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Dynamic control of coherent 
pulses via destructive interference 
in graphene under Landau 
quantization
Wen-Xing Yang1, Ai-Xi Chen2,3, Xiao-Tao Xie4, Shaopeng Liu1 & Shasha Liu1

We analyze the destructive interference in monolayer graphene under Landau quantization in a time-
dependent way by using the Bloch-Maxwell formalism. Based on this analysis, we investigate the 
dynamics control of an infrared probe and a terahertz (THz) switch pulses in graphene. In presence 
of the THz switch pulse, the destructive interference take places and can be optimized so that the 
monolayer graphene is completely transparent to the infrared probe pulse. In absence of the THz switch 
pulse, however, the infrared probe pulse is absorbed due to such a interference does not take place. 
Furthermore, we provide a clear physics insight of this destructive interference by using the classical 
dressed-state theory. Conversely, the present model may be rendered either absorbing or transparent 
to the THz switch pulse. By choosing appropriate wave form of the probe and switch pulses, we show 
that both infrared probe and THz switch pulses exhibit the steplike transitions between absorption and 
transparency. Such steplike transitions can be used to devise a versatile quantum interference-based 
solid-state optical switching with distinct wave-lengths for optical communication devices.

The discovery of graphene opened a new area in material science. Graphene is the first truly two-dimensional 
(2D) crystal consisting of just a single layer of carbon atoms arranged in a hexagonal lattice1. The graphene has led 
to many significant research activities on its fascinating electronic and optical properties due to linear and mass-
less band structure near the Dirac point and chiral character of electron states. The magneto-optical properties 
and thin graphite layers have triggered multiple absorption peaks and particular selection rules between Landau 
levels (LLs)2, 3. The influence of the Landau quantization on the carrier dynamics in graphene has been investi-
gated4–8. Progress in making high-quality epitaxial graphene and graphite with high room-temperature mobility 
and strong magneto-optical response attracted a lot of interest and showed the promise of new applications in 
the infrared optics and photonics9–12. In particular, optical transition between LLs may construct the quantum 
interference pathways which can be exploited, e.g., to devise a novel-type all-optical switching mechanism.

On the other hand, quantum optical phenomena where the dynamics of one probe pulse can be modulated 
in time by another pulse have been the focus of current investigations in quantum optics13–15. Although a lots 
of quantum optical effects have been observed in the past decades and within different physics systems, there 
is renewed interest in such time-dependent dynamic effects which may include solitons16–20, creation of short 
pulses21–25, and multiwave mixing processes in the ultraslow propagation regime26–28, etc.29–31. In particular, 
time-dependent coherent control of the optical response of certain media that exhibit electromagnetic induced 
transparency (EIT)13–15 has also triggered a flurry of interest mainly due to its potential applications in integrated 
optics and quantum information science. The LLs transitions are particular attractive for these investigations, 
which is much more practical than that in atomic system because of its flexible design and the controllable LLs 
energies.

In this paper, we investigate the time-dependent coherent control of an infrared probe pulse and a terahertz 
(THz) pulse in a quantized three-level graphene system that exhibit destructive interference between three 
LLs transitions. This is a rather relevant issue which has remained so far unexplored, as far as we know, both 
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theoretically and experimentally. A few authors have discussed the topic of coherent control of the LLs tran-
sitions in graphene system under a strong magnetic field2–12, but they mainly focused on the absorption spec-
tra, enhanced nonlinear parametric generation and relaxation dynamics while no time-dependent dynamics of 
coherent pulses was considered. In ref. 32, pulse propagation dynamics was considered and examined for a quan-
tized four-level graphene system under a mechanism of four-wave mixing by utilizing density-matrix method and 
perturbation theory, which again is different from our quantized three-level graphene model under a mechanism 
of destructive interference. The present work also differs from the steady-state treatment of similar theoretical 
models studied, e.g., in refs 3, 10, 12, and which inherently miss any time-dependent dynamics.

Specifically, we analyze the destructive interference in monolayer graphene under Landau quantization in a 
time-dependent way via the Bloch-Maxwell formalism. Based on this analysis, we investigate the dynamics con-
trol of an infrared probe and a THz switch pulses in graphene. By solving the Bloch-Maxwell equation, we find 
that the graphene system is completely transparent to the infrared probe pulse when such an interference induced 
by the switch pulse take places. However, when the THz switch pulse is switched off, the infrared probe pulse is 
absorbed. Interestingly enough, the present graphene system may also be rendered either absorbing or transpar-
ent to the THz switch pulse. Furthermore, we show that both infrared probe and THz switch pulses exhibit the 
steplike transitions between absorption and transparency. Such steplike transitions can be used to devise a versa-
tile optical switching based on destructive interference for optical communication devices.

The theoretical model and basic equations
We consider a 2D graphene crystal structure in the presence of a strong magnetic field. The geometry of the pro-
posed scheme is shown in Fig. 1. The infrared probe pulse with frequency ωp and THz switch pulse with fre-
quency ωTH are perpendicularly incident on the single-layer graphene (the monolayer graphene is regarded as a 
perfect two-dimensional (2D) crystal structure in the x − y plane) placed in a magnetic field B, in which both two 
optical fields and magnetic field are along the z-axis. Under the action of the external magnetic field, the original 
linear dispersion relation of graphene results in unequally spaced Landau levels (LLs), their transition energies are 
proportional to B 9–12.

