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Atomic layer etching of graphene 
through controlled ion beam for 
graphene-based electronics
Ki Seok Kim1, You Jin Ji1, Yeonsig Nam3, Ki Hyun Kim1, Eric Singh1,4, Jin Yong Lee3 & Geun 
Young Yeom1,2

The electronic and optical properties of graphene are greatly dependent on the the number of layers. 
For the precise control of the graphene layers, atomic layer etching (ALE), a cyclic etching method 
achieved through chemical adsorption and physical desorption, can be the most powerful technique 
due to barely no damage and no contamination. In this study, we demonstrated the ALE process of 
graphene layers without noticeably damaging the graphene by using a controlled low energy oxygen 
(O2

+/O+)-ion for chemical adsorption and a low energy Ar+-ion (11.2 eV) for physical desorption. In 
addition, using a trilayer graphene, mono- and bi-layer graphene could be successfully fabricated 
after one- and two-cycle ALE of the trilayer graphene, respectively. We believe that the ALE technique 
presented herein can be applicable to all layered materials such as graphene, black phosphorous and 
transition metal dichalcogenides which are important for next generation electronic devices.

Graphene has attracted considerable attention due to their unique properties including very high electron mobil-
ity, extremely high mechanical strength, superior thermal conductivity, and high chemical stability1–4. Especially, 
its electronic and optical properties greatly depend on the number of layers in graphene5–9. Accordingly, the 
accurate control of the number of layers is the most important technology in various of graphene-based device 
applications.

To control the layers of graphene, researchers have investigated various methods such as oxidation etching 
in a tube furnace10, Joule heating11, laser thinning12, 13, plasma etching using helum, nitrogen and oxygen14–18. 
However, these techniques can be difficult to achieve precise control of graphene layers at the atomic layer scale 
because the removal rate of graphene layers depends only on etch time. Also, for some methods, it is even difficult 
to remove the graphene layers without inducing damage and contamination to the surface.

Precise control of graphene layers by layer-by-layer removal has been reported by Dimiev et al.19 by the deposi-
tion of Zn on a photoresist patterned graphene surface, lift-off Zn on photoresist, and by the removal of patterned 
Zn on graphene surface with one graphene layer using HCl. Even though this method can remove graphene lay-
ers layer-by-layer precisely without damaging the graphene layer surface, it may not be applicable for nanoscale 
electronic device fabrication due to the requirement of a lift-off process used for patterning Zn on the graphene 
surface. Atomic layer etching (ALE), a cyclic etch method composed of chemical adsorption and physical desorp-
tion of the sequential steps, is also one of the techniques that have good potential in precisely removing graphene 
layer-by-layer without inducing damage and contamination. In addition, it is applicable for the nanoscale device 
fabrication because it removes graphene layers after photoresist patterning using coventional patterning methods.

In this research, layer-by-layer removal of graphene using ALE process using an ion beam has been investi-
gated for the various next generation nanoscale graphene electronic devices. Using an optimized ALE process 
composed of a controllable low energy oxygen(O2

+/O+)-ion for chemical adsorption and a low energy Ar+-ion 
beam for physical desorption, we were able to achieve a precise control of graphene layers without damage on the 
bottom graphene layer. Especially, for the photoresist patterned graphene or the chemical vapor deposited (CVD) 
graphene transferred from the Cu using Poly(methyl methacrylate)(PMMA), a thin polymer residue is remaining 
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on the graphene surface even after the removal of the photoresist/PMMA. Using the low energy Ar+-ion, the 
polymer residue layer could be also completely removed in this study before the ALE process without damaging 
the graphene surface20, 21.

Methods
Preparation of layered graphene. Graphene was synthesized by a CVD method on Cu. After the 
graphene synthesis, the Cu foil was cut into pieces, coated with PMMA (Microchem 950 C), and immersed into 
a FeCl3 solution in order to etch away the Cu foil. When the Cu foil was completely removed, the graphene layer 
on PMMA was rinsed in deionized water to wash away etchant residues. Then, the PMMA-coated graphene layer 
was transferred onto a 300-nm-thick SiO2/Si wafer. PMMA on the SiO2/Si wafer was removed using acetone and 
a very thin PMMA residue remaining on the graphene surface was completely removed using a low energy Ar+-
ion cleaning without damage to graphene bonding as described elsewhere21. For a bi- and tri-layer graphene, the 
above method was repeated two and three times, respectively, to obtain clean graphene layers on a 300-nm-thick 
SiO2/Si wafer.

