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CarcinoPred-EL: Novel models 
for predicting the carcinogenicity 
of chemicals using molecular 
fingerprints and ensemble learning 
methods
Li Zhang1,2, Haixin Ai1,2,3, Wen Chen4, Zimo Yin4, Huan Hu1, Junfeng Zhu1, Jian Zhao1, Qi 
Zhao2,5 & Hongsheng Liu1,2,3

Carcinogenicity refers to a highly toxic end point of certain chemicals, and has become an 
important issue in the drug development process. In this study, three novel ensemble classification 
models, namely Ensemble SVM, Ensemble RF, and Ensemble XGBoost, were developed to predict 
carcinogenicity of chemicals using seven types of molecular fingerprints and three machine learning 
methods based on a dataset containing 1003 diverse compounds with rat carcinogenicity. Among these 
three models, Ensemble XGBoost is found to be the best, giving an average accuracy of 70.1 ± 2.9%, 
sensitivity of 67.0 ± 5.0%, and specificity of 73.1 ± 4.4% in five-fold cross-validation and an accuracy 
of 70.0%, sensitivity of 65.2%, and specificity of 76.5% in external validation. In comparison with 
some recent methods, the ensemble models outperform some machine learning-based approaches 
and yield equal accuracy and higher specificity but lower sensitivity than rule-based expert systems. 
It is also found that the ensemble models could be further improved if more data were available. As 
an application, the ensemble models are employed to discover potential carcinogens in the DrugBank 
database. The results indicate that the proposed models are helpful in predicting the carcinogenicity of 
chemicals. A web server called CarcinoPred-EL has been built for these models (http://ccsipb.lnu.edu.cn/
toxicity/CarcinoPred-EL/).

Evaluating the toxicity of new compounds is an essential part of the drug development process1, 2. Any chem-
ical substances that can cause cancer are defined as carcinogens. Thus, among various toxicological endpoints 
of chemical substances, carcinogenicity is of great concern because of its serious effects on human health. The 
carcinogenic mechanism of chemicals may be due to their ability to damage the genome or disrupt cellular met-
abolic processes. Many approved drugs have been identified as carcinogens in humans or animals and have been 
withdrawn from the market3. To prevent the appearance of drug-induced cancer, as stipulated by regulatory 
authorities, pharmaceutical companies must perform several carcinogenicity tests before receiving marketing 
approval for their new compounds4.

In general, the carcinogenic potency of chemicals is evaluated using animal models, such as the 2-year rodent 
carcinogenicity assay and the 26-week Tg-rasH2 mice carcinogenicity study5. However, these animal model 
experiments are laborious, time consuming, highly expensive, and even unethical. It is impossible to assess 
the carcinogenicity of a large number of unascertained chemicals to identify problematic compounds in the 
early stages of drug development. Therefore, computational approaches for predicting carcinogenicity based on 
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chemical structure properties are recognized as an alternative solution, and have become the focus of research in 
recent years6, 7.

Over the past decades, numerous computational approaches have been proposed for the prediction of chemi-
cal carcinogenicity. These approaches can be divided into three categories: qualitative structure–activity relation-
ship (SAR) models8–20, i.e., classification models, quantitative structure–activity relationship models (QSAR)19–25, 
and expert systems26–29. SAR and QSAR models attempt to describe the relationships between chemical structure 
features (usually represented by molecular descriptors) and biological activity (e.g., carcinogenicity) based on 
known activity data using various statistical or mathematical methods30. Many SAR and QSAR models have 
achieved high predictive accuracy in specific congeneric chemical classes such as nitrocompounds21, aromatic 
amines22, polycyclic aromatic hydrocarbons23, and polychlorinated biphenyls8. For example, Morales et al. devel-
oped a QSAR model for predicting the rodent carcinogenicity of nitrocompounds by applying a topological 
substructural molecular design approach, which gave a determination coefficient of 0.666 in leave-one-out valida-
tion21. Tanabe et al. constructed a series of support vector machine (SVM)-based SAR models using 20 mutually 
overlapping subgroups of 911 chemicals, and reported an overall classification accuracy of approximately 80%9. 
However, these models can only be applied to a specific group of congeneric chemicals; in other words, they have 
a limited applicability domain (AD), and are therefore unsuitable for regulatory use, where there is a need to 
evaluate diverse classes of chemicals.

In recent years, several SAR models for predicting the carcinogenicity of diverse classes of compounds have 
been developed based on heterogeneous databases16–20. For example, Fjodorova et al. presented a carcinogenic 
potency classification model for diverse chemicals that achieved an accuracy of 92.2% on the training set and 
68.3% on the test set20. Their model was constructed using 27 molecular descriptors and a counter-propagation 
artificial neural network (CP ANN) technique based on a dataset containing 422 carcinogenic and 383 
non-carcinogenic organic compounds20. Zhang et al. built a naïve Bayes classification model using five simple 
molecular descriptors and extended-connectivity fingerprints (ECFPs), and achieved an overall accuracy of 90% 
with an internal training set and 68% in five-fold cross-validation16. These models have a wide AD, but their accu-
racy in forecasting the carcinogenicity of new compounds (the accuracy estimated by cross-validation or exter-
nal testing) remains unsatisfactory. Moreover, many models that achieve higher accuracy are generated through 
fine-tuning processes and have not been evaluated by an appropriate cross-validation.

Structural alert-based expert systems also achieve an overall accuracy of about 70% in predicting the car-
cinogenicity of compounds27, 31. This reflects that the carcinogenicity of a compound is closely related to its 
two-dimensional structure, which means that molecular fingerprints can be used to predict carcinogenicity.

