVT) model, namely that vaccine efficacy is equal against all 7 serotypes included in the vaccine, 
which although previously assumed, is clearly an approximation. Lower vaccine protection against acquisition of 
some PCV7 serotypes, for example against 19F, has been observed in some studies74, 75, and confirmed by more 
recent meta-analyses73. Such observation implies that vaccine type composition prior to vaccination, in terms 
of individual frequencies in each country, could be important, besides their aggregated prevalence as a group. 
Since the dynamic model does not describe single serotypes and serotype-specific efficacies, aggregation effects 
may introduce bias in overall vaccine efficacy estimation. Indeed, when inspecting the VT composition in each 
setting and explicitly considering the frequency of serotype 19F prior to vaccination, it emerged that in those 
settings where 19F was initially more prevalent, model fitting led to a lower apparent vaccine efficacy against 
PCV7 serotypes (Fig. 5a), suggesting a role for the serotype aggregation effect. Although this trend did not reach 
statistical significance with these datasets, it is not surprising, given that serotype-specific vaccine protection and 
serotype-specific protection waning rates have been reported for PCV773.

Environmental gradients: the role of temperature. A second potential source of modulation of vac-
cine efficacy locally could be environmental factors, such as temperature, humidity, ultraviolet (UV) radiation, 
typically varying with geographical latitude. It has been suggested that exposure to UV radiation, as in sun-
light, can modulate immune responses in animals and humans76. This immunomodulation can sometimes be 
deleterious, as documented by experimental animal studies where UV exposure was shown to impair resist-
ance to many infectious agents, including bacteria, viruses, and fungi77–79. When testing among our results for 
an association between setting-specific temperatures (daily mean, averaged over the year, (see Table S4)) and 
the model-estimated pneumococcus vaccine efficacies, a significant association emerged, whereby in cooler 
climates, PCV7 vaccine protection was realized at higher levels (see Fig. 5b). As temperature correlates with 
latitude and UV exposure, it is possible that environmentally-induced immunomodulation across geographi-
cal settings could interfere with the net individual protection against PCV7 serotypes conferred by the vaccine. 
Naturally, this hypothesis warrants further studies across more settings and experimental evidence for substan-
tiation. Yet, geographical effects and gradients in auto-immunity have been established, indicating decreasing 
auto-immune disease along the north-south axis80. Another strand of evidence has implicated temperature with 
many growth and virulence properties in bacteria81. In the particular case of pneumococci as respiratory tract 
colonizers, thermoregulation across mucosal surfaces might contribute to modulating their biological interaction 
with vaccine-induced anti-capsular antibodies.

Transmission heterogeneities in the host population. Third, the model employed here assumes a 
homogeneous underlying population with regards to pneumococcus transmission and focuses only on the day 
care setting. It is known that heterogeneity within host populations is very important for transmission dynamics 
of infectious diseases and for the design of control policies. A statistical pattern known as the 20/80 rule has been 
shown to apply to a variety of disease systems82, implying that control programs targeting the core 20% group of 
transmission are potentially highly effective in reducing levels of infection in the population as a whole, compared 
to programs that fail to reach all of this group. Mathematical models have shown that the impact of control meas-
ures such as vaccination depend crucially on the magnitude of heterogeneities in disease risk, and is lower when 
these heterogeneities are higher83. It is not unreasonable to assume that such transmission heterogeneities may 

Figure 5. Possible factors for variation in vaccine efficacy against acquisition. (a) Prevalence of serotype 19F 
pre-PCV7 and model-based vaccine efficacy estimates. The decreasing trend suggests that high initial frequency 
of a serotype for which vaccine protection may be inferior (e.g. 19F) could influence model estimates of the 
net realized vaccine efficacy against PCV7 serotypes when aggregated together, (R2 = 47%, (R2-adj = 11%, 
GLM fit: ρ = −0.0003, p = 0.10 n.s.). (b) Temperature across countries correlates with vaccine efficacy values 
estimated by the model (R2 = 92%, R2-adj = 87%, GLM fit: ρ = −0.019, p < 0.005 significant), suggesting a 
possible environmental factor in immunomodulation and vaccination responses. (c) Income inequality, as 
a proxy for transmission heterogeneity, is associated negatively to realized vaccine efficacy extracted by the 
model (R2 = 68%, R2-adj = 46%, GLM fit: ρ = −0.013, p < 0.05 significant). More details are provided in the 
Supplementary Tables S4 and S5. The fitted regression lines are displayed in Fig. S7.
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be interwoven with economic disparities in a given population. Under this premise, using the Gini coefficient, a 
measure of income inequality84, as a proxy for transmission heterogeneity, where a Gini coefficient of zero implies 
perfect equality in distribution of wealth, and a Gini coefficient of 1 (or 100%) expresses maximal inequality, 
I tested whether there was an association between the setting-specific Gini indices (Table S5) and the realized 
apparent PCV7 vaccine efficacy in each country, extracted by the model for the 6 pneumococcus DCC datasets. 
As shown in Fig. 5c, there was a significant negative association, where higher vaccine efficacy was found in more 
homogeneous countries like Norway and Hungary, and lower efficacy per individual was realized in more het-
erogeneous settings like Portugal and Hong Kong. This role of heterogeneity on vaccine efficacy estimation has 
also been predicted by earlier theoretical arguments in the context of malaria and vaccine efficacy trials85. Such a 
relationship hints at a new possible predictor of PCV impact on pneumococcal carriage and disease, besides the 
ones already known23, namely, heterogeneity in the underlying host population, which may turn out extremely 
relevant when interpreting reports of vaccination effects in low- and middle-income countries, starting only 
recently to become available.

These findings point to a clear need for a precise mathematical understanding of post-vaccine dynamics 
variation across settings. Even though with the current model we cannot fully resolve the underlying causes of 
the variation in these 6 datasets, the study calls attention on an important aspect of pneumococcus vaccination 
dynamics, previously overlooked: namely, the host-pathogen-vaccine interaction across a gradient of host pop-
ulations. While the details of how this variable vaccine effect is achieved remain to be addressed in follow-up 
studies of a larger scope, variation in itself may have important consequences for site-specific responses to current 
and future pneumococcus vaccines, and for other interventions.