ALE equipment and process. The schematic diagram of a two-grid (4inch-diameter) inductively coupled 
plasma (ICP)-type ion beam system with axial magnetic field used for the layer-by-layer removal of graphene, 
that is, for graphene ALE and a quadrupole mass spectrometer (QMS) installed for the measuremet of ion energy 
and flux of the ion beam is shown in Fig. 1.

To obtain a low energy oxygen(O2
+/O+)-ion and a low energy Ar+-ion beam, the 1st grid of the ion beam 

source was floated without applying any voltage while the 2nd grid was grounded. The details of the ion beam 
system can be found elsewhere21. In some cases, an axial magnetic field of 30 Gauss was applied in front of the 1st 
grid to decrease the ion beam energy. To measure the ion energy distribution on the graphene surface distribution 
at various ion beam conditions such as different radio frequency (rf) powers and gas flow rates to the ion source 
and with/without axial magnetic field, a mass spectrometer was installed at the substrate location. As a result of 
this analysis, the following processes were used as the optimized ALE cyclic steps; for chemical adsorption step, 
an oxygen-ion beam generated with 100 sccm of O2, 15 W of rf power, and with axial magnetic field of 30 Gauss 
for 90 s and, for the physical desorption step, an Ar+-ion beam generated with 100 sccm of Ar and 500 W of rf 
power for 120 s.

Simulation: graphene binding energy calculation. To investigate the graphene ALE mechanism by the 
chemical adsorption of oxygen and physical desorption by Ar ion bombardment, a computational simulation on 
the change of binding energies between carbon atoms on graphene before and after the oxygen adsorption was 
performed using Vienna Ab Initio Simulation Package (VASP)22. We performed density functional theory (DFT) 
calculation with a local-density approximations (LDA)23 and the projector-augmented wave (PAW)24 method. A 
7 × 7 × 1 grid for k-point25 sampling and the energy cut-off of 400 eV were consistently used in our calculations. 
The convergence threshold for energy was set to 10−5 eV.

The lattice constant of graphene unit cell was calculated to be 2.45 Å after relaxation. Then, geometry opti-
mization was carried out on the 3 × 3 × 1 supercell structure. To describe the bilayer graphene, two-dimensional 
periodic boundary conditions were used along the growth direction with vacuum space of at least 10 Å to avoid 
additional interaction between the layers. For the bilayer graphene structure, both A-A stacking and A-B stacking 
structure were considered (Figure S1, Supplementary Information).

Figure 1. Schematic diagram. A two-grid ICP-type ion beam system with axial magnetic field used for 
graphene ALE and a quadrupole mass spectrometer for ion energy/flux measurement of the ion beam.
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The binding energy of an atom (EB) was calculated by EB = (Etot − Esub − ES − EvdW)/n, where Etot, Esub, ES, and 
EvdW stand for the electronic energy of the entire system, the system after removing the target atom, the tar-
get atom, van der Waals interaction, respectively, and n stands for the number of atoms bonded to the target 
atom. Here, the van der Waals interaction energy between the target atom and adjacent layer was calculated by 
EvdW = (ES+AL − EAL − ES), where, ES+AL and EAL stand for the electronic energy of the system (adjacent layer and 
the target atom are held together) and the energy of the adjacent layer, respectively.

Characteriation. Graphene surface was examined with Raman spectroscopy (WITEC Alpha 300 M+) at a 
wavelength of 532 nm and atomic force microscopy (AFM, Dimension 3100, Veeco). Optical transmittance of the 
graphene layers was measured by Ultraviolet-visible-near infrared (UV-Vis-NIR) absorption spectroscopy. For 
optical trasmittance, the trilayer graphene was deposited on glass substrates.