When the magnetic field is perpendicularly applied in a single-layer graphene (in the x − y plane), the 
effective-mass Hamiltonian9–12 without external optical field can be written as
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where Fermi velocity υ γ= ≈a m s3 /2 10 /F 0
6  is a band parameter with the nearest-neighbor hopping energy 

γ0 ~ 2.8 eV and C-C spacing a = 1.42 Å, π→ = → +
→ˆ p̂ eA c/  represents the generalized momentum operator, →̂p  is the 

electron momentum operator, e is the electron charge and 
→
A  is the vector potential, which is equal to (0, Bx) for 

a uniform magnetic field. In general, one can obtain the eigenenergies of discrete LLs for the magnetized graphene 
by solving the effective mass Schrödinger equations, i.e., εΨ = ΨĤ0 . In fact, the Hamiltonian near the K point can 
be expressed as υ σ π= → ⋅ →ˆ ˆ ˆH F0 , where σ σ σ→ =ˆ ˆ ˆ( , )x y  is a vector of Pauli matrices. Then, the eigenfunction is spec-
ified by two quantum numbers n ( = ± ± …n 0, 1, 2, ) and the electron wavevector ky along y direction9–12:

Figure 1. The geometry of the proposed scheme. The infrared probe pulse and THz switch pulse are 
perpendicularly incident on the single-layer graphene (the monolayer graphene is regarded as a perfect two-
dimensional (2D) crystal structure in the x − y plane) placed in a magnetic field B, in which both two optical 
fields and magnetic field are along the z-axis.
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where =l c eB/c  is magnetic length and Hn (x) is the Hermite polynomial. The eigenenergy can be calculated 
as ε ω= n nsgn( )n c  with ω υ= l2 /c F c. In comparison with LLs of a conventional 2D electron/hole system 
with a parabolic dispersion, LLs in graphene are unequally spaced and their transition energies are proportional 
to B . Combining the eigenenergy of graphene system with the selected three energy levels in Fig. 2, we can 
simplify the system Hamiltonian without optical fields as

  ε ε ε= + + .Ĥ 3 3 2 2 1 1 (5)0 3 2 1

With including the light-matter interaction in the graphene system, the vector potential of the optical field 
ω

→
=

→
A icE /opt  → =

→
+

→
E E E( )p TH  is employed into the vector potential of the magnetic field in the generalized 

momentum operator π→ in the Hamiltonian. The generated interaction Hamiltonian can be given by

υ σ= → ⋅
→

.Ĥ e
c

A (6)F optint

The interaction Hamiltonian (6) does not include the momentum operator, and it is only determined by the Pauli 
matrix vector σ→ and proportional to vector potential →Aopt. The matrix element of the optical transition between 
LLs is given by

Figure 2. (a) Landau levels (LLs) near the Dirac point superimposed on the linear electron dispersion without 
the magnetic field υ= ±E pF . The magnetic field condenses the original states in the Dirac cone into discrete 
energies. (b) Energy level diagram and optical transitions in graphene interacting with a weak probe pulse (with 
carrier frequency ωp) and a THz switch pulse (with carrier frequency ωTH). The states are labeled as |1〉, |2〉 and 
|3〉 corresponding to the LLs with energy quantum numbers n = −1, 1, 2, respectively. The monolayer graphene 
is regarded as a perfect two-dimensional (2D) crystal structure in the x − y plane. Inset: in the presence of the 
switch pulse, states |2〉 and |3〉 couple with the switch pulse giving rise to the three dressed states |a〉 and |b〉.
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where |m〉, |n〉 are LLs with energy index m and n. The term σ σ〈 | + | 〉ˆ ˆm x y nx y  in Eq. (7) is
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Since φn are orthogonal, the above expression is nonzero only when |m| − 1 = |n| or |m| = |n| − 1. As a result, 
the selection rule for the allowed transitions turns out to be Δ|n| = ±1, where n is the energy quantum number.

Due to the special selection rules in present graphene, the selected transitions are dipole allowed between the 
appointed energy levels, i.e., Δ|n| = ±1 with n the energy quantum number. In case of Δ|n| = −1, the right-hand 
circularly (RHC) polarized photons could be homogeneously absorbed. Conversely, the left-hand circularly 
(LHC) polarized photons are simultaneously absorbed in case of Δ|n| = +13. It should be noted that the carrier 
frequencies of optical transition between adjacent LLs turn out to be in the infrared or terahertz (THz) region for 
a magnetic field in the range of 0.01 − 10 T. The electric field vector of the system can be expressed as 

ω
→

= → − +
→

⋅ → + . .−
−E e E i t i k r c cexp( )p p p p  and ω
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unit vector of the LHC (RHC) polarized basis. → →
− +e e( ) can be noted as → = − → = +− +ˆ ˆ ˆ ˆe x iy e x iy[ ]/ 2 ( [ ]/ 2 ). In 

detail, the optical transition ↔ ↔1 3 ( 2 3 ) is driven by the optical field of LHC polarized component 
− −E E( )p TH  with the carrier frequency ωp(ωTH).

The transition frequencies of relevant LLs can be estimated as ω ω= +( 2 1) c31  and ω ω= −( 2 1) c32 . The 
Fig. 3 shows the transition frequency ω31 (ω32) between levels |1〉 and |3〉 (|2〉 and |3〉) as a function of the external 
magnetic field B. For the external magnetic field B up to 3 T, the frequency ωc is on the order of ω −

 s10c
14 1. 

