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Entanglement monogamy in three 
qutrit systems
Qiting Li1, Jianlian Cui1, Shuhao Wang2 & Gui-Lu Long2,3,4

By introducing an arbitrary-dimensional multipartite entanglement measure, which is defined in 
terms of the reduced density matrices corresponding to all possible two partitions of the entire 
system, we prove that multipartite entanglement cannot be freely shared among the parties in both 
n-qubit systems and three-qutrit systems. Furthermore, our result implies that the satisfaction of 
the entanglement monogamy is related to the number of particles in the quantum system. As an 
application of three-qutrit monogamy inequality, we give a condition for the separability of a class of 
two-qutrit mixed states in a 3 ⊗ 3 system.

Quantum entanglement is an essential feature of quantum mechanics, which distinguishes the quantum from 
the classical world. Because of entanglement, different quantum systems can affect each other, even if there is no 
classical connection between the multiple quantum systems. So quantum entanglement can be used to perform 
a number of tasks which can not be completed in the classical mechanical system. Quantification of quantum 
entanglement plays an important role in quantum information processing and quantum computation1–5. The 
mathematical study of entanglement has become a very active field and has led to many operational and infor-
mation theoretic insights.

Entanglement is monogamous, which was first discovered by tangle for three qubit systems in the seminal 
paper of Coffiman, Kundu and Wootters6. It describes the constraint on distributed entanglement among many 
parties. It is also a key ingredient in quantum cryptography security7, 8, statistical mechanics9, the foundations 
of quantum mechanics10 and black-hole physics11. In addition to having a wide range of practical applications, 
monogamy has also profound theoretical significance, allowing simplified proofs of no-broadcasting bounds and 
constraints for qubit multitap channel capacities12.

The author stated in ref. 12 that the monogamy inequality in the condensed matter physics gives rise to the 
frustration effects observed in, e.g., Heisenberg antiferromagnets. The perfect ground state for an antiferromagnet 
would in fact consist of singlets between all interacting spins. However, as a particle can only share one unit of 
entanglement with all its neighbors, it will try to spread its entanglement in an optimal way with all its neighbors 
leading to a strongly correlated ground state. Such qualitative statements have been turned into quantitative ones 
in n-qubit systems through the square of the concurrence12, the square of the entanglement of formation13 and the 
square of convex-roof extended negativity14, respectively.

Suppose that E is an entanglement measure for the multipartite system   ⊗ ⊗ ⊗ n1 2 . Monogamous 
relation expressed in terms of inequalities can be represented as

+ + + |



⩾E E E E ,n n1 2 1 2 1 3 1

where | E n1 2  denotes the bipartite quantum entanglement across the bipartition 
 n1 2   , E1|j denotes the 

bipartite quantum entanglement between 1  and j.
In ref. 15, we proposed an entanglement measure for arbitrary dimensional multipartite systems based on the 

weighed average of the square of fidelity and proved that it satisfied monogamous relation for three qubit systems. 
In this paper, we will first generalize the monogamy inequality to n-qubit systems.

The authors in ref. 16 by an anti-example pointed out that the monogamy inequality characterized by the 
square of concurrence cannot be generalized to a quantum system apart from qubits. This raises a fundamen-
tal physical question: does there exist the monogamy in the higher dimensional systems? In this paper, for 
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three-qutrit systems, we obtain an analytic expression of our measure, and furthermore, answer positively the 
question.

Our results clearly elucidates the restriction on the sharing of entanglement among both n-qubit systems and 
three qutrit systems. In addition, we obtain that the satisfaction of the entanglement monogamy characterized by 
an entanglement measure is generally related to the number of particles in the quantum system.