Molecular fingerprints have been widely used in many aspects of computer-aided drug design, such as vir-
tual screening32 and similarity search33, but are rarely used in the prediction of carcinogenicity. Using six types 
of fingerprints, Li et al. applied 30 classification models, the best of which was generated by MACCS finger-
prints and a k-nearest neighbour (kNN) algorithm, with an overall accuracy of 80.46% in an external validation 
set17. However, the accuracy of the kNN model was only estimated using external validation, and did not use 
cross-validation.

Ensemble learning is a rather new machine learning model building method. Ensemble models can be formed 
by fusing a series of simple independent models (base classifiers) via voting or averaging. The ensemble learning 
method typically produces more accurate and robust models than any of its constituent models. On the other 
hand, it also has some limitations. For example, the computational cost for training and prediction is high, and 
the resulting model is difficult to interpret. Nevertheless, it has been successfully used in many cheminformatics 
and bioinformatics applications, such as hepatotoxicity prediction34, and phosphorylation sites prediction35. In 
this study, we apply this method to the prediction of carcinogenicity of chemicals.

The aim of the current study is to build classification models using different molecular fingerprints and 
ensemble machine learning methods to satisfactorily predict the carcinogenicity of diverse organic compounds, 
and to identify the structural features related to carcinogenic effects. The predictive performance of the models 
will be carefully evaluated by five-fold cross-validation with 100 repeats and external validation, which is com-
monly used in the evaluation of computational models36–41. The models are expected to be used in the early stages 
of drug discovery to filter potential carcinogens. For this purpose, a free carcinogenicity prediction online server 
has been built to enable public access to the models. The web server is called CarcinoPred-EL (Carcinogenicity 
Prediction using Ensemble Learning methods).

Results and Discussion
Dataset analysis. In this study, 1003 compounds collected from the Carcinogenic Potency Database 
(CPDB) were used as training data for building and validating the predictive models. This dataset contained 494 
carcinogens and 509 non-carcinogens. As we know, the diversity of compounds in a database has an important 
effect on the prediction accuracy of a model. The chemical space distribution of the training set can be illus-
trated by a scatter plot of molecular weight (MW) against the logarithm of the octanol/water partition coefficient 
(AlogP) for both carcinogens and non-carcinogens. As shown in Fig. 1, the MW and ALogP of carcinogenic and 
non-carcinogenic compounds have a similar distribution, with MW ranging from approximately 50–900 Da and 
AlogP ranging from approximately −7–6, which is a broader range than that of most drugs. It is also clear from 
Fig. 1 that we cannot distinguish carcinogenic from non-carcinogenic compounds using MW and ALogP alone, 
because they occupy an overlapping chemical space. In addition to MW and AlogP, the distribution of four widely 
used molecular descriptors was investigated (number of hydrogen bond acceptors (nHBAcc), number of hydro-
gen bond donors (nHBDon), Weiner path number (Weiner), and the sum of the atomic polarizabilities (Apol)). 
Their overall distribution is shown in Fig. 2. These box plots reveal that carcinogens tend to have slightly smaller 
MW and Apol than non-carcinogens (Fig. 2b and f) as deduced from the median and the first and third quartiles 
of the box plots. For the distribution of ALogP, nHBAcc, nHBDon, and Weiner, there is no significant difference 
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between carcinogens and non-carcinogens. Thus, it is difficult to predict the carcinogenicity of a compound using 
only simple molecular descriptors.

Performance of the models. Twelve types of molecular fingerprints (Table 1) were generated for the com-
pounds in the training dataset. Feature selection was then performed to remove the zero variation and collinear 
bits in each type of fingerprint. Based on the resulting fingerprints, 36 basic classifiers were generated using 
Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) algorithms. 
The performance of these models was evaluated by five-fold cross-validation with 100 repeats. The mean and 
standard deviation of the performance indicators from these runs are presented in Table 2. The accuracy (Q) of 
these basic classifiers ranges from 61.1–68.4% and the area under the curve (AUC) ranges from 65.2–74.5%. The 
most accurate classifier is generated by the RF algorithm using CDKExt fingerprints, whereas the highest AUC 
score is given by the XGBoost algorithm using CDKExt fingerprints. It can be observed that there are small dif-
ferences in accuracy for the classifiers generated by different algorithms using the same fingerprints. The general 
rule is that RF almost always achieves slightly higher accuracy than SVM and XGBoost. A bigger difference was 
observed among the classifiers generated using different fingerprints. The classifiers generated using the Estate 
(64.2% in RF model), FP4 (62.1%), FP4C (63.6%), AP2D (64.1%), and AP2DC (64.7%) fingerprints have signif-
icantly lower accuracy than those constructed from the other fingerprints. Hence, the basic classifiers generated 
based on the other seven fingerprints (CDK, CDKExt, CDKGraph, MACCS, Pubchem, KR, and KRC) were fused 
to develop ensemble models.

The performance of the ensemble models generated using these seven fingerprint sets were evaluated by 
five-fold cross-validation with 100 repeats. The results are shown in Table 2. It is interesting that the three ensem-
ble models achieve significantly higher accuracy and AUC than any basic classifier. The accuracy of SVM, RF, 
and XGBoost improves by 1.3%, 0.8%, and 1.8%, respectively, and the AUC improves by 1.8%, 1.4%, and 2.0%, 
respectively, compared with the best basic classifier built by the same algorithm. Although the RF algorithm has 
the highest accuracy of the basic classifiers, the ensemble method exhibits the least improvement, resulting in per-
formance equivalent to the ensemble SVM. Ensemble XGBoost is the most improved model, with performance 
indicators of accuracy, sensitivity, specificity, and AUC of 70.1 ± 2.9%, 67.0 ± 5.0%, 73.1 ± 4.4%, and 76.5 ± 2.9%, 
respectively. Ensemble models were also trained and evaluated using all 12 fingerprints. The resulting accuracy 
is lower than when using only the top-seven fingerprint sets, but still higher than the basic classifiers. Clearly, the 
ensemble method significantly improves the performance of SVM, RF and XGBoost in predicting the carcino-
genicity of chemicals.