Discussion
The effect of vaccines in immunization programmes is often described by pooling data from different populations 
together21, 73. In this study, I have taken an alternative route, by applying a unified modelling framework in parallel 
to pneumococcus datasets from different countries. Interpolation of colonization data before and after vacci-
nation via dynamic model fitting provides quantitative insight on the mechanistic coupling between serotype 
competition for colonization, transmission intensity, and vaccine efficacy in a setting-specific manner. This allows 
a deeper interpretation of serotype replacement dynamics, and serves as a first step for comparative analyses. 
Similar multi-country-one-model approaches have been insightful in other epidemiological systems, for example 
when investigating tuberculosis transmission86 and malaria dynamics87. In our case, emergent heterogeneities in 
individual direct protection, after factoring out differences in vaccination coverage and initial serotype distribu-
tion across sites, raise interesting questions.

New insights from multi-site-one-model approaches. A novelty of the present study is the challenge 
to the notion that vaccine protection can be described by a single number or point estimate, equal across different 
populations and geographic settings. The difficulties of conducting pre-licensure vaccine trials in each setting 
should not preclude efforts to interpret retrospectively post-vaccine dynamics in a context-specific manner. There 
may be multiple factors that can affect the local performance of a vaccine, and mechanistic approaches, applied 
retrospectively to well-sampled, detailed, cross-sectional data, can help to disentangle these, addressing not only 
pathogen-intrinsic variability, as typically done, but also variability of host populations. In this study, focusing 
on the first pneumococcus conjugate vaccine, PCV7, and fitting the same transmission model individually to six 
observational datasets, describing daycare colonization patterns in different countries, I uncover variable esti-
mates for vaccine efficacy across settings. Some of these, e.g. VE in the range 30–40% (Hungary and Norway), are 
close to existing estimates from PCV7 vaccine trial analysis27 reporting VE against acquisition around 42%, and 
models of cross-sectional data from England31, reporting a vaccine efficacy against acquisition of 50%. However, 
the other datasets analyzed here suggest also that a lower realized vaccine efficacy, around 12–20%, may apply in 
countries like Portugal, France and Greece, closer to the lower end of the range (95% CI: 0.24, 0.56), estimated 
with previous statistical approaches using carriage as an endpoint27.

Recognizing its multi-factorial nature as a parameter, realized vaccine efficacy in these studies could be sta-
tistically related to three plausible factors, given the resolution afforded by the present datasets and model for-
mulation. The first regards vaccine protection assumed uniform for all serotypes included in the vaccine, and 
described by a single parameter. When accounting for the fact that vaccine-induced immunity against serotype 
19F is weaker than that against other PCV7 serotypes74, 75, a negative trend became apparent between variable 
initial prevalence of 19F (the difficult serotype) at the beginning of the study period, and the resulting variable 
apparent protection against PCV7 serotypes when pooled together. Secondly, a stronger and significant negative 
relationship emerged when considering temperature and variability in PCV7 efficacy across countries, warrant-
ing further studies about environmental factors in immune responses to pneumococcal conjugate vaccines. The 
third association related negatively a demographic factor across populations, namely the Gini indices, a measure 
of income inequality and plausible proxy for transmission heterogeneity, with the realized vaccine efficacy. These 
results have to be taken with caution as the power to detect significant correlations is realistically limited with 
only 6 datasets considered here. While correlation does not imply causation, many avenues for future investiga-
tion of mechanisms remain.

The pneumococcus diversity challenge. Although pneumococcal serotypes are identified by the same 
polysaccharide capsule code across geographical settings, the clones corresponding to those serotypes can be 
vastly different, displaying potentially different growth, competition and antibiotic resistance phenotypes. For 
example, the proportion of isolates resistant to erythromycin was 77% in the pre-vaccination period in Hong 
Kong62, 70% in France58, but only 7.6% in Greece59, and even lower, 5.9%, in Norway57. While not all aspects of 
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clonal diversity can be depicted in a practical mathematical model, it is possible that different circulating geno-
types across geographical settings, by creating a unique ecological niche, can lead to a different net vaccine pro-
tection at the individual level, when serotype or serotype group is chosen as the common denominator. Crucially, 
antibiotic resistance phenotypes might need to be modelled in combination with serotype diversity to fully cap-
ture vaccination effects, as theoretically suggested88. In fact, the local basic reproduction number R0 is likely to 
be also a function of antibiotic use, antibiotic resistance patterns, and the local pool of circulating pneumococci 
in each setting.

Back to a serotype-specific view, the fact that the dominant non-vaccine serotypes vary across sites, and likely 
display different interaction with vaccine serotypes, could also affect the model readout of vaccine efficacy72. The 
present formulation treats NVT as the same entity in all studies, while in reality the majority target and non-target 
serotypes might compete differently in each case. One could therefore expect that when the NVT serotype pool is 
more similar across sites, then the vaccine efficacy estimates should be more similar. Without enough unequivocal 
evidence to inform serotype-specific parameters a-priori, one can try to evaluate this grouping effect a-posteriori, 
inspecting the aggregated model results, and a simple comparative test afforded by the data, supported this expec-
tation (see Fig. S8). Estimating asymmetric VT-NVT competition across settings requires 3 additional parameters 
in the co-colonization model, as exemplified previously for the Portuguese data34. Unfortunately, such model 
structures, applicable to all settings in a standard manner, need better temporal and especially co-colonization 
resolution, unfeasible with the current data. Pneumococcus ecological niche similarity and vaccine efficacy simi-
larity across sites could be studied in various ways beyond simply serotype comparisons.

Inevitably all models, whether mathematical or experimental, are a simplification of reality, and serotype 
symmetry is clearly unrealistic for polymorphic pneumococci. Yet, here we see that the neutral model can repro-
duce efficiently the post-vaccine cross-sectional observations, despite omitting some biological realism; an indi-
cation that slight serotype differences in life-history traits do not radically alter global dynamics34. Reassuringly, 
this model follows theoretical arguments89, 90, in favour of an unbiased formulation, incorporating same strain 
co-infection, here at the group level VT-VT and NVT-NVT, leading to a pyramid structure, in particular also 
advocated for pneumococcal dynamics31. The importance of neutral null models, which avoid mechanisms of 
stable co-existence for indistinguishable strains, has been previously highlighted48. Thus, although seemingly a 
strong assumption, symmetry across VT and NVT often features in earlier models31, 38, 48, 50, and is in principle not 
limited to 2 serotype groupings. Besides its analytical advantages, the symmetry approximation allows a standard-
ized application to temporal observations in different host populations; one step closer to their integration under 
a unified mechanistic framework. The definition of vaccine efficacy is also more directly interpretable in such a 
transmission model, reflecting the relative measure of reduced susceptibility to VT acquisition per vaccinated 
individual, when compared to a non-vaccinated one (in this case, in a day care setting). Despite it perhaps being a 
slightly biased metric, due to the unrealistic symmetry assumption, it will most likely be precise and informative, 
thanks to the simple model structure, enabling reproducible comparison across settings and a useful start for 
further exploration.