Results
Let di be a Hilbert space with dimension di, = …i n1, 2, , . For an n-qudit pure state |ψ〉 in the n-partite quan-
tum system = ⊗ ⊗ ⊗

d d dn1 2    , define

ψ ρ=
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−
 ( )d tr( ) min 1 ,

(1)
M n

A
2 2

2 1
E
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where ρA1
 is the reduced density matrix of |ψ〉 〈ψ| on subsystem A1

; the minimum min
2

 is taken over all possible 

2-partitions  = A A2 1 2 of the system  and = ∑ =
d d

n
i
n

i1 . For an n-qudit mixed state ρ in the n-partite quantum 
system , we define

 ∑ρ ψ=
ψ{ }

p( ) inf ( ),M

p i
i

M
i

,i i

where the infimum is taken over all possible pure state decompositions ρ ψ ψ= ∑ pi i i i . Analogously to ref. 15, 
we can check that M is an entanglement measure. We can also verify that M  satisfies the convexity (monotonic-
ity under discarding information)17 for any states:

 ∑ ∑ρ ρ










.⩽p p ( )
(2)

M

i
i i

i
i

M
i

A similar discussion just as in ref. 15 implies that M satisfies the monogamous relation for three-qubit quan-
tum systems. The following theorem generalizes this result to the case of n-qubit systems.

Theorem 1. For a n-qubit system, M satisfies the monogamy inequality, i.e.,

+ + + .| | | |



⩾n
M M M

n
M

1 2 1 2 1 3 1   

The proof of this theorem can be found in the Supplemental Material.
For n-qudit pure state |ψ〉 in the system    = ⊗ ⊗ ⊗

d d dn1 2 , let

ψ ρ= − tr( ) min 2(1 ) ,
(3)A

2

2 1
C

A

where the minimum min
2

 is taken over all possible 2-partitions  = A A2 1 2 of the system . Clearly  is an entan-
glement measure.

Consider the state = + +GHZ ( 100 010 001 )1
3

, we find that  = =GHZ GHZ( ) ( )AB AC
2
3

 and 
 =GHZ( )A BC

2 2
3

 (see ref. 6). Hence + >AB AC A BC   , which violates the monogamy inequality.
Now we add a coefficient which is related to the particle number of systems in Eq. (3), and let

ψ ρ= −
−

d tr( ) min 2(1 ) ,
(4)

N n
A

2 2

2 1
C

A

where = ∑ =
d d

n
i
n

i1 . Observe that, if ρ is a rank two state, then ρ ρ− = −tr tr2(1 ) ( ) 12 2 . Thus, the following 
result follows immediately from Theorem 1.

Corollary 1. For an 3-qubit system, N  satisfies the monogamy inequality.
The above discussion implies that the concurrence itself does not satisfy monogamous relation. This, together 

with Corollary 1, shows that the satisfaction of entanglement monogamy characterized by an entanglement meas-
ure is generally related to the number of particles of the system.

Next we discuss the entanglement monogamy in three qutrit systems. Until now, no true entanglement 
measure has been proven to be monogamous for three-dimensional tripartite systems. Taking the square of 
concurrence as an example, an explicit counterexample showing the violation of the monogamy inequality in 
three-dimensional quantum systems is as follows16,

Ψ = − +

− + − .

1
6
( 0 1 2 0 2 1 1 2 0

1 0 2 2 0 1 2 1 0 )

A B c A B C A B C

A B C A B C A B C
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Clearly, the density matrix ρ = Ψ ΨtrA BC  has the spectrum { }, ,1
3

1
3

1
3

. For an arbitrary pure state |Φ〉AB, a discus-
sion just as in ref. 16 implies that the reduced density matrix ρ = Φ ΦtrA B AB  has the same spectrum { }, , 01

2
1
2

 
(see also ref. 18).

For the square of the concurrence,  it  fol lows that  =A BC
2 4

3
 and = = 1AB AC

2 2  ,  hence, 
  + = > =2AB AC A BC
2 2 4

3
2 , which means that the square of concurrence does not work for monogamy ine-

quality on a three-qutrit system. Using the entanglement measure M, it can be calculated that  = ⩽ 1AB
M

AC
M  

and = 6A BC
M . Therefore,   + <AB

M
AC
M

A BC
M . More generally, we will prove that the measure M  satisfies the 

monogamy inequality in a three-qutrit system. As a first step toward proving this inequality, we will now derive a 
computable formula for M .