Furthermore, an external validation dataset containing 40 compounds from the ISSCAN database was used to 
further evaluate the performance of the ensemble models built using the top-seven fingerprint sets. Because these 
compounds were not involved in the construction of the models, the resulting performance reflects the ability of 
the models to predict the carcinogenicity of new compounds. The results in Table 3 indicate that all three models 
produce high overall prediction accuracy, comparable to that in five-fold cross-validation. Ensemble XGBoost is 
still the most accurate model. In addition, the AUC of the three models is very high, suggesting that the ensemble 
models have a good ability to sort the carcinogenic potential of the compounds. These results indicate that the 
three models established using seven types of molecular fingerprints and the ensemble learning methods can 
discriminate carcinogenic and non-carcinogenic compounds in both training data and external validation data 
with high accuracy.

Figure 1. Chemical space of the training set. The chemical space is defined by the molecular weight (MW) on 
the X-axis and the logarithm of the octanol/water partition coefficient (ALogP) on the Y-axis. Carcinogens and 
non-carcinogens are represented by red and green dots, respectively.
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These results indicate that the ensemble models will be useful for predicting the carcinogenicity of chemicals. 
For convenient use of these three ensemble models, a user-friendly web server called CarcinoPred-EL has been 
established (http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/).

In addition, the method proposed in this study for building the ensemble model using different types of 
molecular fingerprints can be conveniently applied to the prediction of other toxicity endpoints or other patho-
logical drug properties of chemicals. Since the molecular fingerprints generating methods and the machine learn-
ing algorithms used in this study are all publicly available, these models can be implemented as a software module 
in other programming environments, and integrated into larger software for predicting carcinogenicity and other 
pathological drug properties.

Comparison with previous methods. Previously, a number of computational methods have been estab-
lished for predicting the carcinogenicity of chemicals. Here, we only compare with the SAR methods that have 
been evaluated using proper cross-validation, because the prediction performance estimated from conventional 
validation (dividing the dataset into two parts, one for training and one for testing) may be biased by the single 
split of data. The performance indicators and evaluation method of some recent reported chemical carcinogenic-
ity classification models are summarized in Table 4. From Tables 2 and 4, we can see the following. (1) Compared 
with previous models, the three proposed ensemble models achieve high overall accuracy (Q). In detail, the 
IRFMN/ISSCAN-CGX29 model implemented in VEGA software42 achieves an overall accuracy of 72%, which is 
higher than that of our models. The MDL-QSAR14 model achieves an overall accuracy comparable to our models. 
And the overall accuracy of other models was lower. (2) Although the specificity (SP) of the ensemble models 
is lower than that of MDL-QSAR, lazar, and Naïve Bayesian, their sensitivity (SE) is significantly higher (about 
5%). SE represents the ability to correctly identify carcinogens. This is considered to be a more important indi-
cator of the quality of a predictor for carcinogenicity classification8 because, for human health safety, successful 
prediction of carcinogens is more important than successful prediction of non-carcinogens. It is noteworthy that 
the sensitivity of the two rule-based models (IRFMN/Antares and IRFMN/ISSCAN-CGX in VEGA) is signifi-
cantly higher. But their specificity is low. (3) All models, excepting the two rule-based models, yield larger SP and 
smaller SE. This phenomenon suggests that lower specificity may be a common characteristic of machine learning 
based carcinogenicity prediction models. To overcome this drawback, future research should consider not only 
the overall accuracy of a model, but also its sensitivity. Note that the differences between SP and SE of the three 

Figure 2. Box plot representing the molecular descriptors for carcinogens and non-carcinogens. Carcinogens 
and non-carcinogens are represented by red and green boxes, respectively.

http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/
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ensemble models are 8.3% (Ensemble SVM), 4.3% (Ensemble RF), and 6.1% (Ensemble XGBoost), which is much 
less than the 9.5% (MC4PC), 12.0% (MDL-QSAR), 13.5% (lazar), and 22% (Naïve Bayesian) of the other machine 
learning based models. This indicates that our approach has made some advances in improving the sensitivity of 
machine learning based models.

Moreover, the performance of the ensemble models was compared with some existing software, includ-
ing admetSAR43, PreADMET44, VEGA42, Toxtree45, and lazar46, using the external validation dataset. Table 3 
presents performance indicators for the three ensemble models, the T_Carc_I model13 in admetSAR, the 

Algorithms Fingerprints Q (%) SE (%) SP (%) AUC (%)