Results and Discussion
Ion energy distribution. Figure 2 shows the ion energies and fluxes of the O2

+-(the intensity of O+ ion was 
much smaller than that of O2

+ as shown in Figure S2, Supplementary Information, therefore, we used the O2
+ 

only for the oxygen-ion energy analysis) and Ar+-ions extracted from the ion source for the operation of sequen-
tial steps of ALE composed of chemical adsorption by O2

+-ion and physical desorption by Ar+-ion. The 1st and 
2 nd grid voltages of the ion gun were floated and grouned, respectively, for low ion energy operation and the rf 
power or gas flow rates were varied. Figure 2a–c show the O2

+-ion energy distribution measured for different rf 
powers at 100 sccm of O2 gas flow rate, the Ar+-ion energy distribution for different rf powers at 70 sccm of Ar 
gas flow rate, and the Ar+-ion energy distribution for different Ar flow rates at 500 W of rf power, respectively. 

Figure 2. O2
+-ion/Ar+-ion energy distribution. Ion energy distribution of the ion source for (a) different rf 

powers at 100 sccm of O2 gas flow rate, (b) different rf powers at 70 sccm of Ar gas flow rate, and (c) different 
Ar flow rates at 500 W of rf power measured by an ion energy analyzer in the QMS. (d,e and f) are the peak ion 
energies and fluxes for their O2

+-ion/Ar+-ion energy distributions.
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As shown in Fig. 2a, the O2
+-ion energy was spread over a wide range with dual peaks and the decrease of rf 

power from 100 to 15 W decreased the ion energy. When an axial magnetic field of 30 G was applied to the ion 
source during the operation at 15 W, the energy was further decreased while having the energy distribution in the 
range from 0 to 20 eV. Figure 2d shows the peak ion energy and flux of the O2

+-ions in Fig. 2a. The ion flux was 
increased with the increase of peak ion energy. The characteristics of O2

+-ion energy distribution showing dual 
ion energy peaks, the increase of ion energy and flux with the rf power suggest the characteristics of capactively 
coupled plasma (CCP) for oxygen plasma not ICP possibly due to low electron density for oxygen plasmas. To 
use a low energy oxygen-ion for chemical adsorption step, we used the condition of 15 W of rf power with 30 G 
of magnetic field at 100 sccm of O2 gas flow rate. In the case of Ar+-ion, as shown in Fig. 2b, the ion energy dis-
tribution was a gaussian type with one peak and the increase of rf power from 70 to 500 W decreased the peak 
ion energy from 49.7 to 14.1 eV. As shown in Fig. 2e, in the case of Ar+-ion, the increase of rf power decreased 
ion flux to the substrate. The differences between Fig. 2a,b,d,e are believed to be originated from the different 
operation modes of the ion source, where, an ICP mode is operating for the Ar plasma due to higher electron 
density while a CCP mode is operating for the oxygen plasma due to lower electron density because oxygen has 
a high electron affinity while Ar has no electron affinity. When Ar gas flow rate was increasd from 70 to 100 sccm 
during the operation of the ion source at 500 W, as shown in Fig. 2c, the ion energy was further decreased from 
14.1 to 11.2 eV even though the flux to the substrate was decreased together as shown in Fig. 2f. Not to damage 
the graphene surface during the physical desorption step of ALE, a lower Ar+-ion energy may be required but, for 
the physical desorption of chemisorbed species, a sufficient Ar+-ion energy is required. Therefore, to investigate 
the optimized Ar energy condition for the phyiscal desorption of graphene ALE, we etched the graphene surface 
with the condition in Fig. 2c, that is, with the Ar+-ion energy in the range from 11.2 to 14.1 eV.

Raman spectra of monolayer grapehene at various process conditions. Figure 3a shows the 
Raman spectra of the monolayer graphene after exposure for different time to an optimized chemical adsorption 
condition of 15 W of rf power with 30 G of magnetic field and at 100 sccm of O2 gas flow rate. For comparison, 
the Raman spectrum of a pristine monolayer graphene was included. The Raman spectra were normalized by G 
peak at 1580 cm−1 to compare the intensity of D peak and 2D peak accurately. As shown in Fig. 3a, the increase of 
chemisorption time from 0 to 90 s increased the defect (D) peak at about 1335 cm−1 and decreased the 2D peak 
at about 2675 cm−1, however, the further increase of adsorption time to 120 s did not change the peak intensities. 
The increase of D peak and the decrease of 2D peak with the increase of oxygen-ion adsorption time is believed 
to related to the oxygen chemisorption on the monolayer graphene network and no further change of D and 2D 
peak intensities after 90 s suggests the saturation of oxygen chemisorption on the monolayer graphene surface. 
No change of 2D peak intensity after 90 s also reveals the existence of stable graphene structure up to exposure 
to 120 s26, 27. Figure 3b shows the Raman spectra of the monolayer graphene after exposure to different Ar+-ion 
energies from 11.2 to 14.1 eV in Fig. 2c. Because the ion flux was varied with Ar+-ion energy as shown in Fig. 2f, 
the similar dose was maintained by decreasing the exposure time at high energies; that is, 120 s for 11.2 eV, 46 s 
for 12.5 eV, 20 s for 13.55 eV, and 8 s for 14.1 eV. As shown in Fig. 3b, for the exposure of monolayer graphene to 
the 11.2 eV Ar+-ion, very small increase or no significant change (because some pristine graphene samples also 
contain a small D peak) of D peak was observed while the increase of Ar+-ion energy signficantly increased the 
D peak intensity while decreasing the 2D peak intensity indicating significant damage to the graphene surface 
with increasing the Ar+-ion energy. As the results of Fig. 3a,b, for graphene ALE, the chemical exposure time of 
O2