The host diversity challenge. Differences in realized net protection per vaccinated individual across set-
tings are not unlikely. They may result from variable vaccine-induced immunity in different host backgrounds, 
where genetic factors of immunosuppression91, or local environmental factors such as nasopharyngeal microbiota 
(for respiratory pathogens)92, 93, might play a role. Different implementations of the immunisation programme 
can also be a source of heterogeneity, e.g. the effects of vaccination schedule, age of vaccination94, or prior patho-
gen exposure95. In addition, populations realistically vary along global transmission-modulating factors such as 
temperature, crowding, DCC attendance, age distribution, antibiotic use, and climatic conditions. Child nutri-
tional status and interference between concurrent vaccines might also be important. All of these population-level 
processes, by way of interacting and often hidden nonlinear feedbacks, may exert top-down influences on the 
individual-level parameter readout (per-capita protection per vaccinated individual: VE), obtained when rela-
tively simpler models are applied to data.

Revisiting the heterogeneity argument, it is important to note that a critical aspect of a dynamic model for vac-
cine assessment is the natural incorporation of herd immunity effects, whereby unvaccinated individuals receive 
indirect protection, through the immediate lower prevalence of target serotypes in vaccinated individuals. Given 
the data, the present model accounts for herd immunity only within the DCC environment, neglecting transmis-
sion with the outside community. Although its contribution to epidemiological DCC dynamics is not expected 
to be very big50, 69, 96, with a rate of 0.5–0.6 per month, this might vary across settings51. In addition, herd immu-
nity effects outside the DCC reservoir could affect the pace of serotype replacement observed within the DCC 
post-vaccination. For example, higher levels of DCC attendance in a population, coupled with high vaccination 
coverage in this reservoir, and a certain mixing between DCC attendees and the rest of the population could even-
tually speed up serotype replacement, by creating more positive feedbacks in host clusters97.

Thus, variable DCC attendance among children across different geographical areas, might scale differently the 
importance of this epidemiological setting in the spread of pneumococci, and modulate differently the net herd 
immunity effects that feed back into the DCC environment. Such effects would necessarily shape the serotype 
dynamics ‘seen’ by our model. Hence, what emerges as variability in vaccine efficacy estimates, from modeling 
exclusively the DCC compartment, could in reality hint at different coupling, between one part and the rest of a 
structured population66. Complemented datasets including DCCs, and samples from the children’s families or rest 
of the community, as well as from other relevant reservoirs of transmission of pneumococci, would be necessary 
to properly account for these heterogeneities in a dynamic model for vaccine assessment. For wider age ranges 
and age-stratified colonization data, matched across studies, model extensions could also incorporate temporal 
heterogeneities, e.g. waning of vaccine protection, by adding explicit host age structure to the epidemiological 
dynamics.
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Next-generation analyses for next-generation vaccines. Considering all the epidemiological, demo-
graphic, and environmental factors underlying pneumococcus vaccine efficacy variation falls beyond the scope of 
this paper, and we cannot rule out any explanation with the present datasets. While the details of how this effect is 
achieved remain to be determined in the future, variable efficacies have been observed and studied in other path-
ogen systems with vaccination, e.g. in Mycobacterium tuberculosis and the BCG vaccine98. The aim of the present 
study is to illustrate a new way of looking at pneumococcus vaccine protection realized in the field, by adopting 
a setting-specific lens of analysis under a unified dynamic model. Such retrospective frameworks post-licensure 
could offer an additional tool to identify and quantify first-order differences in vaccine efficacy across host popu-
lations, and then lead to detailed and systematic exploration of second-order causal links and data-driven model 
extensions. Once the dominant sources of variability across communities are uncovered, it would be interesting 
to test whether they apply also to other, more recent vaccines.

Next-generation vaccines for protection against bacterial pathogens remain an area of active research6, for 
which an accurate interpretation and forecast of intervention outcomes are needed. Whenever possible, their effi-
cacy should be evaluated in a context-specific manner, and re-assessed via multiple approaches and available data. 
Linking pre-licensure vaccine studies with follow-up observational surveys, and standardized dynamic models, 
will yield a better understanding of the underlying mechanisms of vaccine protection, their sources of variabil-
ity, and downstream effects on population-level dynamics. Site-specific and comparative analyses should not be 
seen as questioning the importance or public health benefit of vaccination programs, but rather as a way to learn 
from the differences between settings99, and to use this understanding for better disease control and empowered 
vaccines globally.

Methods
Pneumococcus transmission model pre-vaccine. The dynamics of pneumococcus colonization 
and co-colonization in young children is described through a susceptible-infected-susceptible (SIS) epidemi-
ological model, tracking the proportion of: susceptible hosts, S, hosts colonized by vaccine serotypes IV, hosts 
colonized by non-vaccine serotypes, IN, and co-colonized hosts IVV, INN, and IVN with vaccine serotypes, non-vac-
cine serotypes or a combination of the two, respectively. Notice that S + ∑ I = 1. Upon exposure, a susceptible 
host can become a single carrier of a VT or NVT pneumococcal serotype. The forces of infection (FOI) are: 
λV(t) = β(IV + IVV + IVN/2) for VT, and λN(t) = β(IN + INN + IVN/2) for NVT. Single and dual carriers contribute 
equally to the FOI, and hosts carrying two serotypes transmit either with equal probability. β is the per-capita 
transmission rate. Single carriers can acquire an additional serotype at a reduced rate, modified by a relative com-
petition coefficient k ∈ (0, 1) between the resident and the challenge serotype. Pneumococcal carriage is cleared at 
rate γ, regardless of whether hosts are single or dual carriers. Susceptibles are recruited at constant rate μ, equal to 
the per-capita departure rate from the given age class. Immune memory to either set of serotypes is assumed neg-
ligible in the time-frame of day care attendance, while serotype-specific immunity is relatively minor compared to 
the pool of circulating serotypes. Homogeneous mixing is assumed among day-care attendees, and transmission 
dynamics with the outside community are neglected.