SVM

CDK 67.5 ± 2.9 63.5 ± 4.9 71.5 ± 4.9 73.8 ± 3.0

CDKExt 67.9 ± 2.9 62.9 ± 5.1 72.7 ± 4.9 73.7 ± 3.2

CDKGraph 65.0 ± 3.1 61.5 ± 5.2 68.4 ± 5.0 69.4 ± 3.4

Estate 63.0 ± 2.9 57.8 ± 5.3 68.0 ± 5.0 68.3 ± 3.2

MACCS 67.1 ± 3.1 63.6 ± 5.1 70.6 ± 4.9 72.0 ± 3.3

Pubchem 68.1 ± 3.0 64.7 ± 4.9 71.5 ± 4.5 72.8 ± 3.2

FP4 64.6 ± 3.0 63.7 ± 4.9 65.4 ± 5.0 68.9 ± 3.1

FP4C 62.2 ± 3.2 62.6 ± 5.0 61.8 ± 5.1 65.5 ± 3.5

KR 66.5 ± 2.9 65.7 ± 4.9 67.2 ± 4.8 71.9 ± 3.1

KRC 66.7 ± 3.0 67.5 ± 4.9 66.0 ± 5.1 72.1 ± 3.2

AP2D 63.5 ± 3.0 56.3 ± 5.3 70.5 ± 5.4 68.3 ± 3.4

AP2DC 63.4 ± 3.0 57.0 ± 6.1 69.7 ± 5.9 68.9 ± 3.2

RF

CDK 68.3 ± 3.0 64.5 ± 5.1 72.1 ± 4.5 74.1 ± 3.1

CDKExt 68.4 ± 2.9 63.9 ± 4.8 72.8 ± 4.4 74.3 ± 3.1

CDKGraph 66.6 ± 2.8 64.0 ± 4.7 69.0 ± 4.4 71.3 ± 3.1

Estate 64.2 ± 3.0 61.6 ± 4.8 66.7 ± 4.9 69.9 ± 3.2

MACCS 67.4 ± 2.9 63.4 ± 4.6 71.3 ± 4.4 73.1 ± 2.9

Pubchem 68.0 ± 3.0 65.7 ± 4.9 70.3 ± 4.6 74.2 ± 3.1

FP4 62.1 ± 3.0 65.3 ± 4.8 59.1 ± 5.0 66.8 ± 3.4

FP4C 63.6 ± 3.2 63.9 ± 5.0 63.3 ± 4.9 67.9 ± 3.5

KR 67.0 ± 2.9 66.5 ± 4.8 67.6 ± 4.9 73.3 ± 3.0

KRC 66.5 ± 2.9 68.0 ± 4.5 65.1 ± 4.6 73.0 ± 3.0

AP2D 64.1 ± 2.9 56.5 ± 5.1 71.5 ± 4.7 68.2 ± 3.2

AP2DC 64.7 ± 3.0 59.6 ± 5.4 69.7 ± 4.9 70.9 ± 3.3

XGBoost

CDK 67.0 ± 3.0 65.9 ± 5.1 68.2 ± 4.9 73.6 ± 3.0

CDKExt 68.3 ± 2.9 66.0 ± 4.5 70.6 ± 4.4 74.5 ± 2.9

CDKGraph 65.1 ± 3.1 64.7 ± 4.6 65.5 ± 4.8 70.8 ± 3.2

Estate 63.0 ± 2.9 60.9 ± 4.8 65.0 ± 4.8 69.5 ± 3.0

MACCS 67.2 ± 2.9 65.5 ± 4.9 68.8 ± 4.7 73.2 ± 2.9

Pubchem 67.8 ± 3.1 66.7 ± 5.2 68.8 ± 4.8 73.8 ± 3.2

FP4 62.5 ± 2.7 66.1 ± 4.6 59.0 ± 4.4 65.9 ± 3.1

FP4C 61.1 ± 3.2 61.3 ± 4.9 60.8 ± 5.1 65.2 ± 3.3

KR 66.0 ± 3.0 66.8 ± 4.8 65.2 ± 4.9 72.7 ± 3.0

KRC 66.5 ± 3.1 66.2 ± 4.8 66.8 ± 4.7 73.0 ± 3.1

AP2D 64.4 ± 3.0 59.0 ± 5.0 69.5 ± 4.7 70.0 ± 3.3

AP2DC 64.4 ± 3.2 60.9 ± 5.2 67.7 ± 4.8 70.9 ± 3.3

Table 1. Performance of the basic classifiers in five-fold cross-validation. The performance values are 
represented as means and standard deviation.

Models Fingerprints Q (%) SE (%) SP (%) AUC (%)

Ensemble SVM Top 7 69.4 ± 2.9 65.2 ± 5.2 73.5 ± 4.6 75.6 ± 3.0

Ensemble RF Top 7 69.2 ± 2.9 67.0 ± 5.1 71.3 ± 4.6 75.7 ± 2.9

Ensemble XGBoost Top 7 70.1 ± 2.9 67.0 ± 5.0 73.1 ± 4.4 76.5 ± 2.9

Ensemble SVM 2 All 12 69.1 ± 3.0 64.3 ± 5.3 73.7 ± 4.7 76.0 ± 3.1

Ensemble RF 2 All 12 68.6 ± 2.9 65.5 ± 4.9 71.6 ± 4.6 75.5 ± 3.0

Ensemble XGBoost 2 All 12 69.8 ± 3.0 65.8 ± 5.0 73.7 ± 4.5 76.6 ± 3.0

Table 2. Performance of ensemble models in five-fold cross-validation. The performance values are represented 
as means and standard deviation.
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Carcino_Rat model in PreADMET, the four VEGA models (CAESAR12, ISS27, 28, IRFMN/Antares29, and IRFMN/
ISSCAN-CGX29), the ISS model27, 28 implemented in Toxtree, and the rat carcinogenicity endpoint15 of lazar. As 
shown in the table, the accuracy of admetSAR and PreADMET on this dataset is 50.5% and 62.5%, respectively, 
significantly lower than in the three ensemble models. The low accuracy of these software models is mainly due to 
their low sensitivity, indicating a poor ability to identify carcinogens. The CAESAR model in the VEGA software 
offers similar predictive performance to the Ensemble XGBoost model, and outperforms the Ensemble SVM 
and Ensemble RF models. The CAESAR model (CP ANN Dragon in Table 4) was also evaluated using five-fold 
cross-validation, achieving an overall accuracy of 62%12. The IRFMN/ISSCAN-CGX model has an accuracy of 
75%, but this high score may be due to some overlap of the data source for the external validation dataset (from 
ISSCAN) with the training set of the IRFMN/ISSCAN-CGX model (from ISSCAN and CGX). The rule-based 
models (i.e., ISS, IRFMN/Antares, and IRFMN/ISSCAN-CGX) achieve high accuracy of approximately 70.0% 
and significantly higher sensitivity than machine learning-based methods, indicating that they have a very strong 
ability to identify carcinogens. However, their specificity is significantly lower than that of machine learning 
methods. This indicates that machine learning algorithms tend to accurately predict non-carcinogenic chemicals, 
whereas rule-based expert systems tend to accurately predict carcinogenic chemicals. The lazar model, using a 
modified kNN algorithm, has the best accuracy and sensitivity among the tested software, but its performance is 
relatively poor in leave-one-out cross-validation (Table 4).