From Fig. 3, one can see that ω π ./2 38 431  THz (i.e., ω . × −
 s2 41 1031

14 1), which is located within the 
mid-infrared region. Accordingly, the transition frequency ω32/2π is about 6.59 THz (i.e., ω . × −

 s4 14 1032
13 1), 

which falls into the THz region.
By inserting the complete set of states {|3〉, |2〉, |1〉} in Eq. (6), we can obtain
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denotes the dipole moments for the transition between states ↔m n . The corresponding Rabi frequencies for 
the relevant laser-driven intersubband transitions are represented as µΩ = → ⋅ →

−
−e E( ) /p p31   and 

µΩ = → ⋅ →
−

−e E( ) /TH TH32 .
Then we can obtain the total Hamiltonian of graphene system i.e., = +ˆ ˆ ˆH H H0 int. In the interaction picture, 

with the rotating wave approximation and the electric dipole approximation, the total Hamiltonian of this system 
can be written as (assuming the state |1〉 as the zero potential reference and = 1 ),

= ∆ + ∆ − ∆ − Ω + Ω + . .Ĥ h c3 3 ( ) 2 2 ( 3 1 3 2 ), (10)int
I

p p TH p TH

where we define the frequency detunings ε ε ω∆ = − −= =−( )/p n n p2 1  and ε ε ω∆ = − −= =( )/TH n n TH2 1  .
To give a full description of the dynamical evolution of our considered graphene system, we firstly adopt 

Liouville’s equation ρ ρ= − −ρ∂
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Figure 3. The transition frequencies in the three-level graphene system shown in Fig. 1(b). The transition 
frequency ω31 (ω32) indicates the splitting gap between levels |1〉 and |3〉 (|2〉 and |3〉).
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relaxation which stemming from disorder, interaction with phonon and carrier-carrier interactions. The 
density-matrix equations of motion for the present system can be written as follows:
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where the dephasing rate γij (i = 1, 2, 3, ≠i j) is added phenomenologically in the above equations. For simplicity, 
we assume γ31 = γ32 = γ and γ γ21 . For present system, the dephasing rate γ can be estimated numerically as 
γ = 3 × 1013 s−1 according to refs 3, 33. We should note that the decay of the population of a certain LLs has been 
not included in the above equations. Compared to the dephasing rate, the population decay can be neglected (the 
lifetime of the carriers is in the picosecond range5). A comprehensive treatment of the decay rates would involve 
other broadening mechanism into the system. However, we have adopted the phenomenological approach of 
treating the decay just as done in the literatures3, 9–12, 32. A more fully treatment taking into account of these broad-
ening mechanism has been investigated quite thoroughly by some authors (see, for example, refs 4–8).

In order to correctly describe the time-dependent dynamics of the infrared and THz pulse in the medium, 
equations of motion (11)–(16) must be simultaneously solved with Maxwell equation. As far as the propagation 
dynamics of two pulses is concerned, the following Maxwell wave equations in the slowly varying envelope 
approximation is required along the direction of ẑ:
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where c and ε0 are the light speed and permittivity in free space, respectively. Without loss of generality, we con-
sider one-dimensional propagation in this paper. Pp(z, t) (PTH(z, t)) is the slowly oscillating term of the induced 
polarization in LLs transition between ↔1 ( 2 ) 3 , and is determined by Pp(z, t) = Nμ31ρ31 (PTH 
(z, t) = Nμ32ρ32). Note that the expressions of the polarization Pp(z, t) (PTH(z, t)) contains a 2D electron density N. 
The electron density can be expressed as π=N l2/( )c

2  with the magnetic length lc. To convert them into the bulk 
polarization for comparison with other materials, we can divide it by the thickness of one monolayer as N3D = N/
Δz (typically, Δz = 0.34 nm). Of course there is no need to consider propagation of the pulses through a mon-
olayer graphene. However, we have used the Maxwell wave equation to describe the propagation dynamics, which 
can keep our results general to make it applicable to a multiplayer graphene layer. In the present work, we will 
focus on the time-dependent control of the infrared and THz pulses for one monolayer thickness, i.e., z ~ Δz.

Results and Discussion
In this section, we would focus on the time-dependent coherent control of an infrared probe pulse and a THz 
switch pulse in the present system. We firstly assumed the infrared probe pulse is Ω t(0, )p  at the entrance z = 0. In 
the limit of a weak probe signal, almost electrons will remain in the state |1〉 and hence we may assume that 
ρ ≈(0) 111 , and ρ ≈(0) 022,33 . Under this assumption, we arrive at the linearized results for time-dependent 
dynamics of the infrared probe field at the output terminal z = Δz as,

Ω = Ω α γ γ ρ∆ + Ωz t t e( , ) (0, ) , (19)p p
z( )Im( / )p31 32 31

where 


α =
ω µ

ε γ γ+

N

c4 ( )
p 31

2

0 31 32
 is the propagation constant. Thus we can obtain the normalized absorption coefficient of 

the infrared probe pulse as − Ω Ωz t t1 ( , )/ (0, )p p . We can directly examine the transient absorption property of  
the infrared probe pulse by numerically integrating Eqs (11)–(16) with a certain initial condition. With the  
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initial conditions ρ ≈(0) 111 , ρ ≈(0) 022,33 , and ρ ≈(0) 0ij  for ≠i j (i, j = 1, 2, 3), we solve the time-dependent Eqs 
(11)–(16) by a standard fourth-order Runge-Kutta method.

For a directly insight into the modulation of the THz switch pulse on the absorption of the infrared probe 
pulse with different magnetic field intensity B, we now numerically simulate the absorption spectra versus the 
frequency of the probe pulse and the magnetic field intensity for two different cases, i.e., Ω = 0TH  and γΩ =TH . 
In addition, the frequency detunings of infrared probe and THz switch pulses, as well as the intensity of probe 
pulse are chosen as Δp = 0, ΔTH = 0, and γΩ = .0 05p 3. According to above practical parameter sets, we plot the 
absorption coefficients of the probe pulse − Ω Ωz t t1 ( , )/ (0, )p p  as a function of the probe frequency ν ω π= /2p p  
and the magnetic field intensity B without and with including THz switch pulse, as shown in Fig. 4. It can be seen 
from Fig. 4 that the absorption spectra can be modulated by the secondary THz switch pulse. Figure 4(a), corre-
sponds to the case of Ω = 0TH , shows that the only high absorption line appears in the center of the probe 
absorbtion spectra. With the increasing of magnetic field intensity B, there is a shift about the center frequency of 
the probe absorption spectra peak in mid-infrared region. However, when the secondary THz switch pulse is 
switched on, Fig. 4(b) shows that the original high absorption line becomes a obvious transparency window 
between two high absorption lines. In other words, the secondary THz switch pulse can be regarded as a switch-
ing for controlling the absorption of the infrared probe pulse. These interesting phenomena results from the 
destructive interference induced by the secondary THz switch pulse. The mechanism of this destructive interfer-
ence is similar as the one in EIT medium13–15. However, interestingly, the parameters of the splitting gap of quan-
tized LLs in graphene can be engineered to give a desired transmission by utilizing applied magnetic field in 
design.