Calibrating the model to serotype prevalences before vaccination. Under this neutral model, prior 
to any interventions, vaccine and non-vaccine serotypes coexist at neutrally stable endemic equilibria34, which 
satisfy:
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for the proportion of hosts susceptible at equilibrium, singly-colonized with one serotype, and co-colonized with 
two serotypes, respectively, where β > γ + μ, equivalently R0 > 164. When considering serotype distribution, eq. 
(2) show that the overall pathogen prevalence can be flexibly divided between serotypes in many ways. In a 
multi-type permutable system, there is however one constraint at a global endemic equilibrium: as soon as the 
prevalence of one serotype group in single carriage is fixed, (e.g. VT) all other equilibrium prevalences follow as 
direct functions of it, enabling correlated hierarchies. Thus, although serotypes behave broadly independently, 
they are coupled through competition for available hosts. Under this model, if the pre-vaccination data are 
assumed to reflect stationarity, one can infer competition and transmission parameters by fitting endemic preva-
lence and relat ive prevalences of  s ingle and double carr iage.  Using R 0 =  β /(γ  +  μ) ,  and 
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If, besides overall carriage, the relative prevalence of one serotype group is reported at stationarity, e.g. for VT, 
= + +⁎ ⁎ ⁎ ⁎P I I I /2V V VV NV , one can use the above equations in another way, namely to infer the expected propor-

tions of hosts in all other epidemiological classes. In particular, plugging-in the ‘observed’ PV, and a known com-
petition parameter k one gets:



www.nature.com/scientificreports/

1 2Scientific RepoRts | 7: 3049  | DOI:10.1038/s41598-017-02955-y

=
+ −

.⁎
⁎

I P
k R1 ( 1) (4)V

V

0

The other prevalences ⁎ ⁎ ⁎I I I, ,VV N NN  and ⁎IVN  follow from ⁎IV  iteratively:

=
− + −

+ −
⁎

⁎
I R I k R

R k R
[1 (1 ( 1))]

[1 ( 1)] (5)N
V0 0

0 0

= + −⁎ ⁎I I kR k R( ) [1 ( 1)] (6)VV V
2

0 0

= + −⁎ ⁎I I kR k R( ) [1 ( 1)] (7)NN N
2

0 0

= − − + + + .⁎ ⁎ ⁎ ⁎ ⁎I
R

I I I I1 1 ( )
(8)VN V N VV NN

0

From a practical point of view, eqs (4–8) represent an analytical trick that can be used to inform full initial condi-
tions of a transmission model, in those cases where explicit co-colonization data may be unobserved. In fact, in 
most datasets considered in this study, except for Norway and Portugal, co-colonization data were not quantified 
in detail, or not at all. To account for the possibility of underlying co-colonization, and to appropriately initialize 
model variables in these cases, I treated the pre-vaccination prevalences in France, Hungary, Hong-Kong and 
Greece, as if they were the endemic prevalences under the above constraints, starting with PV and fixing k, and 
subsequently unfolding all epidemiological variables from PV as delineated above.

Dynamic model with vaccination. In the presence of a vaccination programme, the number of model 
compartments doubles to 12, but the dynamical equations preserve their basic structure. A fraction ρ of all sus-
ceptibles is vaccinated at birth. The relative reduction in susceptibility to VT of vaccinated hosts (superscript 1) is 
given by w = 1 − VE ∈ (0, 1), compared to those non-vaccinated. It is assumed that vaccine protection acts both at 
primary and secondary acquisition of a vaccine serotype. The equations are similar for the non-vaccinated hosts 
(superscript 0), who replenish the susceptible pool, S0, at rate μ(1 − ρ) and experience no protection against pneu-
mococcus. The FOIs are now given by: λ β= + + + + +t I I I I I I( ) ( /2 /2)V V VV VN V VV VN

1 1 1 0 0 0  for VT, and similarly 
λ β= + + + + +t I I I I I I( ) ( /2 /2)N N NN VN N NN VN

1 1 1 0 0 0 , for NVT. We still have S0 + ∑ I0 + S1 + ∑ I1 = 1. Full model 
equations are given in Supplementary material S1.

Linking the model to data: statistical inference. This model is fitted to the cross-sectional prevalence 
data for children attending day care reported in 6 different countries (Table 2). In cases where full resolution of 
single and double carriage is available (Portugal and Norway), the explicit pre-vaccine data are directly input 
as initial conditions of the model, which is subsequently run for each parameter combination. In particular, for 
Portugal we have for 2001 the following epidemiological observations: [97 77 66 7 5 18] for [nS, xV, xN, xVV, xNN, 
xVN] (numbers of children in each class), and for 2007: [70 13 125 0 10 2] among vaccinated children, and [60 21 
117 1 17 13] among non-vaccinated ones. For Norway, we have the following epidemiological resolution for 2006: 
[136, 188, 226, 9, 17, 30] for [nS, xV, xN, xVV, xNN, xVN], and for 2008: [118, 82, 328, 2, 36, 26] at the aggregated level 
over all children in the study of each year. In these two cases, θ = (R0, k, w) can be estimated accounting for infor-
mation across all years of the survey, without needing the stationarity assumption for pre-vaccine observations.

In epidemiological studies where only overall prevalence and VT prevalence are reported, the pre-vaccine data 
are interpreted as a global equilibrium in the absence of intervention, and then, using Eqs (4–8), I derive explicitly 
initial conditions relative to all classes required by the model, for each value of R0. In these cases, joint estimation 
of θ = (R0, w) is performed, but R0 is more tightly coupled to the initial observations pre-vaccination. The equa-
tions are solved numerically for different times of follow-up in each study. The dynamic variables S1(t), I t( )V

1 , …, 
S0(t), I t( )V

0  are then compared to the epidemiological observations post-PCV7. When only data on prevalence of 
vaccine serotypes are available: nV = xV + xVV + xVN/2 and nN = xN + xNN + xVN/2, model predictions for 

= + + + + +P t I I I I I I( ) /2 /2V V VV VN V VV VN
1 1 1 0 0 0  are used for the fitting, instead of all 6 epidemiological variables. 