As shown above, the three ensemble models have achieved good performance. Nevertheless, there are still 
some weakest links. Obviously, the execution speed of the ensemble models is slow. When predicting carcino-
genicity of new compounds, seven types of molecular fingerprints will firstly be generated. Based on these finger-
prints, seven different basic classifiers will be performed, and their results will be averaged to generate the final 
prediction. This process is relatively computationally expensive, causing the ensemble model to be the slowest 
among the above mentioned software. Secondly, as with other machine learning based models, the sensitivity of 
the ensemble models is relatively low. In the future studies, increasing sensitivity should be prioritized. Moreover, 
as these models predict carcinogenicity of new compounds based on the rule mined from known dataset, 
although the performance of these models were carefully evaluated by 100 times five fold cross-validation and an 
external validation, these models are still likely to produce unreliable results when predicting novel compounds 
that shares few substructure to the compounds in the training dataset. Therefore, these models currently are not 
suitable to be a standard tool for evaluating carcinogenicity of new compounds, they are preferably suitable for 
preliminary screening of carcinogenic compounds in early stages of drug discovery.

Models Type Q (%) SE (%) SP (%) AUC (%)

Ensemble SVM machine learning 67.5 60.9 76.5 81.8

Ensemble RF machine learning 65.0 56.5 76.5 80.1

Ensemble XGBoost machine learning 70.0 65.2 76.5 80.3

admetSAR machine learning 50.0 34.8 70.6 49.6

PreADMET machine learning 62.5 52.2 76.5 —a

VEGA CAESAR machine learning 70.0 65.2 76.5 —a

VEGA ISS rule based 70.0 73.9 64.7 —a

VEGA IRFMN/Antares rule based 70.0 78.3 58.8 —a

VEGA IRFMN/ISSCAN-CGX rule based 75.0 82.6 64.7 —a

Toxtree rule based 70.0 78.3 58.6 —a

lazar similarity search 75.0 87.0 58.8 —a

Table 3. Performance of ensemble models and some existing software in the external validation dataset. aThe 
AUC cannot be calculated for this software because there are no probability values in its results.

Model name
Evaluation 
method Q (%) SE (%) SP (%) Reference

MC4PCa 10-fold CVe 66.5 61.4 70.9 14

MDL-QSARb 10-fold CV 69.2 62.8 74.8 14

lazar LOOCVf 66.9 59.9 73.4 15

Naïve Bayesian 5-fold CV 68 57 79 16

CP ANN MDLc 5-fold CVg 66 — — 12

CP ANN Dragon (VEGA CAESAR)c 5-fold CV 62 — — 12

VEGA IRFMN/Antares 5-fold CV 66.0 83.1 48.3 29

VEGA IRFMN/ISSCAN-CGXd 5-fold CV 72.7 76.5 61.8 29

Table 4. Performance indicators and the evaluation method of some carcinogenicity classification models 
reported in the literature. aThe coverage of this model was 96%. bThe coverage of this model was 97%. cThis 
study did not provide the SE and SP of the models. dThis model was trained using carcinogenesis data from both 
rats and mice. eTen-fold cross-validation. fLeave-one-out cross-validation. gFive-fold cross-validation.
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The effect of sample size on the performance of the ensemble models. To understand the effect 
of the number of compounds in the training set on the performance of the resulting ensemble model, the 1003 
compounds in the training set were randomly sampled to form datasets containing 100–1000 (at intervals of 100) 
compounds, and a new ensemble RF model was trained for each dataset. Its performance was then evaluated by 
five-fold cross-validation and an external validation. The above sampling, training, and evaluation process was 
repeated 100 times to avoid any bias. As this process is computationally intensive, only the ensemble RF model 
(in which there is no need to tune the parameters) was investigated. As shown in Fig. 3, the results from five-fold 
cross-validation (Fig. 3a) and the external validation (Fig. 3b) show that the mean specificity for the RF ensemble 
model reaches a maximum with 700 compounds in the dataset, and then decreases slightly as the number of com-
pounds increases to 1000. This implies that the available data may have already provided sufficient information on 
non-carcinogens for the RF ensemble model. It is obvious that the mean accuracy, sensitivity, and AUC increase 
with the number of compounds in the training set, and these metrics do not reach a plateau until the sample size 
reaches 1000. These results suggest that the performance, especially the accuracy, sensitivity, and AUC, of the 
ensemble models could be further improved by the use of more data.