In order to provide a clear picture for the destructive interference induced by the THz switch pulse, for a fixed 
external magnetic field B = 3 T, we plot in Fig. 5(a) the absorption coefficient of the infrared probe pulse as the 
function of the frequency detuning Δp for different values of ΩTH , i.e., Ω = 0TH , γΩ = .0 5TH , and γΩ =TH , 
respectively. As can be seen from Fig. 5(a), the absorption curves depend sensitively on the value of ΩTH. In the 

Figure 4. Contour maps of the absorption − Ω Ωz t t1 ( , )/ (0, )p p  as a function of the probe frequency 
ν ω π= /2p p  and the magnetic field intensity B. (a) In absence of the THz switch pulse (i.e., Ω = 0TH ); (b) In 
presence of the THz switch pulse (i.e., γΩ =TH ). Other parameters are given as γ31 = γ32 = γ, γ = 3 × 1013 s−1, 
γ21 = 0.05γ, γΩ = .0 05p , Δp = 0, ΔTH = 0, and Δz = 0.34 nm.

Figure 5. (a) The absorption coefficient − Ω Ωz t t1 ( , )/ (0, )p p  as a function of the frequency frequency Δp 
(THz) with γ31 = γ32 = γ for different values of ΩTH, i.e., Ω = 0TH  (solid line), γΩ = .0 5TH  (dashed line), and 

γΩ = 1TH  (dotted line), respectively. (b) The absorption coefficient − Ω Ωz t t1 ( , )/ (0, )p p  as a function of the 
frequency frequency Δp (THz) with γΩ =TH  for different values of γ31,32, i.e., γ31 = γ32 = 0.5γ (solid line), 
γ31 = γ32 = 2γ (dashed line), and γ31 = γ32 = 5γ (dotted line), respectively. Other parameters are given as B = 3 T, 
γ = 3 × 1013 s−1, γ21 = 0.05γ, γΩ = .0 05p , ΔTH = 0, and Δz = 0.34 nm.
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absence of the THz switch pulse, i.e., Ω = 0TH , a obvious absorption peak around the probing resonance position 
(Δp = 0) can be observed in the absorption curve. When the THz switch beam is on ( γΩ = .0 5TH ), a narrow 
transparency window occurs around probing resonance position. As the value of ΩTH increases from 0.5γ to γ, the 
transparency window becomes wide correspondingly. Note that we have chosen a certain value of the dephasing 
rate. As a matter of fact, the dephasing is determined by many complex factors8, such as radiative broadening, 
Coulomb-induced broadening, broadening due to the scattering with optical phonons, and impurity-induced 
broadening. We plot in Fig. 5(b) absorption profiles of the infrared probe pulse for different values of the dephas-
ing rates compared them with the ones shown in Fig. 5(a). One can find that the transparency window becomes 
wide if the values of dephasing rates (γ31 = γ32) decrease from γ to 0.5γ. And also, Fig. 5(b) shows that the increas-
ing of the dephasing rates can lead to an intensive disturbance for the transparency window. In other words, a 
high-quality graphene with small dephasing rate may provide a practical help to build the destructive interference 
and control the absorption property of the infrared probe pulse even if the THz switch pulse is on.

It should be borne in mind that the above destructive interference mechanism can be understood according 
to the classical dressed-state theory34. When the transition ↔2 3  is driven by the THz switch pulse, the state 
|3〉 will split into two dressed states |a〉 and |b〉 with λa and λb the corresponding energy eigenvalues, respectively. 
With the rotating-wave approximation and the electric dipole approximation, the Hamiltonian of the transition 

↔2 3  with the THz switch pulse can be given as ( = 1 ) = ∆ − Ω + Ωˆ ⁎H 3 3 ( 3 2 2 3 )int
I

TH TH TH  in the 
interaction picture. By solving eigenvalues equation, we can obtain the two energy eigenvalues of the two dressed 
states as
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2 2
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Accordingly, the dressed states shown in the inset of Fig. 2 can be given by

θ θ= − +a cos 3 sin 2 , (22)1 1

θ θ= +b sin 3 cos 2 (23)1 1

with

θ
λ

λ λ
=

+ Ω
=

Ω

+ Ω
sin ,

(24)

a

a TH

TH

b TH
1 2 2 2 2

θ
λ

λ λ
= −

+ Ω
=

Ω

+ Ω
.cos

(25)

b

b TH

TH

a TH
1 2 2 2 2

Considering the resonance condition (i.e., ΔTH = 0), the energy eigenvalues of Eqs (20) and (21) can be rewritten 
as λ = +Ωa TH and λ = −Ωb TH, respectively. Correspondingly, the dressed states of Eqs (22) and (23) can be 
rewritten as λ = +( 2 3 )/ 2a  and λ = −( 2 3 )/ 2a , respectively. That is, the splitting of state |3〉 is evenly 
spaced when the THz switch field is resonant coupled to the transition ↔2 3 , which holds the similar mech-
anism as the ac-stark splitting. The probe dipole matrix elements corresponding to the transition ↔1 3  in this 
dressed picture can be represented as

µ= = −d a P 1 / 2 , (26)a 31

µ= =d b P 1 / 2 (27)b 31

with P = μ31|3〉 〈1|. Obviously, depending on the frequency detuning Δp of the infrared probe pulse and energy 
eigenvalues λa and λb, the absorption of the infrared probe pulse can be modulated by the secondary THz switch 
pulse. When the frequency detuning of the infrared probe pulse is tuned at λ∆ = = Ωp a TH  or 

λ∆ = = − Ωp b TH, two resonant excitations happen through the channels in the dressed state basis ↔ a1  
and ↔ b1 . Consequently, the two absorption peaks occur at the position ∆ = ± Ωp TH and a transparency 
window can be observed around the position Δp = 0, just as illustrated in Fig. 5.