+-ion was optimized at 90 s and the Ar+-ion desorption energy at 11.2 eV.

Raman spectra of monolayer graphene by optimized one ALE cycle. A pristine monolayer 
graphene was sequentially exposed using the optimized conditions of the chemical adsorption using oxygen 
(O2

+/O+)-ion (15 W with axial magnetic field of 30 Gauss and 100 sccm of O2 for 90 s) and the physical desorption 

Figure 3. Raman spectra of monolayer graphene to different oxygen-ion adsorption time and Ar+-ion 
energies. (a) Monolayer graphene after exposure to an optimize the oxygen-ion condition for different chemical 
adsorption time and (b) monolayer graphene after exposure to different Ar+-ion energies. For comparision, 
Raman spectrum of pristine monolayer graphene was included.
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using Ar+-ion (500 W and 100 sccm of Ar for 120 s) and the results are shown in Fig. 4. Through one cyle of ALE 
composed of a chemical adsorption step exposing to the oxygen-ion beam and a sequantial physical desorption 
step exposing to the Ar+-ion beam, one monolayer graphene could be completely removed indicating successful 
ALE process for graphene.

Raman spectroscopic data of bilayer graphene during each step of one ALE cycle. Using 
a pristine bilayer graphene, one cycle of graphene ALE was processed and the Raman data of the processed 
bilayer graphene during each step of one ALE cycle are shown in Fig. 5a. Raman spectrum of the pristine bilayer 
graphene is also shown. As shown, after 90 s expsoure to the the optimized oxygen-ion for chemical adsorp-
tion, the D peak intensity was increased while the 2D peak intensity was decreased as before. After that, the 
chemisorbed bilayer graphene was exposed to the optimized Ar+-ion for 60, 90, 120 (one monolayer etch con-
dition), and 150 s (overetch condition). As shown in Fig. 5a, with increasing the Ar+-ion exposure time to 120 s, 
the D peak intensity was decreased significantly near to zero due to the removal of the top chemically modified 
graphene layer on the bilayer graphene while increasing the 2D peak intensity due to the formation of monolayer 
graphene from bilayer graphene. The increase of Ar+-ion desorption time further to 150 s after the removal of 
one monolayer graphene on bilayer graphene did not change the Raman peak intensities indicating no damage or 
change of graphene structure exposed after the ALE.