Lemma 1. Let α ∈ ⩽m( 3)i
m  be m-dimensional complex column vectors (i = 1, 2, 3) satisfying α∑ == 1i i1

3 2 . 
Let ρ α α= 〈 〉( , )j i ij be a 3 × 3 matrix with ⩽ i1 , ⩽j 3. Here 〈·, ·〉 is the inner product in m. Denote by det(ρ) the 
determinant of ρ. Then

ρ =
+ + − + − + ∆

tr
y y y2 2 2 4 16

2
,

2

where
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with = ∆ − ≤( )p 16 01
3

, θ = −( )arccos q
r

1
3 2

, ρ= ∆ − −q det64 ( )64
3

128
27

 and = −( )r p
3

3
.

The proof of this lemma will be given in the Supplemental Material.

Theorem 2. For a three-qutrit system ⊗ ⊗A B C   , M satisfies the monogamy inequality, i.e.,

  + .⩾A BC
M

AB
M

AC
M

See Methods for the proof of this theorem.

Discussions
The monogamy of entanglement characterized by the entanglement measure describes quantitatively the entan-
glement between quantum systems. Choosing the proper entanglement measure helps to reveal the nature of 
entanglement. The more system information reflected by an entanglement measure, the better it can describe the 
entanglement of the system. Through giving an entanglement measure which is related to the number of particles 
of the system, we prove that multipartite entanglements cannot be freely shared among the parties in both n-qubit 
systems and three-qutrit systems. Corollary 1 and the discussion perior to Corollary 1 imply that the satisfaction 
of entanglement monogamy characterized by an entanglement measure is generally connected with the number 
of particles of the system.

For the state |Ψ〉 given before Lemma 1 in a three qutrit system ⊗ ⊗A B C   , one can compute 
= Ψ =( ) 2 3A BC

N N  , ρ= Ψ =( ( )) 1AB
N N

AB   and   ρ= Ψ =( ( )) 1AC
N N

AC , so + <AB
N

AC
N

A BC
N   , that 

is, the monogamy inequality holds, where N  is defined in Eq. (4). More generally, we conjecture that the entan-
glement measure N  satisfies the monogamy inequality in three qutrit systems. As a subsequent work, we will 
continue to discuss it.

In addition, the entanglement monogamy inequality gives an upper bound for the entanglement degree 
of two-qutrit mixed states, for which the general separability criteria and computable entanglement measures 
remain still open. In the Supplemental Material, by such an upper bound, a condition is given for the separability 
of a class of two-qutrit mixed states in a 3 ⊗ 3 system.

Methods
Proof of Theorem 2. Let |φ〉ABC be a pure state in the three-qutrit system ⊗ ⊗A B C   , then

∑φ β=
⩽ ⩽

i j k ,
(5)

ABC
i j k

ijk A B C
0 , , 2

where β∑ | | =⩽ ⩽ 1i j k ijk0 , , 2
2  and =i i{ 0, 1, 2}A , =j j{ 0, 1, 2}B  and =k k{ 0, 1, 2}C  are the orthonormal 

bases of the qutrit system A , B  and C, respectively. Let

β β β β β β β β β= = .h i( , , , , , , , , ) , 0, 1, 2i i i i i i i i i i
T

00 01 02 10 11 12 20 21 22

Here, aT denotes the transposition of the vector a. One can obtain that
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ρ φ ρ ρ ρ ρ

ρ ρ ρ

ρ ρ

= + + +

+ + +

+ +

( ) 0 0 0 1 0 2 1 0
1 1 1 2 2 0
2 1 2 2 ,

A ABC A A A A A A A A

A A A A A A

A A A A

00 01 02 10

11 12 20

21 22

where ρ = h h,Aij i j , ⩽ i0 , ⩽j 2.
Using Lemma 1, we calculate the entanglement between the particle A and the particles BC,