As illustrated in Figs 4 and 5, we have shown that the destructive interference can be constructed in the present 
graphene system under Landau quantization. We also demonstrated that absorption of the infrared probe pulse 
can be controlled by the secondary THz switch pulse and the applied magnetic field intensity. In order to further 
study the time-dependent coherent control of an infrared probe pulse and a THz switch pulse via this destructive 
interference effect in the present system. We assume two pulses’ space-time-dependent Rabi frequencies as

Ω = Ωz t f z t( , ) ( , ), (28)p p
0
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Ω = Ωz t g z t( , ) ( , ) (29)TH TH
0

are here written in terms of the peak Rabi frequencies Ω p
0  and ΩTH

0  and the dimensionless infrared probe and THz 
switch pulse envelopes f(z, t) and g(z, t) with durations τp and τTH, respectively. In the local (retarded) frame 
where ξ = z and τ = t − z/c, according to ξ τ∂ ∂ = ∂ ∂ − ∂ ∂z c/ / 1/ /  and τ∂ ∂ = ∂ ∂t/ / , the equations of motion for 
the density matrix elements ρij(ξ, τ) and the wave equations for the normalized infrared probe and THz switch 
pulses f(ξ, τ) and g(ξ, τ) across the graphene system can be rewritten as

ρ

τ
γ ρ ξ τ ρ ξ τ ρ

∂

∂
= + Ω − Ω⁎i f i f( , ) ( , ) , (30)p p

11
31 33

0
31

0
13

ρ

τ
γ ρ ξ τ ρ ξ τ ρ

∂

∂
= + Ω − Ω ⁎i g i g( , ) ( , ) , (31)TH TH

22
32 33

0
32

0
23

ρ

τ
γ γ ρ ξ τ ρ ξ τ ρ

ξ τ ρ ξ τ ρ

∂

∂
= − + + Ω − Ω

+ Ω − Ω

⁎

⁎

i f i f

i g i g

( ) ( , ) ( , )

( , ) ( , ) , (32)

p p

TH TH

33
31 32 33

0
13

0
31

0
23

0
32

ρ

τ
γ γ

ρ ξ τ ρ ρ ξ τ ρ
∂

∂
= −





+
+ ∆



 + Ω − + Ωi i f i g

2
( , )( ) ( , ) ,

(33)p p TH
31 31 32

31
0

11 33
0

21

ρ

τ
γ

ρ Ω ξ τ ρ Ω ξ τ ρ
∂

∂
= −



 + ∆ − ∆



 + −⁎i i i g i f

2
( , ) ( , ) ,

(34)p TH TH p
21 21

21
0

31
0

23

ρ

τ
γ γ

ρ ξ τ ρ ρ ξ τ ρ
∂

∂
= −





+
+ ∆



 + Ω − + Ωi i g i f

2
( , )( ) ( , ) ,

(35)TH TH p
32 31 21

32
0

22 33
0

12

ξ τ
αξ

γ γ
ρ ξ τ∂

∂
=

+
Ω

f i( , ) ( , ),
(36)p

31 32
0 31

ξ τ
βξ

γ γ
ρ ξ τ∂

∂
=

+
Ω

g i( , ) ( , ),
(37)TH

31 21
0 32

where 


α =
ω µ

ε γ γ+

N

c4 ( )
p 31

2

0 31 32
 and β =

ω µ

ε γ γ+

N

c4 ( )
TH 32

2

0 31 21
 denote the propagation coefficients of the infrared probe and  

THz switch pulses, respectively. We further assume that the infrared probe and THz switch pulses are  
assumed as  Gaussian-type pulses  at  ξ  =  0 ,  i .e . ,  ξ τ τ τ= = 

 − − 
f ( 0, ) exp 2( ln2)( 160) / p

2 2  and 
ξ τ τ τ= = − −g( 0, ) exp[ 2( ln2)( 150) / ]s

2 2 . In the following, we solve the coupled Bloch-Maxwell equations 
(30)–(37) by using the iterative predictor-corrector finite-difference time-domain method with the initial condi-
tion that all the electrons start in the ground state |1〉.

We start by reporting in Fig. 6 the temporal evolutions of the normalized probe pulse |f(ξ, τ)|2 at output termi-
nal (ξ ~ Δz) for different frequency detuning of the infrared probe pulse, i.e., Δp = 0, 0.5γ and γ, respectively. This 
is done for two different cases, i.e., without (Ω = 0TH

0 ) and with ( γΩ =TH
0 ) including THz switch pulse. It can be 

easily seen that the time evolution of the infrared probe pulse depends prominently on the THz switch pulse. In 
the absence of the secondary THz switch pulse (i.e., Ω = 0TH

0 ), the obvious absorption can be observed from 
Fig. 6(a) when the transition ↔1 3  is coupled resonantly by the infrared probe pulse (Δp = 0). If the frequency 
detuning Δp is tuned to be off-resonance from the corresponding transition, the absorption of the Gaussian-type 
probe pulse will be suppressed. In presence of the secondary THz switch pulse with γΩ =TH

0 , one can find from 
Fig. 6(b) that the Gaussian-type probe pulse exhibits perfect transmission without absorption when Δp = 0 due to 
the existence of the destructive interference, which agrees with the results shown in Fig. 5(a). These results are 
also similar as the EIT in atomic systems, where destructive interference between two optical absorption paths of 
a probe pulse can be controlled by a cw pump field in Λ-type atoms13–15. However, different from the EIT effect, 
we extend the destructive interference to the pulsed regime, where the destructive interference between the opti-
cal transitions (|1〉 ↔ |3〉 and |2〉 ↔ |3〉) in the present graphene was achieved by controlling the THz switch pulse.