Accounting for vaccination coverage and sample sizes across studies, parameter inference is performed using a 
multinomial likelihood under a Bayesian framework34. The likelihood of the data (France, Greece, Hungary, 
Hong-Kong) is given by:
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where the model variables satisfy: S(t) + PV(t) + PN(t) = 1 and the observed data satisfy: nS(t) + nV(t) + nN(t) = n(t). 
The expression is similar for Portugal and Norway, but we account for the finer epidemiological resolution of the 
host population afforded by the data. We used uniform priors in [1, 6] and [0, 1] for R0 and w/k respectively. 
As all children in the studies were day care attendees, we assumed a monthly clearance rate γ equal to 0.7. This 
corresponds to a mean duration of a carriage episode of about 5.7 weeks, as previously documented for this age 
group38. The deterministic model skeleton is used to obtain temporal trajectories for expected prevalence of each 
carriage type among day-care attendees, which are then integrated within the sampling process, as done in an 
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earlier study34. Concerning the entry rate μ, I considered the mean duration of DCC attendance per child per 
setting (Table 1), accounting for the proportions in different age groups and the maximal age of daycare attendees. 
This resulted in these values of μ = 1/durationDCC across settings: μ =: 0.042 (Portugal), 0.031 (Norway), 0.058 
(France), 0.037 (Greece), 0.055 (Hungary) and 0.042 (Hong Kong). The results for model-fitting under a different 
assumption for μ (1/mean age), confirmed similar values for vaccine efficacy, preserving in general the ranking 
between settings and are detailed in Table S2 and Fig. S4.

The initial conditions for the post-vaccination dynamics are split between vaccinated and non-vaccinated 
children in the proportions ρ and 1 − ρ, for initial coverage. When a different coverage is known for each year of 
follow-up (Table 1), the system is numerically integrated stepwise from year to year, using a different ρ, and ini-
tializing the system for the next round of integration at the solution obtained up to the last time period. Parameter 
estimation was performed using the mcmcstat package63 in Matlab. Convergence of two independent MCMC 
chains to the stationary posterior distributions was assessed using the Gelman-Rubin statistic100.

References
 1. O’Brien, K. L. et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. The 

Lancet 374, 893–902 (2009).
 2. Bogaert, D., de Groot, R. & Hermans, P. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. The Lancet 

infectious diseases 4, 144–154 (2004).
 3. Park, I. H. et al. Discovery of a new capsular serotype (6c) within serogroup 6 of Streptococcus pneumoniae. Journal of Clinical 

Microbiology 45, 1225–1233 (2007).
 4. Dagan, R. et al. Serum serotype-specific pneumococcal anticapsular immunoglobulin g concentrations after immunization with a 

9-valent conjugate pneumococcal vaccine correlate with nasopharyngeal acquisition of pneumococcus. Journal of Infectious 
Diseases 192, 367–376 (2005).

 5. Millar, E. V. et al. Anticapsular serum antibody concentration and protection against pneumococcal colonization among children 
vaccinated with 7-valent pneumococcal conjugate vaccine. Clinical infectious diseases 44, 1173–1179 (2007).

 6. Feldman, C. & Anderson, R. Review: current and new generation pneumococcal vaccines. Journal of Infection 69, 309–325 (2014).
 7. Black, S. et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. The Pediatric 

infectious disease journal 19, 187–195 (2000).
 8. Klugman, K. P. et al. A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. New 

England Journal of Medicine 349, 1341–1348 (2003).
 9. O’Brien, K. L. et al. Efficacy and safety of seven-valent conjugate pneumococcal vaccine in American Indian children: group 

randomised trial. Lancet 362, 355 (2003).
 10. Cutts, F. et al. Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in 

The Gambia: randomised, double-blind, placebo-controlled trial. The Lancet 365, 1139–1146 (2005).
 11. Obaro, S. K., Adegbola, R., Banya, W. & Greenwood, B. Carriage of pneumococci after pneumococcal vaccination. The Lancet 348, 

271–272 (1996).
 12. O’Brien, K. L. et al. Effect of pneumococcal conjugate vaccine on nasopharyngeal colonization among immunized and 

unimmunized children in a community-randomized trial. Journal of Infectious Diseases 196, 1211–1220 (2007).
 13. Huang, S. S. et al. Post-pcv7 changes in colonizing pneumococcal serotypes in 16 massachusetts communities, 2001 and 2004. 

Pediatrics 116, e408–e413 (2005).
 14. Huang, S. S. et al. Continued impact of pneumococcal conjugate vaccine on carriage in young children. Pediatrics 124, e1–e11 

(2009).
 15. Croucher, N. J. et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nature genetics 45, 656–663 

(2013).
 16. Brugger, S., Frey, P., Aebi, S., Hinds, J. & Muhlemann, K. Multiple colonization with S. pneumoniae before and after introduction 

of the seven-valent conjugated pneumococcal polysaccharide vaccine. PLoS One. 5, e11638 (2010).
 17. Flasche, S. et al. Effect of pneumococcal conjugate vaccination on serotype-specific carriage and invasive disease in england: A 

cross-sectional study. PLoS Med 8, e1001017 (2011).
 18. Miller, E., Andrews, N. J., Waight, P. A., Slack, M. P. & George, R. C. Herd immunity and serotype replacement 4 years after seven-

valent pneumococcal conjugate vaccination in england and wales: an observational cohort study. The Lancet infectious diseases 11, 
760–768 (2011).

 19. Spijkerman, J. et al. Carriage of streptococcus pneumoniae 3 years after start of vaccination program, the netherlands. Emerg Infect 
Dis 17, 584–591 (2011).

 20. Weinberger, D. M., Malley, R. & Lipsitch, M. Serotype replacement in disease after pneumococcal vaccination. The Lancet 378, 
1962–1973 (2011).

 21. Feikin, D. R. et al. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: 
a pooled analysis of multiple surveillance sites. PLoS Med 10, e1001517 (2013).

 22. Weinberger, D. M. et al. Using pneumococcal carriage data to monitor postvaccination changes in invasive disease. American 
journal of epidemiology 178, 1488–1495 (2013).