The shift of the 2D peak position for the bilayer graphene was investigated after the oxygen-ion chemisorp-
tion for 90 s and after the following Ar+-ion exposure time from 60 to 150 s, and the results are shown in Fig. 5b. 
For the prisitine bilayer graphene, the 2D peak was located at 2679 cm−1, however, after the 90 s exposure to 
the oxygen-ion during the chemisorption step, the peak position was red shifted to 2675 cm−1. The exposure 
to the Ar+-ion for the desorption of C-O chemisorbed species to 90 s further red shifted the 2D peak to 2668 
and 2657 cm−1 for 60 s and 90 s, respectively. The red shift of 2D peak after the exposure to the oxygen-ion and 
Ar+-ion is believed to be related to the strain of C-C bonding in the low binding energy C-C structure of the top 
graphene layer by the C-O bonding and Ar ion bombardment28, 29. However, as the top graphene layer is removed 
and as the second graphene layer is exposed by the Ar+-ion exposure for 120 s, the 2D peak position was recov-
ered similar to that of the pristine bilayer graphene. The 2D peak position after Ar+-ion exposure of 120 s was 
about 4 cm−1 lower than that of pristine bilayer graphene because the graphene layer changed from a bilayer to 
monolayer as seen in Fig. 5a29, 30. When the Ar+-ion exposure time was further increased to 150 s, no change of 
2D peak position was also observed. In addition, as the graphene layer is decreased from bilayer to monolayer by 
the Ar+-ion exposure, the full width at half maximum (FWHM) of the G and 2D peaks was decreased after the 
formation of monolayer graphene after the Ar+-ion exposure of 120 s and the further increase of the exposure 
time to 150 s did not change the FWHM, either. The FWHM of the G and 2D peaks of pristine bilayer graphene 
after one cycle ALE decreased from 22 to 18 cm−1 and from 48 to 28 cm−1, respectively (as shown in Fig. 5a). The 
FWHM values according to the number of graphene layers are similar to those of the previous studies26, 27, 31.

Figure 5c,d show the peak intensity ratios of D/G and 2D/G, respectively, measured from the peak intensity 
data in Fig. 5a. The intensity ratio of D/G, that is, I(D/G) in Fig. 5c not only shows the degree of defect in the 
graphene structure but also shows the degree of chemisorption of graphene layer by oxygen-ion. The I(D/G) 
was increased from 0.11 (pristine) to 1.102 by the chemical adsorption of oxygen-ion on the graphene surface, 
however, after the Ar+-ion exposure of 60, 90, and 120 s, the I(D/G) was decreased to 0.437, 0.285, and 0.130, 
respectively. Especially, the I(D/G) for the Ar+-ion exposure of 120 s was similar to that of the pristine graphene 
indicating the removal of chemically modified top graphene layer. Even after Ar+-ion exposure for 150 s, I(D/G) 
was 0.131, indicating no change in D peak (that is, no increase of damage) by the overexposure by Ar+-ion possi-
bly due to a low energy Ar+-ion beam (11.2 eV). In the case of I(2D/G) in Fig. 5d, it shows the number of graphene 
layers in the graphene sample. As shown, when the pristine bilayer graphene was adsorbed by oxygen-ion during 
the chemisorption step, the I(2D/G) was changed from 1.094 (pristine bilayer) to 1.035, therefore, no significant 

Figure 4. Raman spectra of pristine monolayer graphene by optimized oxygen-ion adsorption step and Ar+-
ion desorption step. The monol ayer graphene chemically adsorbed with the optimized oxygen-ion for 90 s, and 
the chemisorbed monolayer graphene sequentially exposed to the optimized Ar+-ion for physical desorption 
for 120 s and which resulted in complete etching of one monolayer graphene.



www.nature.com/scientificreports/

6Scientific RepoRts | 7: 2462  | DOI:10.1038/s41598-017-02430-8

change was observed signifying the maintenance of bilayer graphene even after the chemisorption by oxygen-ion. 
However, after the exposure to the Ar+-ion for 60, 90, and 120 s, the I(2D/G) was increased to 1.310, 1.515, 
and 1.773 showing the formation of monolayer graphene by the removal of top graphene layer26, 27. In addition, 
I(2D/G) after Ar+-ion desorption further to 150 s did not change the I(2D/G) which shows that the ALE process 
(that is, one monolayer removal) was completed at Ar+-ion exposure time of 120 s.

The layer-by-layer removal of graphene by the optimized ALE cyclic steps (for chemical adsorption step, an 
oxygen-ion beam generated with 100 sccm of O2, 15 W of rf power, and with axial magnetic field of 30 Gauss for 
90 s and, for the physical desorption step, an Ar+-ion beam generated with 100 sccm of Ar and 500 W of rf power 
for 120 s) could also confirmed by etching trilayer graphene and, by observing the change of the optical transmit-
tance at 550 nm. After one, two, and three cycles of ALE using trilayer graphene, the optical transmittance of the 
etched graphene at 550 nm increased to 94.7, 97.2, and 99.7%, respectively, indicating the formation of bilayer, 
monolayer, and no layer, therefore, one monolayer removal for one cycle ALE could be confirmed (Figure S3, 
Supplementary Inforamtion). The selective removal of the chemisorbed top graphene layer only for a bilayer 
graphene by a low energy ion bombardment could be also expected by the simulation which showed the signifi-
cant decrease of carbon binding energy in the top graphene layer by the oxygen-ion adsorption while no signif-
icant change of binding energy was measured for the carbon bonding in the bottom graphene layer (Figure S4, 
Supplementary Information).