As discussed above, the absorption of the infrared probe pulse can be modulated by the secondary THz pulse. 
Thus we can devise optical switching via choosing an appropriate wave form of THz switch pulse. In the follow-
ing, we will show a representative result for the implement of optical switching by choosing the switch THz pulse 
as a square wave train. Without the loss of generality, the wave form of a THz switch pulse can be given by 

τ τΩ = Ω − . − + . −[1 0 5tanh[4( 60)] 0 5tanh[4( 120)]TH TH
0  − τ τ. − + . −0 5tanh[4( 180)] 0 5tanh[4( 240)]]. 

By numerically solving Eqs (30)–(37), we can finally examine the time evolution of the infrared probe pulse. 
Figure 7 shows that the time evolution of the normalized pulse envelopes of infrared probe pulse in presence of 
the above THz switch pulse for different frequency detuning Δp. One can find that there is a steplike transition 
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between absorption and transparency of the infrared probe pulse. Therefore, the absorption and transparency of 
the infrared pulse can be switched on and off by devising the secondary THz pulse. And this optical switching 
provides an convenient way to controlling time-dependent evolution of infrared probe pulse in graphene with 
Landau quantization. In addition, Fig. 7 also shows that the steplike transition between absorption and transpar-
ency of the infrared probe pulse can be controlled by the frequency detuning Δp. As mentioned in the above 
section, the carrier frequencies of optical transition between adjacent LLs are determined by the external mag-
netic field B. As a result, by suitably varying the magnetic field B, we can realize magnetic-optical modulation for 
such a infrared probe pulse.

Up to now, we have investigated the temporal evolution of infrared probe pulse which depends promi-
nently on the THz switch pulse. Interestingly, the reverse case can also be realized precisely where a THz 
switch pulse controlled by a secondary probe pulse is rendered either opaque or transparent to the present 
graphene system. As an example, we consider in Fig. 8 the reverse case where a infrared probe controls the 
temporal evolutions of the normalized THz switch pulse |g(ξ, τ)|2 for different widths of two pulses (i.e., 
τp = τs = 100 ps and τp = τs = 50 ps) with varying the probe pulse intensity Ω p

0  (i.e., γΩ = .0 1p
0 , γΩ = .0 5p

0 , and 
γΩ =p

0 , respectively). The switch THz pulse can be severely attenuated by the infrared probe pulse, which 
makes the switch THz pulse behave as a signal and the infrared probe pules as a control beam. However, it is 
worth noting that the physics mechanism differs from the case shown in Fig. 6. Here, when the infrared probe 
pulse is weak, the THz switch pulse propagates with completely transparency due to the lack of populations in 
states |2〉 and |3〉. In contrast, when the infrared probe pulse is strong, the THz switch pulse is attenuated 
predominately owing to the induced absorption process whereby one photon from each of two beams is 
absorbed, exciting an electron from state |1〉 to state |3〉. In addition, the time evolution of the THz switch 
pulse is very sensitive to the pulse widths. Direct comparison in Fig. 8(a,b) implies that the narrower spec-
trum makes the attenuation or absorption of THz switch pulse more pronounced, which can be explained 

Figure 6. Snapshots of the temporal evolution of the infrared probe pulse at output terminal (ξ ~ Δz) for 
different cases, i.e., (a) Ω = 0TH

0 , (b) γΩ = .0 5TH
0 . The solid line, dashed line, and dotted line correspond to 

Δp = 0, 0.5γ and γ, respectively. Other parameters are given as B = 3 T, γ31 = γ32 = γ, γ = 3 × 1013 s−1, γ21 = 0.05γ, 
γΩ = .0 05p

0 , ΔTH = 0, τp = 60 ps, τs = 100 ps, ξ τ τ τ= = 
 − − 

f ( 0, ) exp 2( ln2)( 160) / p
2 2  and 

ξ τ τ τ= = − −g( 0, ) exp[ 2( ln2)( 150) / ]s
2 2 .

Figure 7. Time evolution of the infrared probe pulse (solid line) at output terminal ξ ~ Δz driven by a  
THz switch pulse with wave form τ τΩ = Ω − . − + . −[1 0 5tanh[4( 60)] 0 5tanh[4( 120)]TH TH

0  − 0.5 tanh 
τ τ− + . −[4( 180)] 0 5tanh[4( 240)]] for different frequency detuning Δp: (a) Δp = 0; (b) Δp = 0.5γ. Other 

parameters are f(ξ = 0, τ) = 1, B = 3 T, γ31 = γ32 = γ, γ = 3 × 1013 s−1, γ21 = 0.05γ, γΩ = .0 05p
0 , ΔTH = 0, and 

γΩ =TH
0 , respectively.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 7: 2513  | DOI:10.1038/s41598-017-02740-x

using the time-dependent perturbation theory34. As done in Fig. 7, we show in Fig. 9 that the time evolution 
of the normalized pulse envelopes of THz switch pulse by choosing the wave form of a probe pulse as 

τ τΩ = Ω − . − + . −[1 0 5tanh[4( 60)] 0 5tanh[4( 120)]p p
0  −  τ τ. − + . −0 5tanh[4( 180)] 0 5tanh[4( 240)]]. 