Substructures related to carcinogenicity. The RF algorithm can estimate the importance of the fea-
tures used in the model by calculating the mean decrease of the Gini index (MeanDecreaseGini) for each fea-
ture. Molecular substructures related to the carcinogenicity of the compounds can be identified by analysing the 
important bits in the molecular fingerprints. In the present study, feature importance analysis was performed for 
the RF models trained with the Estate, MACCS, Pubchem, FP4, KR, and AP2D fingerprints. The five most impor-
tant features (with larger values of MeanDecreaseGini) for each fingerprint are shown in Fig. 4. As shown in the 
figure, there are 10 features with significantly higher MeanDecreaseGini values, suggesting that the substructures 
represented by these features may be closely related to the carcinogenicity of chemicals. The description and 
number of occurrences in carcinogens and non-carcinogens for these substructures are listed in Table 5. It can be 
seen that most of the top-ranking substructures are nitrogen-containing groups, such as the N-N, N-O, N = O, 
-N = groups, which occur more often in carcinogens than in non-carcinogens. Many of the known carcinogenic 
compounds, such as nitrosamines and nitrosoureas, contain these substructures. These features are components 
in many structure alerts (SA) that are used to build rule-based carcinogenicity classifiers, e.g., Aliphatic N-nitro, 
Alkyl nitrite, and Nitro aromatic SAs developed by Benigni et al.27. The fingerprint key of FP4-88 shows that car-
boxylic acid derivative is mostly present in non-carcinogens. Although the patterns of the substructures proposed 
in this study are very simple, and may not be suitable as SAs for rule-based carcinogenicity prediction, these 
substructures should be taken into consideration in the early stages of drug design.

Case studies: discovery of potential carcinogens in drugs. Carcinogenicity is a serious adverse drug 
reaction that has already occurred in many approved drugs. As reviewed by Onakpoya et al.3, 61 medicinal prod-
ucts were withdrawn from the market between 1953 and 2013 because of carcinogenicity, accounting for 13% 
of all withdrawn. Some approved drugs or experimental drugs may also be carcinogens47. To identify potential 
carcinogens in drugs, the three ensemble models proposed in this study were employed to predict the carcino-
genicity of 6538 approved and experimental small molecular drugs from the DrugBank database48. Among these 
drug molecules, 634 were predicted to be carcinogens by the ensemble SVM model, 554 were predicted to be 
carcinogens by the ensemble RF model, 742 were predicted to be carcinogens by the ensemble XGBoost model, 
and 394 were simultaneously predicted to be carcinogens by all three ensemble models. Among these 394 com-
pounds, 61 were duplicates of compounds in the training set. Thus, our models have identified 333 potentially 
carcinogenic drugs.

We investigated the carcinogenicity of those drugs with predicted probabilities greater than 0.8 by search-
ing the literature. The results are presented in Table 6. Four approved drugs are classified by the International 

Figure 3. Performance on five-fold cross-validation (a) and external validation (b) as a function of number 
of compounds in training set for RF ensemble models. The performance values are represented as means and 
standard error.
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Agency for Research on Cancer (IARC). Carmustine, Trypan blue, and Lomustine are Group 2 carcinogens, 
denoting that they are probably carcinogenic to humans and definitely carcinogenic to experimental animals, 
whereas Furazolidone is a Group 3 carcinogen that is recognized as a genotoxic carcinogen by the FAO/WHO 
Expert Committee on Food Additives because of its increased incidence of malignant tumours in mice and rats. 
Fotemustine and 1-Aminoanthracene have been reported to be a base-pair mutagen to Salmonella and to have 
genotoxic potency in Drosophila49–51. Additionally, 9-hydroxy aristolochic acid is a derivative of aristolochic acid, 
which is a strong carcinogen and has been classified by the IARC as a Group 1 agent. Five of the drugs predicted to 
be carcinogens are corticosteroids with very similar chemical structures, with Flunisolide recognized as causing 
an increased incidence of mammary adenocarcinomas in female rats in a long-term carcinogenesis assay52. We did 
not find any studies on carcinogenicity for the three experimental drugs 1,8-Dihydroxy-4-Nitroanthraquinone, 
Iodoindomethacin, and tert-butyl N-[cyano(methyl)amino]carbamate. As these experimental drugs were 
predicted as having a high probability of being carcinogens, developers should pay close attention to their 
carcinogenicity.

Figure 4. Feature importance results for top-five features from each RF model trained with Estate, MACCS, 
Pubchem, FP4, KR, and AP2D fingerprints. The MeanDecreaseGini values are represented as means and 
standard deviation.

Fingerprint Key Description SMARTS Pattern
Present in 
Carcinogens

Present in Non-
Carcinogens

AP2D-14 N-O at topological 
distance 1 [#7]~[#8] 175 67

AP2D-13 N-N at topological 
distance 1 [#7]~[#7] 160 54

Estate-28 dsN [ND2H0]( = *)-* 155 69

KR-4117 N = O N = O 162 59

KR-4301 NN NN 137 40

MACCS-52 NN [#7]~[#7] 160 54

MACCS-63 N = O [#7] = [#8] 162 59

Pubchem-423 N = O [#7] = ,:[#8] 163 60

Pubchem-515 N-N-C-C N-N-C-C 131 43

FP4-88 Carboxylic acid 
derivative

[$([#6X3 H0][#6]),$([#6X3H])]
( = [!#6])[!#6] 136 234

Table 5. Top ranking substructures and their corresponding description and the number of occurrence in 
carcinogens and non-carcinogens.



www.nature.com/scientificreports/

9Scientific RepoRts | 7: 2118  | DOI:10.1038/s41598-017-02365-0

The full list of 333 potentially carcinogenic drugs along with their predicted probabilities is presented in 
Supplementary Table S1.