 23. Flasche, S., de Waroux, O. L. P., O’Brien, K. L. & Edmunds, W. J. The serotype distribution among healthy carriers before 
vaccination is essential for predicting the impact of pneumococcal conjugate vaccine on invasive disease. PLoS Comput Biol 11, 
e1004173 (2015).

 24. Fletcher, M. A. & Fritzell, B. Pneumococcal conjugate vaccines and otitis media: an appraisal of the clinical trials. International 
journal of otolaryngology 2012 (2012).

 25. Halloran, M. E., Struchiner, C. J. & Longini, I. M. Study designs for evaluating different efficacy and effectiveness aspects of 
vaccines. American journal of epidemiology 146, 789–803 (1997).

 26. Halloran, M. E., Haber, M., Longini, I. M. & Struchiner, C. J. Direct and indirect effects in vaccine efficacy and effectiveness. 
American Journal of Epidemiology 133, 323–331 (1991).

 27. Rinta-Kokko, H., Dagan, R., Givon-Lavi, N. & Auranen, A. Estimation of vaccine efficacy against acquisition of pneumococcal 
carriage. Vaccine 27, 3831–3837 (2009).

 28. Gjini, E. & Gomes, M. G. M. Expanding vaccine efficacy estimation with dynamic models fitted to cross-sectional prevalence data 
post-licensure. Epidemics 14, 71–82 (2016).

 29. Eskola, J. et al. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. New England Journal of Medicine 344, 
403–409 (2001).

 30. Melegaro, A. et al. Dynamic models of pneumococcal carriage and the impact of the heptavalent pneumococcal conjugate vaccine 
on invasive pneumococcal disease. BMC Infectious Diseases 10, 90 (2010).

 31. Choi, Y. H. et al. 7-valent pneumococcal conjugate vaccination in england and wales: is it still beneficial despite high levels of 
serotype replacement. PLoS One 6, e26190–e26190 (2011).

http://S2
http://S4


www.nature.com/scientificreports/

1 4Scientific RepoRts | 7: 3049  | DOI:10.1038/s41598-017-02955-y

 32. Cobey, S. & Lipsitch, M. Niche and neutral effects of acquired immunity permit coexistence of pneumococcal serotypes. Science 
(New York, NY) 335, 1376–1380 (2012).

 33. Flasche, S. et al. The impact of specific and non-specific immunity on the ecology of streptococcus pneumoniae and the 
implications for vaccination. Proceedings of the Royal Society B: Biological Sciences 280 (2013).

 34. Gjini, E., Valente, C., Sa-Leao, R. & Gomes, M. How direct competition shapes coexistence and vaccine effects in multi-strain 
pathogen systems. Journal of Theoretical Biology (2015).

 35. Schönberger, K., Kirchgässner, K., Riedel, C. & von Kries, R. Effectiveness of 2 +1 pcv7 vaccination schedules in children under 2 
years: A meta-analysis of impact studies. Vaccine 31, 5948–5952 (2013).

 36. Andrews, N. J. et al. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: 
a postlicensure indirect cohort study. The Lancet Infectious Diseases 14, 839–846 (2014).

 37. Givon-Lavi, N., Dagan, R., Fraser, D., Yagupsky, P. & Porat, N. Marked differences in pneumococcal carriage and resistance 
patterns between day care centers located within a small area. Clinical infectious diseases 29, 1274–1280 (1999).

 38. Pessoa, D. et al. Comparative analysis of Streptococcus pneumoniae transmission in Portuguese and Finnish day-care centres. 
BMC Infectious Diseases 13, 180 (2013).

 39. Leino, T., Hoti, F., Syrjänen, R., Tanskanen, A. & Auranen, K. Clustering of serotypes in a longitudinal study of streptococcus 
pneumoniae carriage in three day care centres. BMC infectious diseases 8, 1 (2008).

 40. Fraser, C., Hanage, W. P. & Spratt, B. G. Neutral microepidemic evolution of bacterial pathogens. Proceedings of the National 
Academy of Sciences of the United States of America 102, 1968–1973 (2005).

 41. Abdullahi, O. et al. Rates of acquisition and clearance of pneumococcal serotypes in the nasopharynges of children in kilifi district, 
kenya. Journal of Infectious Diseases 206, 1020–1029 (2012).

 42. Domenech De Celles, M. et al. Intrinsic epidemicity of Streptococcus pneumoniae depends on strain serotype and antibiotic 
susceptibility pattern. Antimicrob Agents Chemother 55, 5255–5261 (2011).

 43. Tigoi, C. et al. Rates of acquisition of pneumococcal colonization and transmission probabilities, by serotype, among newborn 
infants in kilifi district, kenya. Clin Infect Dis. 55, 180–188 (2012).

 44. Lipsitch, M. et al. Estimating rates of carriage acquisition and clearance and competitive ability for pneumococcal serotypes in 
Kenya with a Markov transition model. Epidemiology 23, 510–519 (2012).

 45. Cauchemez, S. et al. S. pneumoniae transmission according to inclusion in conjugate vaccines: Bayesian analysis of a longitudinal 
follow-up in schools. BMC Infect Dis 6, 14 (2006).

 46. Erasto, P. et al. Modelling multi-type transmission of pneumococcal carriage in bangladeshi families. Epidemiol Infect 138, 861–872 
(2010).

 47. Hill, P. C. et al. Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian infants: a longitudinal study. Clinical infectious 
diseases 46, 807–814 (2008).

 48. Lipsitch, M., Colijn, C., Cohen, T., Hanage, W. P. & Fraser, C. No coexistence for free: neutral null models for multistrain pathogens. 
Epidemics 1, 2–13 (2009).

 49. Nurhonen, M., Cheng, A. C. & Auranen, K. Pneumococcal transmission and disease in silico: a microsimulation model of the 
indirect effects of vaccination. PloS one 8, e56079 (2013).

 50. Numminen, E., Cheng, L., Gyllenberg, M. & Corander, J. Estimating the transmission dynamics of Streptococcus pneumoniae 
from strain prevalence data. Biometrics 69, 748–57 (2013).

 51. Huang, S. S., Finkelstein, J. A. & Lipsitch, M. Modeling community-and individual-level effects of child-care center attendance on 
pneumococcal carriage. Clinical Infectious Diseases 40, 1215–1222 (2005).

 52. Shrestha, S. et al. Identifying the interaction between influenza and pneumococcal pneumonia using incidence data. Science 
translational medicine 5, 191ra84–191ra84 (2013).