One can find that there is also a steplike transition between absorption and transparency of the THz pulse. In 
other words, the absorption and transparency of the THz pulse can be controlled by devising the secondary 
infrared pulse, which provides an convenient way to controlling time-dependent evolution of THz pulse in 
graphene with Landau quantization.

Conclusion
In conclusion, we have investigated in detail the dynamics control of two coherent pulses, an infrared probe 
and a terahertz (THz) switch pulses, in monolayer graphene where the destructive interference may take place 
and be easily tuned. We analyze the physics mechanism of this destructive interference indcued by one of the 
two pulses in graphene under Landau quantization in a time-dependent way via the Bloch-Maxwell formalism. 
Based on this analysis, we find that the graphene system can be completely transparent to the infrared probe 
pulse when such an interference induced by the switch pulse take places. In the absence of the switch pulse, the 
infrared probe pulse can pass through the monolayer graphene with partial transparency. In the presence of the 
switch pulse, the absorption can be modulated from optimizing the destructive interference by varying the inten-
sity of switch pulse and frequency detuning of the infrared probe pulse. In addition, we provide a clear physics 
insight of optimizing destructive interference by using the classical dressed-state theory. Conversely, the present 
graphene system may be rendered either absorbing or transparent to the THz switch pulse. By choosing the 
appropriate wave form of the pulses, we have demonstrated that both infrared probe and THz switch pulses can 
exhibit the steplike transitions between absorption and transparency. The present results illustrated the potential 
to utilize destructive interference to realize the time-dependent control for either signal or control with distinct 
wave-lengths which may turn out to be useful in designing quantum interference-based solid-state devices for 
optical communications.

Figure 8. Snapshots of the temporal evolution of the switch THz pulse output terminal (ξ ~ Δz) for different 
cases, i.e., (a) τp = τs = 100 ps; (b) τp = τs = 50 ps. The solid line, dashed line, and dotted line correspond to 

γΩ = .0 1p
0 , γΩ = .0 5p

0 , and γΩ =p
0 , respectively. Other parameters are given as B = 3 T, γ31 = γ32 = γ, 

γ = 3 × 1013 s−1, γ21 = 0.05γ, γΩ = .0 005TH
0 , Δp = ΔTH = 0, ξ τ τ τ= = 

 − − 
f ( 0, ) exp 2( ln2)( 160) / p

2 2  and 
ξ τ τ τ= = − −g( 0, ) exp[ 2( ln2)( 150) / ]s

2 2 .

Figure 9. Time evolution of the THz pulse (solid line) at the penetration depth ξ = 10/β in the sample driven by 
an infrared probe pulse with wave form τ τΩ = Ω − . − + . −[1 0 5tanh[4( 60)] 0 5tanh[4( 120)]p p

0  − 0.5 tanh 
τ τ− + . −[4( 180)] 0 5tanh[4( 240)]] for different Ω p

0 : (a) γΩ = .0 5p
0 ; (b) γΩ =p

0 . Other parameters are 
g(ξ = 0, τ) = 1, B = 3 T, γ31 = γ32 = γ, γ = 3 × 1013 s−1, γ21 = 0.05γ, γΩ = .0 005TH

0 , and Δp = ΔTH = 0, respectively.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7: 2513  | DOI:10.1038/s41598-017-02740-x

References
 1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 

81, 109 (2009).
 2. Sadowski, M. L., Martinez, G., Potemski, M., Berger, C. & de Heer, W. A. Landau level spectroscopy of ultrathin graphite layers. Phys. 

Rev. Lett. 97, 266405 (2006).
 3. Yao, X. H. & Belyanin, A. Giant optical nonlinearity of graphene in a strong magnetic field. Phys. Rev. Lett. 108, 255503 (2012).
 4. Plochocka, P. et al. Slowing hot-carrier relaxation in graphene using a magnetic field. Phys. Rev. B  80, 245415 (2009).
 5. Mittendorff, M. et al. Carrier dynamics in Landau-quantized graphene featuring strong Auger scattering. Nat. Phys. 11, 75–81 

(2015).
 6. Mittendorff, M. et al. Intraband carrier dynamics in Landau-quantized multilayer epitaxial graphene. New. J. Phys. 16, 123021 

(2014).
 7. Wendler, F., Knorr, A. & Malic, E. Ultrafast carrier dynamics in Landau-quantized graphene. Nanophotonics 4, 224–249 (2015).
 8. Funk, H., Knorr, A., Wendler, F. & Malic, E. Microscopic view on Landau level broadening mechanisms in graphene. Phys. Rev. B 92, 

205428 (2015).
 9. Liu, S. P., Yang, W. X., Zhu, Z. H. & Lee, R. K. Effective terahertz signal detection via electromagnetically induced transparency in 

graphene. J. Opt. Soc. Am. B 33, 279 (2016).
 10. Liu, S. P., Yang, W. X., Zhu, Z., Liu, S. S. & Lee, R.-K. Effective hyper-Raman scattering via inhibiting electromagnetically induced 

transparency in monolayer graphene under an external magnetic field. Opt. Lett. 41, 2891 (2016).
 11. Tokman, M., Yao, X. H. & Belyanin, A. Generation of entangled photons in graphene in a strong magnetic field. Phys. Rev. Lett. 110, 

077404 (2013).
 12. Yao, X. H. & Belyanin, A. Nonlinear optics of graphene in a strong magnetic field. J. Phys.: Condens. Matter 25, 054203 (2013).
 13. Boller, K. J., Imamoglu, A. & Harris, S. E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991).
 14. Lukin, M. D. Colloquium: Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457 (2003).
 15. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. 