ρ ψ=






−






= ⋅
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Next we estimate the entanglement between particles A and C. Let  →:i
9 9  (i = 0, 1, 2) be three projec-

tions defined, respectively, by

=

=

=

x x x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x x x x x x x

( , , , , , , , , ) ( , , , 0, 0, 0, 0, 0, 0) ,

( , , , , , , , , ) (0, 0, 0, , , , 0, 0, 0) ,

( , , , , , , , , ) (0, 0, 0, 0, 0, 0, , , ) ,

T T

T T

T T

0 1 2 3 4 5 6 7 8 9 1 2 3

1 1 2 3 4 5 6 7 8 9 4 5 6

2 1 2 3 4 5 6 7 8 9 7 8 9







where ∈xj  = …j( 1, 2, , 9). Consider a pure state decomposition of ρ ψ( )AC ABC ,

ρ ψ τ τ τ τ τ τ= + +s s s( )AC ABC 0 0 0 1 1 1 2 2 2

with = ∑ =s hj i j i0
2 2

, τ β= ∑ ⩽ ⩽ i kj s i k ijk A C
1

0 , 2
j

 with j = 0, 1, 2. Then

 ∑ρ τ| 〉 = ′ ′ = .
′⩽ ⩽s

h h i i j( ) 1 , ( 0, 1, 2)A j
j i i

j i j i A
0 , 2

Thus, by Lemma 1, we obtain the entanglement degree of |τj〉 (j = 0, 1, 2),
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j . Hence, 

we get a upper bound of the entanglement of  AC
M ,

∑ρ ψ τ= | 〉 .
=

⩽ s[ ( )] ( )AC
M M

AC ABC
j

j
M

j
0

2
  

Similarly to the above discussion for  AC
M , consider a decomposition ρ ψ ς ς= ∑ = t( )AB ABC l l l l0

2 , then 
  ρ ψ ς= ∑ =⩽ t[ ( )] ( )AB

M M
AB ABC l l

M
l0

2 . We might as well assume that
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∑ ∑ ∑τ τ ς| 〉 =
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If we can prove that the following inequality

 ∑ τ| 〉
=

⩾ s2 ( ),
(6)
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M

j
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M
j

0

2

then it will be obtained   +⩾A BC
M
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M
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M  and the proof is completed. Next we verify the inequality (8), i.e.,
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where λ = ∑ ∑ 〉〈 〉 − 〈 〉〈 〉∆ ∈
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Let λj1, λj2 and λj3 be the three non-negative eigenvalues of sjρA(|τj〉) (j = 0, 1, 2), then

λ λ λ= + +s , (8)j j j j1 2 3

λ λ λ λ λ λ

λ λ λ
∆ =

+ +

+ +τ ( )
,

(9)

j j j j j j

j j j

1 2 1 3 2 3

1 2 3
2j

∑ λ λ λ λ λ λ λ∆ = + + +
=

∆( ) ,
(10)

A
j

j j j j j j
0

2

1 2 1 3 2 3 A



www.nature.com/scientificreports/

6Scientific RepoRts | 7: 1946  | DOI:10.1038/s41598-017-02066-8

ρ τ
λ λ λ
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Substituting Eqs (8)–(12) into Eq. (7), we only need to check that the function
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Denote λ λ λ λ λ λ λ λ λ λ= ∆( )X , , , , , , , , ,f det01 02 03 11 12 13 21 22 A A
 and denote the domain of f by
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Then f  is a bounded closed set in 10. More generally, we assume that Xf varies continuously in f . Clearly f is 
differential in 10, and hence f has a minimum in f . Through a calculation we find that ≠

λ
∂

∂ ∆
0f

A

 for 

λ∆⩽ ⩽0 1
3A

. This implies that there is no stationary point for f in the interior of f . Hence the minimum of f 
must be achieved on the boundaries of f . It can be checked that ⩾f 0 on the boundaries of f  (see Supplemental 
Material). Therefore Eq. (13) holds and the proof is finished.
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