Conclusions
In this study, three novel ensemble machine learning models (Ensemble RF, Ensemble SVM, and Ensemble 
XGBoost) were developed to predict the carcinogenicity of chemicals in rats using molecular fingerprint rep-
resentations of 1003 structurally diverse compounds. The ensemble models outperformed their basic classifiers 
in both overall accuracy and AUC. The best ensemble model (Ensemble XGBoost) attained an average accu-
racy of 70.1 ± 2.9%, sensitivity of 67.0 ± 5.0%, specificity of 73.1 ± 4.4%, and AUC of 76.5 ± 2.9% in five-fold 
cross-validation and an accuracy of 70.0%, sensitivity of 65.2%, specificity of 76.5%, and AUC of 80.3% in external 
validation. Compared with recent carcinogenicity predictors, the new ensemble models yielded good prediction 
quality, as demonstrated by their high accuracy and sensitivity in cross-validation. Compared with some existing 
software using an external validation dataset, the new ensemble models yielded high accuracy and sensitivity 
among machine learning-based models and similar accuracy but significantly lower sensitivity than rule-based 
systems. By analysing the effect of sample size on the performance of the ensemble models, we found that the 
accuracy, sensitivity, and AUC of the ensemble models could be further improved in the future when more data 
are available. Moreover, some substructures related to carcinogenicity were identified from six types of molecular 
fingerprints. As an application of the proposed models, 333 potentially carcinogenic drugs were identified from 
the DrugBank database. These models could be useful in the early stages of drug discovery for filtering potential 
carcinogens. The ensemble methods used in this paper could also be extended to predict other toxicity end points.

The three ensemble models have been integrated into a web server, which is freely available at http://ccsipb.
lnu.edu.cn/toxicity/CarcinoPred-EL/.

Materials and Methods
Data Preparation. The training dataset used to develop models for predicting the carcinogenicity of diverse 
organic compounds was derived from the Carcinogenic Potency Database (CPDB) summary tables (CPDBAS, 
version 5d)53, which is a unique and standardized resource of long-term animal carcinogenesis study results on 
more than 1500 chemical substances. In the CPDB, chemicals are labelled as active (carcinogens) or inactive 
(non-carcinogens) according to their TD50 values. In the present study, we only considered the carcinogenicity 
data of the compounds against rats, as the results from rats were considered more suitable for predicting human 
carcinogenicity54, 55. To build robust predictive models, the following compounds were excluded: (1) compounds 
containing less than three carbon atoms; (2) compounds containing heavy metals; (3) polymers; (4) mixtures. 
As a result, 1003 compounds for rat carcinogenicity, including 494 carcinogens and 509 non-carcinogens, were 
remained as the training set for building predictive models. The details of the molecules in the training dataset are 
provided in Supplementary Table S2.

To further evaluate the predictive performance of the models, an external validation dataset containing com-
pounds that do not duplicate the training dataset was constructed from the ISSCAN database56. The external test 
set contained 40 compounds, of which 23 are carcinogenic compounds and 17 are non-carcinogenic compounds. 
Details of the molecules in the external validation dataset are provided in Supplementary Table S3.

The DrugBank database version 5.048 contains 8246 approved and experimental drug entries. We selected 
6538 small molecular drugs that matched the selection criteria of the training set from this database. As an appli-
cation example, the carcinogenicity of these molecules was estimated by our predictive models.

DrugBank ID Name

Probabilities

RemarksSVM RF XGBoost

DB00262 Carmustine 0.8 0.87 0.96 IARC Group 2A

DB09158 Trypan blue 0.78 0.91 0.95 IARC Group 2B

DB00614 Furazolidone 0.73 0.85 0.94 IARC Group 3

DB01206 Lomustine 0.71 0.78 0.91 IARC Group 2A

DB04106 Fotemustine 0.71 0.74 0.89 Mutagen to Salmonella

DB01260 Desonide 0.73 0.83 0.87 Corticosteroid

DB03035 1,8-Dihydroxy-4-Nitroanthraquinone 0.72 0.73 0.85 —

DB00288 Amcinonide 0.69 0.73 0.84 Corticosteroid

DB02636 9-hydroxy aristolochic acid 0.65 0.69 0.83 Derivative of aristolochic acid 
(IARC Group 1)

DB07983 Iodoindomethacin 0.64 0.7 0.82 —

DB00591 Fluocinolone Acetonide 0.73 0.82 0.81 Corticosteroid

DB00180 Flunisolide 0.73 0.81 0.81 Corticosteroid

DB01047 Fluocinonide 0.69 0.73 0.81 Corticosteroid

DB08594 tert-butyl N-[cyano(methyl)amino]carbamate 0.69 0.64 0.8 —

DB01976 1-Aminoanthracene 0.71 0.8 0.73 Mutagen to Genotoxic to 
DrosophilaSalmonella

Table 6. Predicted carcinogenic drugs with predicted probabilities >0.8.

http://S1
http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/
http://ccsipb.lnu.edu.cn/toxicity/CarcinoPred-EL/
http://S2
http://S3
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Calculation of Molecular Fingerprints. In this study, twelve types of molecular fingerprints were gener-
ated to represent the chemical structures of the compounds. The fingerprints and their corresponding size and 
pattern type are summarized in Table 7. All the fingerprints were generated by the PaDEL-Descriptor software 
(version 2.21)57. Prior to the generation of the molecular fingerprints, salt was removed using the -removesalt 
parameter of the PaDEL-Descriptor. Each bit of these molecular fingerprints was used as a feature in the machine 
learning process.

To investigate the chemical space distribution of the compounds, six molecular descriptors (logarithm of 
the octanol/water partition coefficient (ALogP), molecular weight (MW), number of hydrogen bond acceptors 
(nHBAcc), number of hydrogen bond donors (nHBDon), Weiner path number (Weiner), and sum of the atomic 
polarizabilities (Apol)) that are widely used in ADME/T prediction were also calculated by the PaDEL-Descriptor.