Surface morphologies and Raman spectroscopic data of the same sample before and after one 
cycle ALE. Figure 6 shows the surface morphologies and Raman spectroscopic data of the same sample before 
and after one cycle ALE of the pristine bilayer graphene. Figure 6a,b are the optical images showing the changes 
after one cycle ALE. Figure 6c,d show that the thickness of pristine bilayer graphene decreased from ~1.45 to 
~0.72 nm after one cycle ALE by AFM images for the position denoted by the yellow square in Fig. 6a,b. At the 
same time, the rms roughness values before and after one cycle ALE showed ~0.41 and ~0.43 nm, respectively, 
indicating that one graphene layer was uniformly removed. Figure 6e shows Raman spectroscopic data of pris-
tine bilayer graphene before and after one cycle ALE for the positions denoted by 1~12 in Fig. 6a,b. The average 
I(D/G) was almost unchanged from ~0.11 to ~0.13 after one cycle ALE in the pristine bilayer graphene, and the 
average I(2D/G) was increased from ~1.08 to ~1.78. At the same time, the average FWHM of the G and 2D peaks 
decreased from ~48.5 to ~27.8 cm−1 and from ~22.4 to ~17.6 cm−1, respectively, and the G and 2D peaks were red 

Figure 5. Raman spectroscopic data of bilayer graphene after each step in one cycle of graphene ALE. (a) 
Raman spectra of bilayer graphene after each step in one cycle of graphene ALE. Different time of Ar+-ion 
desorption was conducted after the chemical adsorption of the oxygen (O2

+/O+)-ion for 90 s. (b) The shift of 
2D peak of Raman spectra after oxygen-ion adsorption and after the following Ar+-ion desorption for different 
time. (c and d) are the change of the peak intensity ratio of D/G and 2D/G of the bilayer graphene Raman 
spectra in (a), respectively.
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shifted from 2679 to 2675 cm−1. These results show that the atomic layer etching technique can remove graphene 
one layer uniformly over a large area without causing noticeable damage to the graphene surface.

Conclusions
To precisely control the graphene layers without inducing damage, we introduced a graphene ALE process, a 
cyclic etch process composed of chemical adsorption by a low energy oxygen (O2

+/O+)-ion (0~20 eV) and fol-
lowed physical desorption of the chemisorbed species by a low energy Ar+-ion beam (11.2 eV). By using the 
optimized chemical adsorption of oxygen-ion on the pristine graphene surface and the optimized physical des-
orption using Ar+-ion for the graphene ALE process, exactly one monolayer of graphene could be removed per 

Figure 6. Comparision of bilayer graphene at the same position after one cycle ALE. (a and b) Optical images 
of the pristine bilayer graphene before and after one cycle ALE, respectively. (c and d) AFM images of the same 
sample before and after one cycle ALE, respectively, for the position denoted by the yelloew square in (a) and 
(b). (e) Change of the Raman spectroscopic data of the pristine bilayer graphene after one cycle ALE for the 
positions of 1~12 in (a and b).
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one etch cycle without damaging the graphene surface exposed after the ALE process. Therefore, the graphene 
layers of the multilayer graphene could be precisely controlled by the number of ALE cycles. One monolayer 
graphene removal by one graphene ALE cycle could be confirmed not only by the Raman data (after one cyle ALE 
of bilayer graphene, the intensity ratio of 2D/G increased from ~1.1 to ~1.8 indicating the formation of monolayer 
graphene after one cycle of ALE of bilayer graphene) but also by measuring optical transmittance of the etched 
graphene layers (decrease of 2.5% of optical transmittance at 550 nm per one cycle ALE). The comparison of AFM 
images and Raman spectroscopic data of the bilayer graphene before and after the ALE showed uniform thickness 
control without noticeable damage on the etched graphene surface. We believe that this ALE technique can be 
very useful not only for next generation graphene-based nanoelectronic devices but also for other nanoelectronic 
devices based on 2D materials requring the precise layer control.
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