 53. Numminen, E. et al. Climate induces seasonality in pneumococcal transmission. Scientific reports 5 (2015).
 54. Sá-Leão, R. et al. Changes in pneumococcal serotypes and antibiotypes carried by vaccinated and unvaccinated day-care centre 

attendees in portugal, a country with widespread use of the seven-valent pneumococcal conjugate vaccine. Clinical Microbiology 
and Infection 15, 1002–1007 (2009).

 55. Valente, C. et al. Decrease in pneumococcal co-colonization following vaccination with the seven-valent pneumococcal conjugate 
vaccine. PLos ONE 7, e30235 (2012).

 56. Vestrheim, D. F., Høiby, E. A., Aaberge, I. S. & Caugant, D. A. Phenotypic and genotypic characterization of streptococcus 
pneumoniae strains colonizing children attending day-care centers in norway. Journal of clinical microbiology 46, 2508–2518 
(2008).

 57. Vestrheim, D. F., Hoiby, E. A., Aaberge, I. S. & Caugant, D. A. Impact of a pneumococcal conjugate vaccination program on 
carriage among children in norway. Clinical and Vaccine Immunology 17, 325–334 (2010).

 58. Dunais, B., Bruno-Bazureault, P., Carsenti-Dellamonica, H., Touboul, P. & Pradier, C. A decade-long surveillance of 
nasopharyngeal colonisation with streptococcus pneumoniae among children attending day-care centres in south-eastern france: 
1999–2008. European journal of clinical microbiology & infectious diseases 30, 837–843 (2011).

 59. Grivea, I. N., Tsantouli, A. G., Michoula, A. N. & Syrogiannopoulos, G. A. Dynamics of streptococcus pneumoniae nasopharyngeal 
carriage with high heptavalent pneumococcal conjugate vaccine coverage in central greece. Vaccine 29, 8882–8887 (2011).

 60. Tóthpál, A. et al. A marked shift in the serotypes of pneumococci isolated from healthy children in szeged, hungary, over a 6-year 
period. Acta microbiologica et immunologica Hungarica 58, 239–246 (2011).

 61. Tóthpál, A. et al. Radical serotype rearrangement of carried pneumococci in the first 3 years after intensive vaccination started in 
hungary. European journal of pediatrics 1–9 (2014).

 62. Ho, P.-L. et al. Changes in nasopharyngeal carriage and serotype distribution of antibiotic-resistant streptococcus pneumoniae 
before and after the introduction of 7-valent pneumococcal conjugate vaccine in hong kong. Diagnostic microbiology and infectious 
disease 71, 327–334 (2011).

 63. Haario, H., Laine, M., Mira, A. & Saksman, E. DRAM: Efficient adaptive MCMC. Statistics and Computing 16, 339–354 (2006).
 64. Heesterbeek, J. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, vol. 5 (Wiley, 2000).
 65. Vynnycky, E. & White, R. An introduction to infectious disease modelling (Oxford University Press, 2011).
 66. Scarbrough Lefebvre, C. D., Terlinden, A. & Standaert, B. Dissecting the indirect effects caused by vaccines into the basic elements. 

Human vaccines & immunotherapeutics 11, 2142–2157 (2015).
 67. Fraser, C., Hanage, W. P. & Spratt, B. G. Recombination and the nature of bacterial speciation. Science 315, 476–480 (2007).
 68. Feil, E. J., Smith, J. M., Enright, M. C. & Spratt, B. G. Estimating recombinational parameters in streptococcus pneumoniae from 

multilocus sequence typing data. Genetics 154, 1439–1450 (2000).
 69. Auranen, K., Mehtala, J., Tanskanen, A. & Kaltoft, S. M. Between-strain competition in acquisition and clearance of pneumococcal 

carriage: Epidemiologic evidence from a longitudinal study of day-care children. American Journal of Epidemiology 171, 169–176 
(2010).

 70. Chalub, F. A. & Souza, M. O. Discrete and continuous sis epidemic models: a unifying approach. Ecological Complexity 18, 83–95 
(2014).

 71. Gjini, E. & Madec, S. A slow-fast dynamic decomposition links neutral and non-neutral coexistence in interacting multi-strain 
pathogens. Theoretical Ecology 1–13 (2016).



www.nature.com/scientificreports/

1 5Scientific RepoRts | 7: 3049  | DOI:10.1038/s41598-017-02955-y

 72. Gjini, E. & Gomes, M. G. M. Expanding vaccine efficacy estimation with dynamic models fitted to cross-sectional prevalence data 
post-licensure. Epidemics (2015).

 73. De Waroux, O. L. P., Flasche, S., Prieto-Merino, D., Goldblatt, D. & Edmunds, W. J. The efficacy and duration of protection of 
pneumococcal conjugate vaccines against nasopharyngeal carriage: a meta-regression model. The Pediatric infectious disease 
journal 34, 858–864 (2015).

 74. Lipsitch, M. et al. Strain characteristics of streptococcus pneumoniae carriage and invasive disease isolates during a cluster-
randomized clinical trial of the 7-valent pneumococcal conjugate vaccine. Journal of Infectious Diseases 196, 1221–1227 (2007).

 75. Moore, M. R. et al. Impact of a conjugate vaccine on community-wide carriage of nonsusceptible streptococcus pneumoniae in 
alaska. Journal of Infectious Diseases 190, 2031–2038 (2004).

 76. Sleijffers, A., Garssen, J. & Van Loveren, H. Ultraviolet radiation, resistance to infectious diseases, and vaccination responses. 
Methods 28, 111–121 (2002).

 77. Goettsch, W. et al. Effects of ultraviolet-b exposure on the resistance to listeria monocytogenes in the rat. Photochemistry and 
photobiology 63, 672–679 (1996).

 78. Ryan, L. K. et al. Exposure to ultraviolet radiation enhances mortality and pathology associated with influenza virus infection in 
mice. Photochemistry and photobiology 72, 497–507 (2000).

 79. Ward, M., Sailstad, D., Andrews, D., Boykin, E. & Selgrade, M. Effects of ultraviolet radiation (uvr) on the allergic respiratory 
responses of balb/c mice to a fungal allergen. Toxicol. Sci. S 60, 207 (2001).