Feature selection. Feature selection is an important procedure for building predictive models. The deletion 
of redundant features can simplify the generated model, prevent overfitting, and enhance the generalization abil-
ity of the model. In this study, features that had only a single unique value (zero variation features) in the training 
dataset were identified and removed using the nearZeroVar function from the R package caret (version 6.0–71)58. 
The pairwise Pearson’s correlation coefficients among the remaining features were then calculated. Highly corre-
lated features (Pearson’s correlation coefficients >0.7) were filtered out using the findCorrelation function from 
caret58. The remaining features (bits) for each molecular fingerprint are summarized in Table 7.

Model building. Ensemble machine learning models formed by fusing a series of simple independent models 
(base classifiers) via voting or averaging usually produce more accurate results than any of the single models.

In this study, three ensemble models were proposed using three different machine learning algorithms, 
namely SVM, RF, and XGBoost. Twelve base classifiers were built for each ensemble model by applying the dif-
ferent molecular fingerprints to the corresponding machine learning algorithms. The basic classifiers with better 
predictive performance were fused to form the ensemble model via averaging the probabilities from the basic 
classifiers. A flowchart of the ensemble model building process is shown in Fig. 5.

The SVM, RF, and XGBoost algorithms were all executed in R (version 3.3.1) using the kernlab (version 0.9–
25)59, randomForest (version 4.6–12)60, and xgboost (version 0.4–4)61 packages, respectively. A brief description of 
the basic theory of each algorithm and how they were used in this study is provided below.

Support vector machine. An SVM is an efficient supervised machine learning method based on the principle of 
structural risk minimization. This algorithm maps the input data into a high-dimensional feature space through 
some kernel functions and constructs an optimal separating hyperplane in this space. In this study, the radial 
basis kernel function (RBF) was used to implement the SVM models. The regularization parameter C and the 
kernel width parameter gamma were optimized through the random search method62, which was implemented 
in the caret package.

Random forest. RF is an ensemble machine learning method in which a multitude of decision trees are com-
bined using randomly selected subsets of training samples and features. RF is considered to be more accurate 
and robust than decision trees. One of the most important advantages of RF is that it can handle a large number 
of features without overfitting, and can give an estimate of the importance of the features. There are two main 
parameters in RF, the number of trees in the forest (ntree) and the number of features randomly sampled (mtry). 
In this study, the default values of these parameters were used, that is, ntree = 500 and mtry = the square root of 
the number of features in the dataset. The feature importance for each type of molecular fingerprint was analysed 
using the importance function in the randomForest package.

Extreme gradient boosting. XGBoost is a new implementation of the gradient tree boosting technique. XGBoost 
has been tested in a series of datasets for QSAR modelling, achieving high accuracy and requiring much less com-
putation time than deep neural nets63. There are several adjustable parameters in XGBoost. In this study, the step 

Fingerprint Type Abbreviation Pattern Type Size (bits) Selected (bits)

CDK CDK Hash fingerprints 1024 931

CDK Extended CDKExt Hash fingerprints 1024 942

CDK Graph CDKGraph Hash fingerprints 1024 233

Estate Estate Structural features 79 19

MACCS MACCS Structural features 166 84

Pubchem Pubchem Structural features 881 106

Substructure FP4 Structural features 307 31

Substructure Count FP4C Structural features count 307 27

Klekota-Roth KR Structural features 4860 97

Klekota-Roth Count KRC Structural features count 4860 59

2D Atom Pairs AP2D Structural features 780 47

2D Atom Pairs Count AP2DC Structural features count 780 25

Table 7. Summary of the 12 types of molecular fingerprints.
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size shrinkage (eta), maximum depth of tree (max.depth), minimum sum of instance weight (min.child.weight), 
and the maximum number of iterations (nrounds) were optimized by the caret package.

Performance Evaluation. The performance of the basic classifiers and ensemble models was evaluated by 
five-fold cross-validation with 100 repeats. In detail, the training set was randomly divided into five equal parts. 
Four parts were used to train the classifier, and the fifth part was used as a test set to evaluate the performance of 
the classifier. Thus, five classifiers and performance indicators can be obtained. To reduce the randomness of the 
results, the five-fold cross-validation was repeated 100 times, resulting in a total of 500 sets of performance indi-
cators. The performance indicators were aggregated to give an accurate performance evaluation of each model. In 
addition, the final ensemble models and some existing methods (software) were also evaluated using an external 
validation dataset.

Four performance indicators were used to evaluate the models, namely accuracy (Q), specificity (SP), sen-
sitivity (SE), and the area under the receiver operating characteristic curve (AUC). The accuracy represents the 
overall prediction accuracy of carcinogens and non-carcinogens. Specificity represents the predictive accuracy for 
non-carcinogens, and sensitivity describes the predictive accuracy for carcinogens. The indicators were calculated 
as follows:

=
+

+ + +
×Q TP TN

TP TN FN FP
100%,

(1)

=
+

×SE TP
TP FN

100%,
(2)

=
+

×SP TN
TN FP

100%,
(3)

Figure 5. Flowchart to show the ensemble model building process.
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where TP (true positive) denotes the number of correctly predicted carcinogens, TN (true negative) represents 
the number of correctly predicted non-carcinogens, FP (false positive) represents the number of non-carcinogens 
predicted to be carcinogens, and FN (false negative) represents the number of carcinogen compounds predicted 
to be non-carcinogens.

The receiver operating characteristic curve (ROC) is a plot of the TP rate (sensitivity) against the FP rate 
(1-specificity) for the different possible cutoff points of a diagnostic test. The AUC was calculated as an indicator 
of model predictiveness.
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