Phys. 77, 633 (2005).
 16. Si, L. G., Lü, X. Y., Hao, X. & Li, J. H. Dynamical control of solitons formation and propagation in a Y-type atomic system with dual 

ladder-type electromagnetically induced transparency. J. Phys. B: At. Mol. Opt. Phys. 43, 065403 (2010).
 17. Si, L. G., Liu, J. B., Lü, X. Y. & Yang, X. Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman 

excitation. J. Phys. B: At. Mol. Opt. Phys. 41, 215504 (2008).
 18. Xiong, H. et al. Solutions of the cylindrical nonlinear Maxwell equations. Phys. Rev. E 85, 016602 (2012).
 19. Yang, W. X., Chen, A. X., Lee, R. K. & Wu, Y. Matched slow optical soliton pairs via biexciton coherence in semiconductor quantum 

dot. Phys. Rev. A 84, 013835 (2011).
 20. Yang, W. X., Hou, J. M. & Lee, R.-K. Ultraslow bright and dark solitons in semiconductor quantum wells. Phys. Rev. A 77, 033838 

(2008).
 21. Xiong, H., Si, L. G., Yang, X. X. & Wu, Y. Asymmetric optical transmission in an optomechanical array. App. Phys. Lett. 107, 091116 

(2015).
 22. Xiong, H., Si, L. G., Lü, X. Y., Yang, X. & Wu, Y. Carrier-envelope phase-dependent effect of high-order sideband generation in 

ultrafast driven optomechanical system. Opt. Lett. 38, 353 (2013).
 23. Yang, W. X., Chen, A. X., Huang, Z. W. & Lee, R. K. Ultrafast optical switching in quantum dot-metallic nanoparticle hybrid systems. 

Opt. Express 23, 13032 (2015).
 24. Yang, W. X. High-order harmonics in a quantum dot and metallic nanorod complex. Opt. Lett. 40, 4903 (2015).
 25. Yang, W. X., Xie, X. T., Chen, A. X., Huang, Z. & Lee, R. K. Coherent control of high-order-harmonic generation via tunable 

plasmonic bichromatic near fields in a metal nanoparticle. Phys. Rev. A 93, 053806 (2016).
 26. Wu, Y., Payne, M. G., Hageley, E. W. & Deng, L. Preparation of multiparty entangled states using pairwise perfectly efficient single-

probe photon four-wave mixing. Phys. Rev. A 69, 063803 (2004).
 27. Wu, Y., Payne, M. G., Hageley, E. W. & Deng, L. Ultraviolet single-photons on demand and entanglement of photons with a large 

frequency difference. Phys. Rev. A 70, 063812 (2004).
 28. Liu, S. P. et al. Enhanced four-wave mixing efficiency in four-subband semiconductor quantum wells via Fano-type interference. 

Opt. Express 22, 29179 (2014).
 29. Xiong, H., Si, L. G., Lü, X. Y. & Wu, Y. Optomechanically induced sum sideband generation. Opt. Express 24, 5773 (2016).
 30. Lü, X. Y. et al. Squeezed optomechanics with phase-matched amplification and dissipation. Phys. Rev. Lett. 114, 093602 (2015).
 31. Yang, W. X., Liu, S. P., Zhu, Z., Ziauddin & Lee, R. K. Tunneling-induced giant Goos-Hanchen shift in quantum wells. Opt. Lett. 40, 

3133 (2015).
 32. Ding, C. L., Yu, R., Li, J. H., Hao, X. Y. & Wu, Y. Matched infrared soliton pairs in graphene under Landau quantization via four-wave 

mixing. Phys. Rev. A 90, 043819 (2014).
 33. Jiang, Z. et al. Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 98, 197403 (2007).
 34. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge, New York, 1997).

Acknowledgements
The research is supported in part by National Natural Science Foundation of China under Grant Nos 11374050 
and 61372102, by Natural Science Foundation of Jiangsu Province under Grant No. BK20161410 and Qing Lan 
project of Jiangsu, as well as by the Scientific Research Foundation of Graduate School of Southeast University 
No. YBJJ1522.

Author Contributions
W.-X.Y. conceived the idea, supervised S.P.L. and S.S.L. and checked the numerical simulations. W.-X.Y. 
systematically performed the computations, the numerical simulations and wrote the most of the paper. A.X.C. 
and X.T.X. discussed and checked the computational results.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 



www.nature.com/scientificreports/

1 2Scientific RepoRts | 7: 2513  | DOI:10.1038/s41598-017-02740-x

Creative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Dynamic control of coherent pulses via destructive interference in graphene under Landau quantization
	The theoretical model and basic equations
	Results and Discussion
	Conclusion
	Acknowledgements
	Figure 1 The geometry of the proposed scheme.
	Figure 2 (a) Landau levels (LLs) near the Dirac point superimposed on the linear electron dispersion without the magnetic field .
	Figure 3 The transition frequencies in the three-level graphene system shown in Fig.
	Figure 4 Contour maps of the absorption as a function of the probe frequency and the magnetic field intensity B.
	Figure 5 (a) The absorption coefficient as a function of the frequency frequency Δp (THz) with γ31 = γ32 = γ for different values of , i.
	Figure 6 Snapshots of the temporal evolution of the infrared probe pulse at output terminal (ξ ~ Δz) for different cases, i.
	Figure 7 Time evolution of the infrared probe pulse (solid line) at output terminal ξ ~ Δz driven by a THz switch pulse with wave form − 0.
	Figure 8 Snapshots of the temporal evolution of the switch THz pulse output terminal (ξ ~ Δz) for different cases, i.
	Figure 9 Time evolution of the THz pulse (solid line) at the penetration depth ξ = 10/β in the sample driven by an infrared probe pulse with wave form − 0.