 80. Tobón, G. J., Youinou, P. & Saraux, A. The environment, geo-epidemiology, and autoimmune disease: rheumatoid arthritis. Journal 
of autoimmunity 35, 10–14 (2010).

 81. Lam, O., Wheeler, J. & Tang, C. M. Thermal control of virulence factors in bacteria: A hot topic. Virulence 5, 852–862 (2014).
 82. Woolhouse, M. E. et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. 

Proceedings of the National Academy of Sciences 94, 338–342 (1997).
 83. Gomes, M. G. M. et al. End tb strategy: the need to reduce risk inequalities. BMC infectious diseases 16, 1 (2016).
 84. Gini, C. On the measure of concentration with special reference to income and statistics. Colorado College Publication, General 

Series 208, 73–79 (1936).
 85. White, M. T., Griffin, J. T., Drakeley, C. J. & Ghani, A. C. Heterogeneity in malaria exposure and vaccine response: implications for 

the interpretation of vaccine efficacy trials. Malaria journal 9, 82 (2010).
 86. Gomes, M. G. M. et al. How host heterogeneity governs tuberculosis reinfection? Proceedings of the Royal Society of London B: 

Biological Sciences 2473–2478 (2012).
 87. Griffin, J. T., Ferguson, N. M. & Ghani, A. C. Estimates of the changing age-burden of plasmodium falciparum malaria disease in 

sub-saharan africa. Nature communications 5 (2014).
 88. Mitchell, P. K., Lipsitch, M. & Hanage, W. P. Carriage burden, multiple colonization and antibiotic pressure promote emergence of 

resistant vaccine escape pneumococci. Philosophical Transactions of the Royal Society of London B: Biological Sciences 370, 
20140342 (2015).

 89. van Baalen, M. & Sabelis, M. W. The dynamics of multiple infection and the evolution of virulence. American Naturalist 881–910 
(1995).

 90. Alizon, S. Co-infection and super-infection models in evolutionary epidemiology. Interface focus 3, 20130031 (2013).
 91. Yoshikawa, T. et al. Susceptibility to effects of uvb radiation on induction of contact hypersensitivity as a risk factor for skin cancer 

in humans. Journal of Investigative Dermatology 95, 530–536 (1990).
 92. Valdez, Y., Brown, E. M. & Finlay, B. B. Influence of the microbiota on vaccine effectiveness. Trends in immunology 35, 526–537 

(2014).
 93. Biesbroek, G. et al. Seven-valent pneumococcal conjugate vaccine and nasopharyngeal microbiota in healthy children. Emerg Infect 

Dis 20, 201–10 (2014).
 94. Park, D. E. et al. The differential impact of coadministered vaccines, geographic region, vaccine product and other covariates on 

pneumococcal conjugate vaccine immunogenicity. The Pediatric infectious disease journal 33, S130–S139 (2014).
 95. Dagan, R., Givon-Lavi, N., Greenberg, D., Fritzell, B. & Siegrist, C.-A. Nasopharyngeal carriage of streptococcus pneumoniae 

shortly before vaccination with a pneumococcal conjugate vaccine causes serotype-specific hyporesponsiveness in early infancy. 
Journal of Infectious Diseases 201, 1570–1579 (2010).

 96. Hoti, F., Erasto, P., Leino, T. & Auranen, K. Outbreaks of Streptococcus pneumoniae carriage in day care cohorts in 
Finland–implications for elimination of transmission. BMC Infectious Diseases 9, 102 (2009).

 97. Reluga, T. C. & Shim, E. Population viscosity suppresses disease emergence by preserving local herd immunity. Proceedings of the 
Royal Society of London B: Biological Sciences 281, 20141901 (2014).

 98. Fine, P. E. Variation in protection by bcg: implications of and for heterologous immunity. The Lancet 346, 1339–1345 (1995).
 99. Yusuf, S. & Wittes, J. Interpreting geographic variations in results of randomized, controlled trials. New England Journal of Medicine 

375, 2263–2271 (2016).
 100. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. Journal of the 

Royal Statistical Society: Series B (Statistical Methodology) 64, 583–639 (2002).

Acknowledgements
The author would like to thank Brigitte Dunais for her kind sharing of the French data and Didrik F. Vestrheim 
and Anneke Steens for their helpful assistance on the Norwegian data in September 2014. The author also thanks 
Louise Matthews for providing useful feedback on previous versions of the manuscript.

Author Contributions
E.G. conceived and conducted the study, analysed the results and wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-02955-y
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-017-02955-y


www.nature.com/scientificreports/

1 6Scientific RepoRts | 7: 3049  | DOI:10.1038/s41598-017-02955-y

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Geographic variation in pneumococcal vaccine efficacy estimated from dynamic modeling of epidemiological data post-PCV7
	Results
	Pneumococcus colonization data from different settings. 
	Fitted transmission model. 
	Estimated basic reproduction number R0 and serotype competition parameter k. 
	Links with other studies. 
	Vaccine efficacy against acquisition of PCV7 serotypes. 
	Sensitivity to model assumptions. 
	Possible factors of vaccine efficacy variability across settings. 
	Serotype-specific efficacies and aggregation effects. 
	Environmental gradients: the role of temperature. 
	Transmission heterogeneities in the host population. 

	Discussion
	New insights from multi-site-one-model approaches. 
	The pneumococcus diversity challenge. 
	The host diversity challenge. 
	Next-generation analyses for next-generation vaccines. 

	Methods
	Pneumococcus transmission model pre-vaccine. 
	Calibrating the model to serotype prevalences before vaccination. 
	Dynamic model with vaccination. 
	Linking the model to data: statistical inference. 

	Acknowledgements
	Figure 1 Model flow diagram in the absence of vaccination.
	Figure 2 Transmission intensity vs.
	Figure 3 Posterior distributions for heptavalent vaccine efficacy against PCV7 serotypes, estimated in a setting-specific manner.
	Figure 4 Observed and fitted prevalence of asymptomatic carriage of pneumococcus in day care centres by country.
	Figure 5 Possible factors for variation in vaccine efficacy against acquisition.
	Table 1 Characteristics of the studies in daycare settings from different countries before and after PCV7 vaccination.
	Table 2 Pneumococcus prevalence data from daycare settings in different countries.
	Table 3 Parameter estimates for pneumococcus transmission and PCV7 vaccine efficacy (VE) in day care settings.




